Pharmacological Evaluation of Novel Hydrazide and Hydrazone Derivatives: Anti-Inflammatory and Analgesic Potential in Preclinical Models
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Anti-Inflammatory Activity
2.2. Analgesic Activity of Test Substances
2.2.1. Tail Flick Test
2.2.2. Paw Withdrawal Test
2.2.3. Formalin Test
3. Discussion
3.1. Anti-Inflammatory Activity
3.2. Analgesic Activity
3.3. Structural Considerations
3.4. Future Directions
4. Materials and Methods
4.1. Test Substances
4.1.1. Hydrazide/Hydrazone Compounds
4.1.2. Synthesis of N-Pyrrolylcarbohydrazide (1) and Pyrrole Hydrazones (1A–1D)
4.2. Experimental Design
4.2.1. Experimental Animals
4.2.2. Carrageenan-Induced Paw Edema
4.2.3. Tail Flick Test
4.2.4. Paw Withdrawal Test
4.2.5. Formalin Test
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NSAIDs | Non-steroidal anti-inflammatory drugs |
COX | Cyclooxygenase |
References
- Ali, A.; Khalid, M.; Abid, S.; Iqbal, J.; Tahir, M.N.; Rauf Raza, A.; Zukerman-Schpector, J.; Paixao, M.W. Facile synthesis, crystal growth, characterization and computational study of new pyridine-based halogenated hydrazones: Unveiling the stabilization behavior in terms of noncovalent interactions. Appl. Organomet. Chem. 2020, 34, e5399. [Google Scholar] [CrossRef]
- Popiołek, Ł. Updated Information on Antimicrobial Activity of Hydrazide-Hydrazones. Int. J. Mol. Sci. 2021, 22, 9389. [Google Scholar] [CrossRef]
- Ünver, H.; Berber, B.; Demirel, R.; Koparal, A.T. Design, Synthesis, Anti-Proliferative, Anti-microbial, Anti-Angiogenic Activity and In Silico Analysis of Novel Hydrazone Derivatives. Anticancer Agents Med. Chem. 2019, 19, 1658–1669. [Google Scholar] [CrossRef] [PubMed]
- Thota, S.; Rodrigues, D.A.; Pinheiro, P.S.M.; Lima, L.M.; Fraga, C.A.M.; Barreiro, E.J. N-Acylhydrazones as drugs. Bioorganic Med. Chem. Let. 2018, 28, 2797–2806. [Google Scholar] [CrossRef]
- Ribeiro, N.; Correia, I. A review of hydrazide-hydrazone metal complexes’ anti-tumor potential. Front. Chem. Biol. 2024, 3, 1398873. [Google Scholar] [CrossRef]
- Kajal, A.; Bala, S.; Sharma, N.; Kamboj, S.; Saini, V. Therapeutic potential of hydrazones as anti-inflammatory agents. Int. J. Med. Chem. 2014, 2014, 761030. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Ali, A. Exploring the Pharmacological Activities of Hydrazone Derivatives: A Review. J. Phytochem. Biochem. 2017, 1, 1–5. [Google Scholar]
- Kumar, N.; Chauhan, L.S. Analgesic and anti-inflammatory potential of hydrazones. J. Chem. Pharm. Res. 2014, 6, 916–934. [Google Scholar]
- Meshram, G.G.; Kumar, A.; Rizvi, W.; Tripathi, C.D.; Khan, R.A. Evaluation of the anti-inflammatory activity of the aqueous and ethanolic extracts of the leaves of Albizzia lebbeck in rats. J. Tradit. Complement. Med. 2015, 6, 172–175. [Google Scholar] [CrossRef]
- Mohamed Eissa, A.A.; Soliman, G.A.; Khataibeh, M.H. Design, synthesis and anti-inflammatory activity of structurally simple anthranilic acid congeners devoid of ulcerogenic side effects. Chem. Pharm. Bull. 2012, 60, 1290–1300. [Google Scholar] [CrossRef]
- Salgın-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, Ö.; Köysal, Y.; Kılıç, E.; Işık, Ş.; Aktay, G.; Özalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorganic Med. Chem. 2007, 15, 5738–5751. [Google Scholar] [CrossRef]
- Khan, K.M.; Khan, M.; Ali, M.; Taha, M.; Rasheed, S.; Perveen, S.; Choudhary, M.I. Synthesis of bis-Schiff bases of isatins and their antiglycation activity. Bioorganic Med. Chem. 2009, 17, 7795–7801. [Google Scholar] [CrossRef]
- Rajitha, G.; Saideepa, N.; Praneetha, P. Synthesis and evaluation of N-(α-benzamidocinnamoyl) aryl hydrazone derivative for anti-inflammatory and antioxidant activities. Indian J. Chem. 2011, 50, 729–733. [Google Scholar]
- Bhandari, S.V.; Parikh, J.K.; Bothara, K.G.; Chitre, T.S.; Lokwani, D.K.; Devale, T.L.; Modhave, N.S.; Pawar, V.S.; Panda, S. Design, synthesis, and evaluation of anti-inflammatory, analgesic, ulcerogenicity, and nitric oxide releasing studies of novel indomethacin analogs as non-ulcerogenic derivatives. J. Enzym. Inhib. Med. Chem. 2010, 25, 520–530. [Google Scholar] [CrossRef]
- Gökçe, M.; Utku, S.; Küpeli, E. Synthesis and analgesic and anti-inflammatory activities 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(p-substituted/nonsubstituted benzal)hydrazone derivatives. Eur. J. Med. Chem. 2009, 44, 3760–3764. [Google Scholar] [CrossRef]
- Moldovan, C.M.; Oniga, O.; Pârvu, A.; Tiperciuc, B.; Verite, P.; Pîrnău, A.; Crişan, O.; Bojiţă, M.; Pop, R. Synthesis and anti-inflammatory evaluation of some new acyl-hydrazones bearing 2-aryl-thiazole. Eur. J. Med. Chem. 2011, 46, 526–534. [Google Scholar] [CrossRef]
- Alsaif, N.A.; Bhat, M.A.; Al-Omar, M.A.; Al-Tuwajiri, H.M.; Naglah, A.M.; Al-Dhfyan, A. Synthesis of Novel Diclofenac Hydrazones: Molecular Docking, Anti-Inflammatory, Analgesic, and Ulcerogenic Activity. J. Chem. 2020, 2020, 4916726. [Google Scholar] [CrossRef]
- de Miranda, A.S.; Júnior, W.B.; da Silva, Y.K.; Alexandre-Moreira, M.S.; Castro, R.D.P.; Sabino, J.R.; Lião, L.M.; Lima, L.M.; Barreiro, E.J. Design, synthesis, antinociceptive and anti-inflammatory activities of novel piroxicam analogues. Molecules 2012, 17, 14126–14145. [Google Scholar] [CrossRef]
- Wahi, A.K.; Singh, A.K.; Singh, A. Design and synthesis of novel schiff’s bases having N-(4H-1, 2,4-triazole-4-yl)benzamido moiety as antimicrobial and anti-inflammatory agents. Der Pharma Chem. 2011, 3, 146–154. [Google Scholar]
- da Silva, Y.K.; Augusto, C.V.; de Castro Barbosa, M.L.; de Albuquerque Melo, G.M.; de Queiroz, A.C.; de Lima Matos Freire Dias, T.; Júnior, W.B.; Barreiro, E.J.; Lima, L.M.; Alexandre-Moreira, M.S. Synthesis and pharmacological evaluation of pyrazine N-acylhydrazone derivatives designed as novel analgesic and anti-inflammatory drug candidates. Bioorganic Med. Chem. 2010, 18, 5007–5015. [Google Scholar] [CrossRef]
- Zeeshan, S.; Naveed, M.; Khan, A.; Atiq, A.; Arif, M.; Ahmed, M.N.; Kim, Y.S.; Khan, S. N-Pyrazoloyl and N-thiopheneacetyl hydrazone of isatin exhibited potent anti-inflammatory and anti-nociceptive properties through suppression of NF-κB, MAPK and oxidative stress signaling in animal models of inflammation. Inflamm. Res. 2019, 68, 613–632. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.R.; Mahajan, U.B.; Unger, B.S.; Goyal, S.N.; Belemkar, S.; Surana, S.J.; Ojha, S.; Patil, C.R. Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int. J. Mol. Sci. 2019, 20, 4367. [Google Scholar] [CrossRef]
- Salem, S.; Leghouchi, E.; Soulimani, R.; Bouayed, J. Reduction of paw edema and liver oxidative stress in carrageenan-induced acute inflammation by Lobaria pulmonaria and Parmelia caperata, lichen species, in mice. Int. J. Vitam. Nutr. Res. 2021, 91, 143–151. [Google Scholar] [CrossRef]
- Mansouri, M.T.; Hemmati, A.A.; Naghizadeh, B.; Mard, S.A.; Rezaie, A.; Ghorbanzadeh, B. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J. Pharmacol. 2015, 47, 292–298. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Li, L.; Chu, S.S.; Sun, Q.; Ma, Z.L.; Gu, X.P. Antinociceptive effects of dehydrocorydaline in mouse models of inflammatory pain involve the opioid receptor and inflammatory cytokines. Sci. Rep. 2016, 6, 27129. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Carli, G.; Raboisson, P.; Reeh, P. The interphase of the formalin test. Pain 2014, 155, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.; Klemm, F.; Kichko, T.; Sauer, S.K.; Kistner, K.; Riedl, B.; Raboisson, P.; Luo, L.; Babes, A.; Kocher, L.; et al. The formalin test does not probe inflammatory pain but excitotoxicity in rodent skin. Physiol. Rep. 2022, 10, e15194. [Google Scholar] [CrossRef]
- Medeiros, M.A.; Gama e Silva, M.; de Menezes Barbosa, J.; Martins de Lavor, É.; Ribeiro, T.F.; Macedo, C.A.F.; de Souza Duarte-Filho, L.A.; Feitosa, T.A.; de Jesus Silva, J.; Fokoue, H.H.; et al. Antinociceptive and anti-inflammatory effects of hydrazone derivatives and their possible mechanism of action in mice. PLoS ONE 2021, 16, e0258094. [Google Scholar] [CrossRef]
- Nocheva, H.; Vladimirova, S.; Tzankova, D.; Peikova, L.; Georgieva, M. Analgesic properties of newly synthesized N-pyrrolyl hydrazide hydrazones. Trop. J. Pharm. Res. 2023, 22, 121–127. [Google Scholar] [CrossRef]
- Baamonde, A.; Menéndez, L. Experiences and reflections about behavioral pain assays in laboratory animals. J. Neurosci. Methods 2023, 15, 109783. [Google Scholar] [CrossRef]
- Zumbusch, A.S.; McEachern, E.L.F.; Morgan, O.B.; Nickner, E.; Mogil, J.S. Normative Preclinical Algesiometry Data on the von Frey and Radiant Heat Paw-Withdrawal Tests: An Analysis of Data from More Than 8,000 Mice Over 20 Years. J. Pain 2024, 25, 104468. [Google Scholar] [CrossRef] [PubMed]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods Used to Evaluate Pain Behaviors in Rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef]
- Banik, R.K.; Kabadi, R.A. A modified Hargreaves’ method for assessing threshold temperatures for heat nociception. J. Neurosci. Methods 2013, 219, 41–51. [Google Scholar] [CrossRef]
- da Silva, Y.K.C.; Reyes, C.T.M.; Rivera, G.; Alves, M.A.; Barreiro, E.J.; Moreira, M.S.A.; Lima, L.M. 3-Aminothiophene-2-acylhydrazones: Non-toxic, analgesic and anti-inflammatory lead-candidates. Molecules 2014, 19, 8456–8471. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G. Exploring Ester Prodrugs: A Comprehensive Review of Approaches, Applications, and Methods. Pharmacol. Pharm. 2024, 15, 269–284. [Google Scholar] [CrossRef]
- Ungureanu, D.; Oniga, O.; Moldovan, C.; Ionuț, I.; Marc, G.; Stana, A.; Pele, R.; Duma, M.; Tiperciuc, B. An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity. Antibiotics 2024, 13, 763. [Google Scholar] [CrossRef]
- Miller, D.C.; Reuillon, T.; Molyneux, L.; Blackburn, T.; Cook, S.J.; Edwards, N.; Endicott, J.A.; Golding, B.T.; Griffin, R.J.; Hardcastle, I.; et al. Parallel Optimization of Potency and Pharmacokinetics Leading to the Discovery of a Pyrrole Carboxamide ERK5 Kinase Domain Inhibitor. J. Med. Chem. 2022, 65, 6513–6540. [Google Scholar] [CrossRef]
- Tafere, D.A.; Gebrezgiabher, M.; Elemo, F.; Sani, T.; Atisme, T.B.; Ashebr, T.G.; Ahmed, I.N. Hydrazones, hydrazones-based coinage metal complexes, and their biological applications. RSC Adv. 2025, 15, 6191. [Google Scholar] [CrossRef]
- Glomb, T.; Środa-Pomianek, K.; Palko-Łabuz, A.; Wesołowska, O.; Wikiera, A.; Wojtkowiak, K.; Jezierska, A.; Kochel, A.; Lesyk, R.; Świątek, P. New Hydrazone Derivatives Based on Pyrazolopyridothiazine Core as Cytotoxic Agents to Colon Cancers: Design, Synthesis, Biological Evaluation, and Molecular Modeling. ChemMedChem 2025, e202400687. [Google Scholar] [CrossRef]
- Singh, N.; Ranjana, R.; Kumari, M.; Kumar, B. A Review on Biological Activities of Hydrazone Derivatives. Int. J. Pharm. Clin. Res. 2016, 8, 162–166. [Google Scholar]
- Liu, R.; Cui, J.; Ding, T.; Liu, Y.; Liang, H. Research Progress on the Biological Activities of Metal Complexes Bearing Polycyclic Aromatic Hydrazones. Molecules 2022, 27, 8393. [Google Scholar] [CrossRef] [PubMed]
- Vladimirova, S.; Hristova, R.; Iliev, I. Synthesis, Cytotoxicity and Antiproliferative Effect of New Pyrrole Hydrazones. Molecules 2024, 29, 5499. [Google Scholar] [CrossRef] [PubMed]
Experimental Model | Group | Hour | Mean ± SEM | p |
---|---|---|---|---|
Tail flick | Control | 1st | 2.04 ± 0.18 | - |
2nd | 1.76 ± 0.15 | |||
3rd | 1.66 ± 0.11 | |||
Metamizole | 1st | 6.41 ± 0.26 | <0.001 *& | |
2nd | 6.44 ± 0.24 | <0.001 *& | ||
3rd | 6.39 ± 0.22 | <0.001 *& | ||
Paw withdrawal | Control | 1st | 7.93 ± 1.01 | - |
2nd | 9.59 ± 0.99 | |||
3rd | 9.13 ± 0.57 | |||
Metamizole | 1st | 17.46 ± 0.84 | <0.001 *# | |
2nd | 19.56 ± 1.10 | 0.001 *& | ||
3rd | 20.06 ± 1.23 | <0.001 *# |
Compound | Anti-Inflammatory Activity | Advantages | Limitations |
---|---|---|---|
Substance 1 | Strong, dose-dependent | Effective at higher doses; dual-phase effect | Diminished activity over time; less potent than diclofenac |
Substance 1A | Moderate | Activity in late phase; potential for prolonged action | Limited efficacy in earlier stages |
Substance 1B | Minimal | - | Lack of significant activity |
Substance 1C | Transient | - | Limited and inconsistent effects |
Substance 1D | Negligible | - | Poor bioavailability or receptor interaction |
Hydrazone derivatives from literature [10,11,12,13,14,15,16,17,18,19,20,21] | Varies depending on structure | Some exhibit superior anti-inflammatory activity | Structural modifications needed for optimization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlatanova-Tenisheva, H.; Vladimirova, S. Pharmacological Evaluation of Novel Hydrazide and Hydrazone Derivatives: Anti-Inflammatory and Analgesic Potential in Preclinical Models. Molecules 2025, 30, 1472. https://doi.org/10.3390/molecules30071472
Zlatanova-Tenisheva H, Vladimirova S. Pharmacological Evaluation of Novel Hydrazide and Hydrazone Derivatives: Anti-Inflammatory and Analgesic Potential in Preclinical Models. Molecules. 2025; 30(7):1472. https://doi.org/10.3390/molecules30071472
Chicago/Turabian StyleZlatanova-Tenisheva, Hristina, and Stanislava Vladimirova. 2025. "Pharmacological Evaluation of Novel Hydrazide and Hydrazone Derivatives: Anti-Inflammatory and Analgesic Potential in Preclinical Models" Molecules 30, no. 7: 1472. https://doi.org/10.3390/molecules30071472
APA StyleZlatanova-Tenisheva, H., & Vladimirova, S. (2025). Pharmacological Evaluation of Novel Hydrazide and Hydrazone Derivatives: Anti-Inflammatory and Analgesic Potential in Preclinical Models. Molecules, 30(7), 1472. https://doi.org/10.3390/molecules30071472