Alkaloid Extraction from Coptis chinensis Franch. Using Ultrasound-Assisted Aqueous Solutions of Surfactants, Organic Acids, Deep Eutectic Solvents, and Supramolecular Deep Eutectic Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Solvent Selection for Extraction of Berberine, Palmatine, and Coptisine
2.1.1. Effect of Organic Solvents and Inorganic Acids and Bases
2.1.2. Effect of Surfactant Solutions
2.1.3. Effect of Aqueous Solutions of Carboxylic Acids
2.1.4. Effect of Aqueous Solutions of DESs and SUPRADESs
2.2. Design of Optimal Conditions for Extraction of Coptisine, Palmatine, Berberine, and Total Alkaloids from Coptis Chinensis
2.2.1. Effect of Carboxylic Acid Concentration
2.2.2. Effect of Liquid–Solid Ratio
2.2.3. Effect of Extraction Time
2.2.4. Effect of Extraction Temperature
2.2.5. Optimization of Extraction Conditions Using Response Surface Methodology
Lactic Acid
8.79172 × 10−6AD − 0.000099BD − 0.000015A2 − 0.007270B2 − 9.67325 × 10−6D2
Pyruvic Acid
0.000304AD + 0.001597BD − 0.000129A2 − 0.006440B2 − 0.000188D2
Malic Acid
0.000027AD +0.000455BD − 0.001463A2 − 0.008957B2 + 0.000041D2
2.3. Recovery of Total Alkaloids from C. chinensis Extract Using Adsorption Resin
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Reagents
3.3. Quantification of Berberine, Palmatine, Coptisine, and Total Alkaloids
3.4. Extraction of Berberine, Palmatine, and Coptisine from C. chinensis
3.5. Response Surface Methodology
3.6. The Recovery of Alkaloids from the Aqueous Extract
3.7. Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, L.; Wang, R.; Zhang, X.; Yu, X.; Zhou, L.; Song, T.; Deng, X.; Zhang, Y.; Zhang, L.; Bai, C. Advances in Processing and Quality Control of Traditional Chinese Medicine Coptidis rhizoma (Huanglian): A Review. J. AOAC Int. 2019, 102, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Luo, Y.; Deng, D.; Su, S.; Li, S.; Xiang, L.; Hu, Y.; Wang, P.; Meng, X. Coptisine from Coptis chinensis Exerts Diverse Beneficial Properties: A Concise Review. J. Cell. Mol. Med. 2019, 23, 7946–7960. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Feng, S.; Zhang, X.; Zhao, W.; Feng, J.; Ma, C.; Wang, R.; Song, W.; Cheng, J. Biological Response Profiling Reveals the Functional Differences of Main Alkaloids in Rhizoma coptidis. Molecules 2021, 26, 7389. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.-C.; Wu, Z.-F.; Yin, Z.-Q.; Lin, L.-G.; Wang, R.; Zhang, Q.-W. Coptidis rhizoma and Its Main Bioactive Components: Recent Advances in Chemical Investigation, Quality Evaluation and Pharmacological Activity. Chin. Med. 2018, 13, 13. [Google Scholar] [CrossRef]
- Ai, X.; Yu, P.; Peng, L.; Luo, L.; Liu, J.; Li, S.; Lai, X.; Luan, F.; Meng, X. Berberine: A Review of Its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front. Pharmacol. 2021, 12, 762654. [Google Scholar] [CrossRef]
- Birdsall, T.C. Berberine: Therapeutic Potential of an Alkaloid Found in Several Medicinal Plants. Altern. Med. Rev. 1997, 2, 94–103. [Google Scholar]
- Duong, T.T.; Isomäki, A.; Paaver, U.; Laidmäe, I.; Tõnisoo, A.; Yen, T.T.H.; Kogermann, K.; Raal, A.; Heinämäki, J.; Pham, T.-M.-H. Nanoformulation and Evaluation of Oral Berberine-Loaded Liposomes. Molecules 2021, 26, 2591. [Google Scholar] [CrossRef]
- Kumar, A.; Ekavali; Chopra, K.; Mukherjee, M.; Pottabathini, R.; Dhull, D.K. Current Knowledge and Pharmacological Profile of Berberine: An Update. Eur. J. Pharmacol. 2015, 761, 288–297. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, Z.; Pan, L.; Li, P. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef]
- Imenshahidi, M.; Hosseinzadeh, H. Berberine and Barberry (Berberis vulgaris): A Clinical Review. Phytother. Res 2019, 33, 504–523. [Google Scholar] [CrossRef]
- Long, J.; Song, J.; Zhong, L.; Liao, Y.; Liu, L.; Li, X. Palmatine: A Review of Its Pharmacology, Toxicity and Pharmacokinetics. Biochimie 2019, 162, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V. 21—Health Effects of Alkaloids from African Medicinal Plants. In Toxicological Survey of African Medicinal Plants; Kuete, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 611–633. ISBN 978-0-12-800018-2. [Google Scholar]
- Friedemann, T.; Ying, Y.; Wang, W.; Kramer, E.R.; Schumacher, U.; Fei, J.; Schröder, S. Neuroprotective Effect of Coptis chinensis in MPP+ and MPTP-Induced Parkinson’s Disease Models. Am. J. Chin. Med. 2016, 44, 907–925. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Yu, X.-T.; Zhou, Q.; Zhao, T.-Y.; Wang, H.; Gu, C.-J.; Tong, X.-L. Effect of Rhizoma coptidis (Huang Lian) on Treating Diabetes Mellitus. Evid.-Based Complement. Altern. Med. 2015, 2015, 921416. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Feng, X.; Song, H.; Li, Z.; Yao, S. A New Integrated Method of Magnetic Separation of Isoquinoline Alkaloids from Coptis chinensis Based on Their Magnetized Derivatives and Key Physical Properties. New J. Chem. 2020, 44, 7105–7115. [Google Scholar] [CrossRef]
- Le, N.T.; Chau, N.H.T.; Nguyen, P.Q.D.; Tran, L.T.T.; Phung, H.T.; Nguyen, H.T. Green Extraction of Berberine from Coscinium fenestratum (Gaertn.) Colebr. Using Ultrasound-Assisted Aqueous Solutions of Organic Acids, Polyalcohols, and Deep Eutectic Solvents. Sep. Purif. Technol. 2024, 330, 125541. [Google Scholar]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Wang, W.; Li, Q.; Liu, Y.; Chen, B. Ionic Liquid-Aqueous Solution Ultrasonic-Assisted Extraction of Three Kinds of Alkaloids from Phellodendron amurense Rupr and Optimize Conditions Use Response Surface. Ultrason. Sonochemistry 2015, 24, 13–18. [Google Scholar] [CrossRef]
- Li, Y.; Hsieh, Y.; Pan, Z.; Zhang, L.; Yu, W.; Wang, B.; Zhang, J. Extraction of Alkaloids from Coptidis rhizoma via Betaine-Based Deep Eutectic Solvents. ChemistrySelect 2020, 5, 4973–4978. [Google Scholar] [CrossRef]
- Li, L.; Zhang, D.; Wang, Y.; Liu, F.; Xu, Y.; Bao, H. Effective Extraction of Palmatine and Berberine from Coptis chinensis by Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction. J. Anal. Methods Chem. 2021, 2021, 9970338. [Google Scholar] [CrossRef]
- Jiang, Z.-M.; Wang, L.-J.; Gao, Z.; Zhuang, B.; Yin, Q.; Liu, E.-H. Green and Efficient Extraction of Different Types of Bioactive Alkaloids Using Deep Eutectic Solvents. Microchem. J. 2019, 145, 345–353. [Google Scholar] [CrossRef]
- He, Q.; Lei, Q.; Huang, S.; Zhou, Y.; Liu, Y.; Zhou, S.; Peng, D.; Deng, X.; Xue, J.; Li, X.; et al. Effective Extraction of Bioactive Alkaloids from the Roots of Stephania tetrandra by Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction. J. Chromatogr. A 2023, 1689, 463746. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, X.; Row, K.H. Development of Deep Eutectic Solvents for Sustainable Chemistry. J. Mol. Liq. 2022, 362, 119654. [Google Scholar] [CrossRef]
- Janicka, P.; Kaykhaii, M.; Płotka-Wasylka, J.; Gębicki, J. Supramolecular Deep Eutectic Solvents and Their Applications. Green Chem. 2022, 24, 5035–5045. [Google Scholar] [CrossRef]
- Benfica, J.; Morais, E.S.; Miranda, J.S.; Freire, M.G.; de Cássia Superbi de Sousa, R.; Coutinho, J.A.P. Aqueous Solutions of Organic Acids as Effective Solvents for Levodopa Extraction from Mucuna pruriens Seeds. Sep. Purif. Technol. 2021, 274, 119084. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Torres-Vega, J.; Gómez-Alonso, S.; Pérez-Navarro, J.; Pastene-Navarrete, E. Green Extraction of Alkaloids and Polyphenols from Peumus boldus Leaves with Natural Deep Eutectic Solvents and Profiling by HPLC-PDA-IT-MS/MS and HPLC-QTOF-MS/MS. Plants 2020, 9, 242. [Google Scholar] [CrossRef]
- Álvarez, A.; Terreros, S.; Cocero, M.; Mato, R. Microwave Pretreatment for the Extraction of Anthocyanins from Saffron Flowers: Assessment of Product Quality. Antioxidants 2021, 10, 1054. [Google Scholar] [CrossRef]
- Le, N.T.; Hoang, N.T.; Van, V.T.T.; Nguyen, T.P.D.; Chau, N.H.T.; Le, N.T.N.; Le, H.B.T.; Phung, H.T.; Nguyen, H.T.; Nguyen, H.M. Extraction of Curcumin from Turmeric Residue (Curcuma longa L.) Using Deep Eutectic Solvents and Surfactant Solvents. Anal. Methods 2022, 14, 850–858. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, Z.; Yuan, T.; Wang, H.; Xie, X.; Fu, Z.; Hu, C.; Wang, X. Microwave-Assisted Extraction of Oxymatrine from Sophora flavescens. Molecules 2011, 16, 7391–7400. [Google Scholar] [CrossRef]
- Lin, L.; Yang, W.; Wei, X.; Wang, Y.; Zhang, L.; Zhang, Y.; Zhang, Z.; Zhao, Y.; Zhao, M. Enhancement of Solasodine Extracted from Fruits of Solanum nigrum L. by Microwave-Assisted Aqueous Two-Phase Extraction and Analysis by High-Performance Liquid Chromatography. Molecules 2019, 24, 2294. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Fu, R.; Zhang, L.; Wang, D.; Wang, S. Enhanced Extraction of Natural Pigments from Curcuma longa L. Using Natural Deep Eutectic Solvents. Ind. Crops Prod. 2019, 140, 111620. [Google Scholar] [CrossRef]
- Kopp, T.; Abdel-Tawab, M.; Mizaikoff, B. Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review. Toxins 2020, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, S.; Zhang, M.; Sun, B. Novel Approach for Extraction of Grape Skin Antioxidants by Accelerated Solvent Extraction: Box–Behnken Design Optimization. J. Food Sci. Technol. 2019, 56, 4879–4890. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Ćurko, N.; Tomašević, M.; Kovačević Ganić, K.; Radojčić Redovniković, I. Green Extraction of Grape Skin Phenolics by Using Deep Eutectic Solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liu, Y.; Wang, X.; Di, X. Microwave-Assisted Extraction in Combination with Capillary Electrophoresis for Rapid Determination of Isoquinoline Alkaloids in Chelidonium majus L. Talanta 2012, 99, 932–938. [Google Scholar]
- Teng, H.; Choi, Y.H. Optimization of Extraction of Total Alkaloid Content from Rhizome Coptidis (Coptis chinensis Franch) Using Response Surface Methodology. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 303–309. [Google Scholar] [CrossRef]
- Teng, H.; Choi, Y.H. Optimization of Ultrasonic-Assisted Extraction of Bioactive Alkaloid Compounds from Rhizoma coptidis (Coptis chinensis Franch.) Using Response Surface Methodology. Food Chem. 2014, 142, 299–305. [Google Scholar] [CrossRef]
- Teng, H.; Choi, Y. Optimum Extraction of Bioactive Alkaloid Compounds from Rhizome coptidis (Coptis chinensis Franch.) Using Response Surface Methodology. SERDJ 2013, 20, 91–104. [Google Scholar] [CrossRef]
- Le, N.T.; Le, T.T.; Ho, D.V.; Nguyen, K.V.; Nguyen, H.T. Extraction and Recovery of Bioactive Alkaloids from Phellodendron amurense Rupr. Using Ultrasound-Assisted Green Solvents and Macroporous Resins. Sustain. Chem. Pharm. 2024, 42, 101809. [Google Scholar] [CrossRef]
- Hou, M.; Hu, W.; Xiu, Z.; Jiang, A.; Men, L.; Hao, K.; Sun, X.; Cao, D. Preparative Purification of Total Flavonoids from Sophora tonkinensis Gagnep. by Macroporous Resin Column Chromatography and Comparative Analysis of Flavonoid Profiles by HPLC-PAD. Molecules 2019, 24, 3200. [Google Scholar] [CrossRef]
- Li, D.; Xu, X.; Yang, Y.; Wu, N.; Ma, Z.; Zuo, F.; Zhang, N. Separation and Purification of Antioxidant Peptides from Purple Speckled Kidney Bean by Macroporous Adsorption Resin and Analysis of Amino Acid Composition. Front. Nutr. 2022, 9, 1001456. [Google Scholar] [CrossRef] [PubMed]
Type | Solvent | Abbreviation | CAS Number | Source | Concentration (% w/w) |
---|---|---|---|---|---|
Volatile organic | Ethanol | EtOH | 64-17-5 | Macklin (Shanghai, China) | 99.7 |
75 | |||||
50 | |||||
25 | |||||
Methanol | MeOH | 67-56-1 | Macklin | 99.5 | |
75 | |||||
50 | |||||
25 | |||||
Acetone | Ace | 123-54-6 | Macklin | 99 | |
75 | |||||
50 | |||||
25 | |||||
Inorganic acid, base | Limewater | Lim | 1305-62-0 | Macklin | - |
Sulfuric acid | Sul | 7664-93-9 | Xilong (Shantou, China) | 0.4 | |
Water | Water | - | - | 100 | |
Acid carboxylic | Acetic acid | AA | 64-19-7 | Macklin | 99.5 |
50 | |||||
Lactic acid | LA | 10326-41-7 | Macklin | 96 | |
50 | |||||
Tartaric acid | TA | 147-71-7 | Macklin | 50 | |
Citric acid | CA | 77-92-9 | Macklin | 50 | |
Malic acid | MA | 6915-15-7 | Macklin | 50 | |
Pyruvic acid | PA | 127-17-3 | Macklin | 98 | |
50 | |||||
Propionic acid | PPA | 79-09-4 | Macklin | 99.5 | |
50 | |||||
Malonic acid | MLA | 141-82-2 | Macklin | 50 | |
Glycolic acid | GA | 79-14-1 | Macklin | 50 | |
Surfactant | Tween—65 | T65 | 9005-71-4 | Macklin | 5 mM |
Tween—85 | T85 | 9005-70-3 | Macklin | 5 mM | |
Tween—60 | T60 | 9005-67-8 | Macklin | 5 mM | |
Tween—80 | T80 | Macklin | 5 mM | ||
Tween—40 | T40 | 9005-66-7 | Macklin | 5 mM | |
Tween—20 | T20 | Macklin | 5 mM | ||
Triton—X—100 | TX100 | 9002-93-1 | Macklin | 5 mM | |
Triton—X—114 | TX114 | 9036-19-5 | Macklin | 5 mM | |
LAE—7 | LAE-7 | 68439-50-9 | Aseschem (Jodhpur, India) | 5 mM | |
LAE—9 | LAE-9 | 68439-50-9 | Novichem (Chorzów, Poland) | 5 mM | |
Brij—35 | Brij-35 | 9002-92-0 | Macklin | 5 mM | |
Choline chloride | - | 67-48-1 | Thermo Fisher Scientific (Waltham, MA, USA) | ||
DES | Choline chloride–Tartaric acid (1:1) | ChCl—TA (1:1) | 100 | ||
Choline chloride–Citric acid (1:1) | ChCl—CA (1:1) | 100 | |||
Choline chloride–Acetic acid (1:1) | ChCl—AA (1:1) | 100 | |||
Choline chloride–Lactic acid (1:1) | ChCl—LA (1:1) | 100 | |||
Choline chloride–Pyruvic acid (1:1) | ChCl—PA (1:1) | 100 | |||
Choline chloride–Glycerol (1:1) | ChCl—GL (1:1) | 100 | |||
Choline chloride–Propylene glycol (1:1) | ChCl—PG (1:1) | 100 | |||
Choline chloride–Ethylene glycol (1:1) | ChCl—EG (1:1) | 100 | |||
Glycerol | 56-81-5 | Macklin | |||
Ethylene glycol | 107-21-1 | Macklin | |||
SUPRADES | Beta-cyclodextrin–Lactic acid (1:19) | β-CD-LA (1:19) | 100 | ||
50 | |||||
Beta-cyclodextrin–Pyruvic acid (1:19) | β-CD-PA (1:19) | 100 | |||
50 | |||||
Beta-cyclodextrin | 7585-39-9 | Macklin |
Variables | Coded Levels of Variables | ||
---|---|---|---|
−1 | 0 | +1 | |
Solvent concentration (%) (A) | 20 | 60 | 100 |
Liquid–solid ratio (mL/g) (B) | 10 | 20 | 30 |
Extraction time (min) (C) | 5 | 22.5 | 40 |
Extraction temperature (°C) (D) | 30 | 55 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, K.V.; Le, N.T.; Dang, V.T.T.; Koshovyi, O.; Raal, A.; Nguyen, H.T. Alkaloid Extraction from Coptis chinensis Franch. Using Ultrasound-Assisted Aqueous Solutions of Surfactants, Organic Acids, Deep Eutectic Solvents, and Supramolecular Deep Eutectic Solvents. Molecules 2025, 30, 1418. https://doi.org/10.3390/molecules30071418
Nguyen KV, Le NT, Dang VTT, Koshovyi O, Raal A, Nguyen HT. Alkaloid Extraction from Coptis chinensis Franch. Using Ultrasound-Assisted Aqueous Solutions of Surfactants, Organic Acids, Deep Eutectic Solvents, and Supramolecular Deep Eutectic Solvents. Molecules. 2025; 30(7):1418. https://doi.org/10.3390/molecules30071418
Chicago/Turabian StyleNguyen, Khan Viet, Nhan Trong Le, Vy Thao Thi Dang, Oleh Koshovyi, Ain Raal, and Hoai Thi Nguyen. 2025. "Alkaloid Extraction from Coptis chinensis Franch. Using Ultrasound-Assisted Aqueous Solutions of Surfactants, Organic Acids, Deep Eutectic Solvents, and Supramolecular Deep Eutectic Solvents" Molecules 30, no. 7: 1418. https://doi.org/10.3390/molecules30071418
APA StyleNguyen, K. V., Le, N. T., Dang, V. T. T., Koshovyi, O., Raal, A., & Nguyen, H. T. (2025). Alkaloid Extraction from Coptis chinensis Franch. Using Ultrasound-Assisted Aqueous Solutions of Surfactants, Organic Acids, Deep Eutectic Solvents, and Supramolecular Deep Eutectic Solvents. Molecules, 30(7), 1418. https://doi.org/10.3390/molecules30071418