Cinnamomum-Longepaniculatum-Leaves-Based Fe-N Doped Porous Carbon as an Effective Oxygen Reduction Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure Characterization
2.2. Electrochemical Performance
3. Materials and Methods
3.1. Materials
3.2. Preparation of Catalysts
3.3. Physicochemical Characterization
3.4. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, L.; Hu, X.; Min, Y.; Zhang, X.; Liu, W.; Lam, P.K.S.; Jung, M.M.; Zeng, R.J.; Ye, R. Microalgae-derived single-atom oxygen reduction catalysts for zinc-air batteries. Carbon 2023, 203, 827–834. [Google Scholar] [CrossRef]
- Chang, H.; Shi, L.-N.; Chen, Y.-H.; Wang, P.-F.; Yi, T.-F. Advanced MOF-derived carbon-based non-noble metal oxygen electrocatalyst for next-generation rechargeable Zn-air batteries. Coord. Chem. Rev. 2022, 473, 214839. [Google Scholar] [CrossRef]
- Lu, X.; Yang, P.; Xu, H.; Xiao, L.; Liu, L.; Li, R.; Alekseeva, E.; Zhang, J.; Levin, O.; An, M. Biomass derived robust Fe4N active sites supported on porous carbons as oxygen reduction reaction catalysts for durable Zn-air batteries. J. Mater. Chem. A 2023, 11, 3725–3734. [Google Scholar] [CrossRef]
- Ou, D.; Zheng, S.; Zhu, M.; Chen, R.; Gao, T.; Guo, H.; Guo, J.; Tang, J. Excellent electrocatalytic performance of rice straw-derived carbon catalysts activated by zinc halides for oxygen reduction reaction. Int. J. Hydrogen Energy 2024, 50, 1373–1380. [Google Scholar] [CrossRef]
- Guo, B.; Ma, R.; Li, Z.; Guo, S.; Luo, J.; Yang, M.; Liu, Q.; Thomas, T.; Wang, J. Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors. Nano-Micro Lett. 2020, 12, 20. [Google Scholar] [CrossRef]
- Gong, X.; Zhu, J.; Li, J.; Gao, R.; Zhou, Q.; Zhang, Z.; Dou, H.; Zhao, L.; Sui, X.; Cai, J.; et al. Self-Templated Hierarchically Porous Carbon Nanorods Embedded with Atomic Fe-N4 Active Sites as Efficient Oxygen Reduction Electrocatalysts in Zn-Air Batteries. Adv. Funct. Mater. 2021, 31, 2008085. [Google Scholar] [CrossRef]
- Qiao, Y.; Yuan, P.; Hu, Y.; Zhang, J.; Mu, S.; Zhou, J.; Li, H.; Xia, H.; He, J.; Xu, Q. Sulfuration of an Fe-N-C Catalyst Containing FexC/Fe Species to Enhance the Catalysis of Oxygen Reduction in Acidic Media and for Use in Flexible Zn-Air Batteries. Adv. Mater. 2018, 30, 1804504. [Google Scholar] [CrossRef]
- Yu, P.; Wang, L.; Sun, F.; Xie, Y.; Liu, X.; Ma, J.; Wang, X.; Tian, C.; Li, J.; Fu, H. Co Nanoislands Rooted on Co-N-C Nanosheets as Efficient Oxygen Electrocatalyst for Zn-Air Batteries. Adv. Mater. 2019, 31, 1901666. [Google Scholar] [CrossRef]
- Ye, C.W.; Xu, L. Recent advances in the design of a high performance metal-nitrogen-carbon catalyst for the oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 22218–22247. [Google Scholar] [CrossRef]
- Xie, W.-Y.; Ling, C.; Huang, Z.-Y.; Chen, W.-C.; He, S.-F.; Si, L.-p.; Liu, H.-Y. Metalloporphyrin doped rice husk-based biomass porous carbon materials as high performance electrocatalyst for oxygen reduction reaction in Zn-Air battery. Int. J. Hydrogen Energy 2024, 51, 857–868. [Google Scholar] [CrossRef]
- Das, P.K.; Chatterjee, S.; Samanta, S.; Dey, A. EPR, Resonance Raman, and DFT Calculations on Thiolate- and Imidazole-Bound Iron(III) Porphyrin Complexes: Role of the Axial Ligand in Tuning the Electronic Structure. Inorg. Chem. 2012, 51, 10704–10714. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.A.C.d.; Ficca, V.C.A.; Gokhale, R.; Santoro, C.; Mecheri, B.; D’Epifanio, A.; Licoccia, S.; Atanassov, P. Iron(II) phthalocyanine (FePc) over carbon support for oxygen reduction reaction electrocatalysts operating in alkaline electrolyte. J. Solid. State Electrochem. 2021, 25, 93–104. [Google Scholar] [CrossRef]
- Kumar, Y.; Kibena-Poldsepp, E.; Mooste, M.; Kozlova, J.; Kikas, A.; Aruvali, J.; Kaarik, M.; Kisand, V.; Leis, J.; Tamm, A.; et al. Iron and Nickel Phthalocyanine-Modified Nanocarbon Materials as Cathode Catalysts for Anion-Exchange Membrane Fuel Cells and Zinc-Air Batteries. ChemElectroChem 2022, 9, e202200717. [Google Scholar] [CrossRef]
- Praats, R.; Käärik, M.; Kikas, A.; Kisand, V.; Aruväli, J.; Paiste, P.; Merisalu, M.; Leis, J.; Sammelselg, V.; Zagal, J.H.; et al. Electrocatalytic oxygen reduction reaction on iron phthalocyanine-modified carbide-derived carbon/carbon nanotube composite electrocatalysts. Electrochim. Acta 2020, 334, 135575. [Google Scholar] [CrossRef]
- Morales, D.M.; Kazakova, M.A.; Dieckhöfer, S.; Selyutin, A.G.; Golubtsov, G.V.; Schuhmann, W.; Masa, J. Trimetallic Mn-Fe-Ni Oxide Nanoparticles Supported on Multi-Walled Carbon Nanotubes as High-Performance Bifunctional ORR/OER Electrocatalyst in Alkaline Media. Adv. Funct. Mater. 2020, 30, 1905992. [Google Scholar] [CrossRef]
- Chen, K.; Kim, S.; Rajendiran, R.; Prabakar, K.; Li, G.; Shi, Z.; Jeong, C.; Kang, J.; Li, O.L. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery. J. Colloid Interface Sci. 2021, 582, 977–990. [Google Scholar] [CrossRef]
- Yu, L.; Yang, C.; Zhang, W.; Liu, W.; Wang, H.; Qi, J.; Xu, L. Solvent-free synthesis of N-doped nanoporous carbon materials as durable high-performance pH-universal ORR catalysts. J. Colloid Interface Sci. 2020, 575, 406–415. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, X.S. Biomass-derived carbon electrode materials for supercapacitors. Sustain. Energy Fuels 2017, 1, 1265–1281. [Google Scholar] [CrossRef]
- Chen, X.; Dai, Y.; Zhang, H.; Zhao, X. Revealing the steric effects of cobalt porphyrin on the selectivity of oxygen reduction reaction. Colloids Surf. A 2023, 663, 131091. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, Q.; Wu, H.; Zhou, W.-h.; Liu, M.-j.; Yang, L.; Feng, R.-z.; Li, M.-f. Changes in essential oils content, antioxidant capacity and secondary metabolism in different Cinnamomum longepaniculatum varieties. Ind. Crops Prod. 2023, 192, 115996. [Google Scholar] [CrossRef]
- Xu, H.; Wang, D.; Yang, P.; Du, L.; Lu, X.; Li, R.; Liu, L.; Zhang, J.; An, M. A hierarchically porous Fe-N-C synthesized by dual melt-salt-mediated template as advanced electrocatalyst for efficient oxygen reduction in zinc-air battery. Appl. Catal. B 2022, 305, 121040. [Google Scholar] [CrossRef]
- Song, C.; Kuihua, H.; Gao, Y.; Teng, Z.; Wang, M.; Li, J. Preparation of Scallion-Derived Porous Carbon with Regular Pore Structure for High-Performance Supercapacitors. J. Electrochem. Soc. 2020, 167, 160549. [Google Scholar] [CrossRef]
- Jiao, C.; Xu, Z.; Shao, J.; Xia, Y.; Tseng, J.; Ren, G.; Zhang, N.; Liu, P.; Liu, C.; Li, G.; et al. High-Density Atomic Fe-N4/C in Tubular, Biomass-Derived, Nitrogen-Rich Porous Carbon as Air-Electrodes for Flexible Zn-Air Batteries. Adv. Funct. Mater. 2023, 33, 2213897. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, X.; He, G.; Shen, Z.; Wang, W. Iron phthalocyanine decorated porous biomass-derived carbon as highly effective electrocatalyst for oxygen reduction reaction. J. Environ. Chem. Eng. 2023, 11, 109676. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Marabotti, P.; Tommasini, M.; Castiglioni, C.; Serafini, P.; Peggiani, S.; Tortora, M.; Rossi, B.; Li Bassi, A.; Russo, V.; Casari, C.S. Electron-phonon coupling and vibrational properties of size-selected linear carbon chains by resonance Raman scattering. Nat. Commun. 2022, 13, 5052. [Google Scholar] [CrossRef]
- Zhang, M.; Song, Z.; Liu, H.; Ma, T. Biomass-derived highly porous nitrogen-doped graphene orderly supported NiMn2O4 nanocrystals as efficient electrode materials for asymmetric supercapacitors. Appl. Surf. Sci. 2020, 507, 145065. [Google Scholar] [CrossRef]
- Shi, J.; Lin, N.; Lin, H.-b.; Yang, J.; Zhang, W.-L. A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction. New Carbon Mater. 2020, 35, 401–409. [Google Scholar] [CrossRef]
- Jin, H.; Luo, Y.; Pi, L.; Wang, F.; Zhou, L.; Zhang, F. Cobalt and Nitrogen co-doped Carbon Composite Material Derived from Rice Husk as a cost-effective Electrocatalyst for Oxygen Reduction Reaction. Int. J. Electrochem. Sci. 2021, 16, 210724. [Google Scholar] [CrossRef]
- Ejaz, A.; Jeon, S. The individual role of pyrrolic, pyridinic and graphitic nitrogen in the growth kinetics of Pd NPs on N-rGO followed by a comprehensive study on ORR. Int. J. Hydrogen Energy 2018, 43, 5690–5702. [Google Scholar] [CrossRef]
- Faisal, S.N.; Haque, E.; Noorbehesht, N.; Zhang, W.; Harris, A.T.; Church, T.L.; Minett, A.I. Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Adv. 2017, 7, 17950–17958. [Google Scholar] [CrossRef]
- Forment-Aliaga, A.; Weitz, R.T.; Sagar, A.S.; Lee, E.J.H.; Konuma, M.; Burghard, M.; Kern, K. Strong p-Type Doping of Individual Carbon Nanotubes by Prussian Blue Functionalization. Small 2008, 4, 1671–1675. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Jiang, G.; Wen, G.; Gao, R.; Li, S.; Li, M.; Zhu, J.; Zheng, Y.; Li, Z.; Hu, Y.; et al. Densely accessible Fe-Nx active sites decorated mesoporous-carbon-spheres for oxygen reduction towards high performance aluminum-air flow batteries. Appl. Catal. B Env. 2021, 293, 120176. [Google Scholar] [CrossRef]
- Xu, Z.; Zhu, J.; Shao, J.; Xia, Y.; Tseng, J.; Jiao, C.; Ren, G.; Liu, P.; Li, G.; Chen, R.; et al. Atomically dispersed cobalt in core-shell carbon nanofiber membranes as super-flexible freestanding air-electrodes for wearable Zn-air batteries. Energy Storage Mater. 2022, 47, 365–375. [Google Scholar] [CrossRef]
- Ao, X.; Ding, Y.; Nam, G.; Soule, L.; Jing, P.; Zhao, B.; Hwang, J.Y.; Jang, J.-H.; Wang, C.; Liu, M. A Single-Atom Fe-N-C Catalyst with Ultrahigh Utilization of Active Sites for Efficient Oxygen Reduction. Small 2022, 18, 2203326. [Google Scholar] [CrossRef]
- Xia, B.Y.; Yan, Y.; Li, N.; Wu, H.B.; Lou, X.W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, Z.; Lu, X.; Jiao, X.; He, G. Fe and N dual doped porous carbon derived from waste biomass as an effective catalyst for oxygen reduction reaction. Mater. Lett. 2023, 341, 134237. [Google Scholar] [CrossRef]
- Wu, D.-H.; Huang, H.; Ul Haq, M.; Zhang, L.; Feng, J.-J.; Wang, A.-J. Lignin-derived iron carbide/Mn, N, S-codoped carbon nanotubes as a high-efficiency catalyst for synergistically enhanced oxygen reduction reaction and rechargeable zinc-air battery. J. Colloid Interface Sci. 2023, 647, 1–11. [Google Scholar] [CrossRef]
- Ling, C.; Xie, W.-Y.; He, S.-F.; Liang, G.-C.; Xiao, X.-Y.; Yang, C.-L.; Liu, H.-Y. Si-doped biomass carbon supported Fe-N-C catalyst derived from pyrolysis of iron porphyrin for oxygen reduction reaction. J. Alloys Compd. 2024, 987, 174172. [Google Scholar] [CrossRef]
- Sha, J.; Jiang, S.; Cai, D.; Xue, Y.; Li, G.; Xiong, Z.; Lei, Y.; Si, Y.; He, P.; Guo, C. Potato-derived N-doped carbon nanoparticles incorporated with FeCo species as efficiently bifunctional electrocatalyst towards oxygen reduction and oxygen evolution reactions for rechargeable zinc-air batteries. Mater. Sci. Eng. B 2023, 290, 116291. [Google Scholar] [CrossRef]
- Yu, L.-Q.; Wang, H.; Chen, S.-L.; Wen, T.-E.; Huang, B.-C.; Jin, R.-C. Biomass derived Fe-N/C catalyst for efficiently catalyzing oxygen reduction reaction in both alkaline and neutral pH conditions. Chin. Chem. Lett. 2023, 34, 107236. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Xu, Y.; Zhang, T.; Zhu, D.; Li, G.; Liu, H. Cobalt Nanoparticles Anchored on N-Doped Porous Carbon Derived from Yeast for Enhanced Electrocatalytic Oxygen Reduction Reaction. ChemSusChem 2023, 16, e202201964. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Maimaitiyiming, X.; Kuerban, Z. Fe/N-doped porous carbon materials derived from corn stalks as ORR electrocatalysts for DMFC. Mater. Lett. 2024, 354, 135336. [Google Scholar] [CrossRef]
- Wang, G.; Wang, W.; Chen, Y.; Yan, C.; Gao, Z. Fe3C decorated, N-doped porous carbon as cost-effective and efficient catalyst for oxygen reduction reaction. Appl. Surf. Sci. 2023, 610, 155456. [Google Scholar] [CrossRef]
- Nernprom, K.; Sanetuntikul, J.; Saejio, A.; Pitipuech, N.; Wichianwat, K.; Chanlek, N.; Poompipatpong, C.; Chanunpanich, N.; Ketpang, K. Water hyacinth root derived hybrid metal oxides/nitrogen doped porous carbon as an efficient non-precious metal oxygen reduction reaction electrocatalyst in alkaline media. Int. J. Hydrogen Energy 2024, 50, 1549–1558. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, Y.; Han, N.; Li, X.; Wang, Q.; Sun, K.; Si, W.; Wang, F.; Zhao, X.; Bokhari, A.; et al. Novel highly active and selective CoNSC efficient ORR catalyst derived from in-situ egg gel pyrolysis. Fuel 2023, 333, 126432. [Google Scholar] [CrossRef]
C Source | Doping Element | Catalyst | Eonset | E1/2 | Ref |
---|---|---|---|---|---|
(V vs. RHE) | (V vs. RHE) | ||||
Waste leaves of C. longepaniculatum trees | N | NBC | 0.95 | 0.84 | This work |
Waste leaves of C. longepaniculatum trees | Fe, N | Fe-NBC | 0.965 | 0.875 | This work |
Lignin | Fe, Mn, N | Fe5C2/Mn, N, S-CNTs | 1.04 | 0.85 | [39] |
Rice husk | Fe, Si | Fe-N-SiC | 0.96 | 0.87 | [40] |
Potatoes | Fe, Co, N | Po-FeCo-N-C | - | 0.842 | [41] |
Passion fruit peels | Fe, N | Fe-NPC | 0.967 | 0.872 | [38] |
Tea leaves waste | Fe, N | Fe-N/C | 0.93 | 0.84 | [42] |
Yeast | Co, N | CoNC | - | 0.854 | [43] |
Corn stalks | Fe, N | Fe5-PANI/C-MCS | 1.09 | 0.85 | [44] |
Shaddock peel | Fe, N | SP-N1-Z0.6/F0.5 | 0.925 | 0.828 | [45] |
Water hyacinth root | Fe, Al, Zn, N | WHR700 | 0.94 | 0.78 | [46] |
Egg gel | Co, N, S | Co-NSEC | 0.974 | 0.842 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, N.; Zhao, L.; Liu, X.; Wang, L.; Xie, C.; Li, J. Cinnamomum-Longepaniculatum-Leaves-Based Fe-N Doped Porous Carbon as an Effective Oxygen Reduction Catalyst. Molecules 2025, 30, 1708. https://doi.org/10.3390/molecules30081708
Li Y, Wang N, Zhao L, Liu X, Wang L, Xie C, Li J. Cinnamomum-Longepaniculatum-Leaves-Based Fe-N Doped Porous Carbon as an Effective Oxygen Reduction Catalyst. Molecules. 2025; 30(8):1708. https://doi.org/10.3390/molecules30081708
Chicago/Turabian StyleLi, Yashu, Nan Wang, Lu Zhao, Xuanhe Liu, Lin Wang, Chengcheng Xie, and Jing Li. 2025. "Cinnamomum-Longepaniculatum-Leaves-Based Fe-N Doped Porous Carbon as an Effective Oxygen Reduction Catalyst" Molecules 30, no. 8: 1708. https://doi.org/10.3390/molecules30081708
APA StyleLi, Y., Wang, N., Zhao, L., Liu, X., Wang, L., Xie, C., & Li, J. (2025). Cinnamomum-Longepaniculatum-Leaves-Based Fe-N Doped Porous Carbon as an Effective Oxygen Reduction Catalyst. Molecules, 30(8), 1708. https://doi.org/10.3390/molecules30081708