Investigation of Dearomatizing Spirocyclizations and Spirocycle Functionalization En Route to Spirocalcaridines A and B—Some Trials and Tribulations
Abstract
1. Introduction
2. Results and Discussions
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Hou, Z.-W.; Li, P.; Wang, L. Electrochemical Dearomatizing Spirocyclization of Alkynes with Dimethyl 2-Benzylmalonates to Spiro[4.5]deca-trienones. J. Org. Chem. 2022, 87, 8697–8708. [Google Scholar] [CrossRef]
- Lamb, R.A.; Aberle, N.S.; Lucas, N.T.; Lessene, G.; Hawkins, B.C. Total Synthesis of (−)-Spiroleucettadine. Angew. Chem. Int. Ed. 2017, 56, 14663–14666. [Google Scholar] [CrossRef]
- Roose, T.R.; McSorley, F.; Groenhuijzen, B.; Saya, J.M.; Maes, B.U.W.; Orrù, R.V.A.; Ruijter, E. Dearomative Spirocyclization of Tryptamine-Derived Isocyanides via Iron-Catalyzed Carbene Transfer. J. Org. Chem. 2023, 88, 17345–17355. [Google Scholar] [CrossRef] [PubMed]
- Inprung, N.; Ho, H.E.; Rossi-Ashton, J.A.; Epton, R.G.; Whitwood, A.C.; Lynam, J.M.; Taylor, R.J.K.; James, M.J.; Unsworth, W.P. Indole-ynones as Privileged Substrates for Radical Dearomatizing Spirocyclization Cascades. Org. Lett. 2022, 24, 668–674. [Google Scholar] [CrossRef]
- Chi, Z.; Gao, Y.; Yang, L.; Zhou, C.; Zhang, M.; Cheng, P.; Li, G. Dearomative spirocyclization via visible-light-induced reductive hydroarylation of non-activated arenes. Chin. Chem. Lett. 2022, 33, 225–228. [Google Scholar] [CrossRef]
- Jin, Z. Muscarine, imidazole, oxazole, and thiazolealkaloids. Nat. Prod. Rep. 2011, 28, 1143–1191. [Google Scholar] [CrossRef] [PubMed]
- Koswatta, P.B.; Lovely, C.J. Structure and synthesis of 2-aminoimidazole alkaloids from Leucetta and Clathrina sponges. Nat. Prod. Rep. 2011, 28, 511–528. [Google Scholar] [CrossRef]
- Sullivan, J.D.; Giles, R.L.; Looper, R.E. 2-Aminoimidazoles from Leucetta Sponges: Synthesis and Biology of an Important Pharmacophore. Curr. Bioact. Compd. 2009, 5, 39–78. [Google Scholar] [CrossRef]
- Roué, M.; Quévrain, E.; Domart-Coulon, I.; Bourguet-Kondracki, M.-L. Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products. Nat. Prod. Rep. 2012, 29, 739–751. [Google Scholar] [CrossRef]
- Edrada, R.A.; Stessman, C.C.; Crews, P. Uniquely Modified Imidazole Alkaloids from a Calcareous Leucetta Sponge. J. Nat. Prod. 2003, 66, 939–942. [Google Scholar] [CrossRef]
- Campos, P.-E.; Herbette, G.; Fougère, L.; Clerc, P.; Tintillier, F.; de Voogd, N.J.; Le Goff, G.; Ouazzani, J.; Gauvin-Bialecki, A. An Aminopyrimidone and Aminoimidazoles Alkaloids from the Rodrigues Calcareous Marine Sponge Ernsta naturalis. Mar. Drugs 2022, 20, 637. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-Z.; Yang, Z.-Z.; Sun, F.; Wang, S.-P.; Yang, F.; Jiao, W.-H.; Lin, H.-W. (-)-Calcaridine B, a new chiral aminoimidazole-containing alkaloid from the marine sponge Leucetta chagosensis. J. Asian Nat. Prod. Res. 2019, 21, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Aberle, N.; Ovenden, S.P.B.; Lessene, G.; Watson, K.G.; Smith, B.J. Spiroleucettadine: Synthetic studies and investigations towards structural revision. Tetrahedron Lett. 2007, 48, 2199–2203. [Google Scholar] [CrossRef]
- Chang, J.J.; Chan, B.; Ciufolini, M.A. Synthetic studies toward spiroleucettadine. Tetrahedron Lett. 2006, 47, 3599–3601. [Google Scholar] [CrossRef]
- White, K.N.; Amagata, T.; Oliver, A.G.; Tenney, K.; Wenzel, P.J.; Crews, P. Structure Revision of Spiroleucettadine, a Sponge Alkaloid with a Bicyclic Core Meager in H-Atoms. J. Org. Chem. 2008, 73, 8719–8722. [Google Scholar] [CrossRef]
- Singh, R.P.; Das, J.; Yousufuddin, M.; Gout, D.; Lovely, C.J. Tandem Oxidative Dearomatizing Spirocyclizations of Propargyl Guanidines and Ureas. Org. Lett. 2017, 19, 4110–4113. [Google Scholar] [CrossRef]
- Das, J.; Koswatta, P.B.; Jones, J.D.; Yousufuddin, M.; Lovely, C.J. Total Syntheses of Kealiinines A–C. Org. Lett. 2012, 14, 6210–6213. [Google Scholar] [CrossRef]
- Koswatta, P.B.; Sivappa, R.; Dias, H.V.R.; Lovely, C.J. Total Synthesis of (±)-Calcaridine A and (±)-epi-Calcaridine A. Org. Lett. 2008, 10, 5055–5058. [Google Scholar] [CrossRef]
- Singh, R.P.; Bhandari, M.R.; Torres, F.M.; Doundoulakis, T.; Gout, D.; Lovely, C.J. Total Synthesis of (±)-2-Debromohymenin via Gold-Catalyzed Intramolecular Alkyne Hydroarylation. Org. Lett. 2020, 22, 3412–3417. [Google Scholar] [CrossRef]
- Zhang, X.; Larock, R.C. Synthesis of Spiro[4.5]trienones by Intramolecular ipso-Halocyclization of 4-(p-Methoxyaryl)-1-alkynes. J. Am. Chem. Soc. 2005, 127, 12230–12231. [Google Scholar] [CrossRef]
- Tang, B.-X.; Tang, D.-J.; Tang, S.; Yu, Q.-F.; Zhang, Y.-H.; Liang, Y.; Zhong, P.; Li, J.-H. Selective Synthesis of Spiro[4,5]trienyl Acetates via an Intramolecular Electrophilic ipso-Iodocyclization Process. Org. Lett. 2008, 10, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Koswatta, P.B.; Das, J.; Yousufuddin, M.; Lovely, C.J. Studies towards the Leucetta-Derived Alkaloids Spirocalcaridine A and B–Possible Biosynthetic Implications. Eur. J. Org. Chem. 2015, 2015, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Gout, D.; Lovely, C.J. Tandem Thioacylation-Intramolecular Hydrosulfenylation of Propargyl Amines–Rapid Access to 2-Aminothiazolidines. Eur. J. Org. Chem. 2019, 2019, 1726–1740. [Google Scholar] [CrossRef]
- Singh, R.P.; Aziz, M.N.; Gout, D.; Fayad, W.; El-Manawaty, M.A.; Lovely, C.J. Novel thiazolidines: Synthesis, antiproliferative properties and 2D-QSAR studies. Bioorg. Med. Chem. 2019, 27, 115047. [Google Scholar] [CrossRef]
- Aziz, M.N.; Singh, R.P.; Gout, D.; Lovely, C.J. Dearomatizing spirocyclization of thioureas, ureas and guanidines. Tetrahedron Lett. 2021, 72, 153054. [Google Scholar] [CrossRef]
- Singh, R.P.; Lovely, C.J. Chapter 3-The Leucetta alkaloids: Synthetic aspects. In Studies in Natural Products Chemistry; Attaur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 63, pp. 43–79. [Google Scholar]
- Yousufuddin, M.; Morales, R.; Cassis, W.; Brown, G.W.; Singh, R.P.; Lovely, C.J. [1,4-Bis(4-meth--oxy-phen-yl)but-3-yn-2-yl](cyano)-methyl-amine. IUCrData 2018, 3, x180389. [Google Scholar] [CrossRef]
- Morris, L.L.; Alvarado, C.A.; Goncalves, J.M.; Singh, R.P.; Lovely, C.J.; Yousufuddin, M. [4-(4-Meth--oxy-phen-yl)-8-oxo-3-(phenyl-selan-yl)spiro-[4.5]deca-3,6,9-trien-2-yl]methyl-cyanamide. IUCrData 2020, 5, x200078. [Google Scholar] [CrossRef]
- Singh, R.P.; Spears, J.A.; Dalipe, A.; Yousufuddin, M.; Lovely, C.J. Dearomatizing spirocyclization reactions of alkynyl cyanamides. Tetrahedron Lett. 2016, 57, 3096–3099. [Google Scholar] [CrossRef]
- Yoshimura, A.; Zhdankin, V.V. Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chem. Rev. 2016, 116, 3328–3435. [Google Scholar] [CrossRef]
- Catalán, J.; López, V.; Pérez, P. Solvent dipolarity/polarizability (SPP) of alcoholic solvents. Liebigs Annalen 1995, 1995, 793–795. [Google Scholar] [CrossRef]
- Lovely, C.J.; Du, H.; Sivappa, R.; Bhandari, M.R.; He, Y.; Dias, H.V.R. Preparation and Diels−Alder Chemistry of 4-Vinylimidazoles. J. Org. Chem. 2007, 72, 3741–3749. [Google Scholar] [CrossRef]
- Sivappa, R.; Koswatta, P.; Lovely, C.J. Oxidative reactions of tetrahydrobenzimidazole derivatives with N-sulfonyloxaziridines. Tetrahedron Lett. 2007, 48, 5771–5775. [Google Scholar] [CrossRef]
- Grieco, P.A.; Nishizawa, M.; Marinovic, N.; Ehmann, W.J. Remote double bond migration via rhodium catalysis: A novel enone transposition. J. Am. Chem. Soc. 1976, 98, 7102–7104. [Google Scholar] [CrossRef]
- Murai, M.; Nishimura, K.; Takai, K. Palladium-catalyzed double-bond migration of unsaturated hydrocarbons accelerated by tantalum chloride. Chem. Commun. 2019, 55, 2769–2772. [Google Scholar] [CrossRef] [PubMed]
- Seto, H.; Fujioka, S.; Koshino, H.; Takatsuto, S.; Yoshida, S. Stereo and chemical course of acid-catalyzed double bond migration of cholesta-5,7-dien-3β-ol to 5α-cholesta-8,14-dien-3β-ol. J. Chem. Soc., Perkin Trans. 2000, 1, 1697–1703. [Google Scholar] [CrossRef]
- Noyce, D.S.; Evett, M. Mechanism of the acid-catalyzed double bond migration in 3-cyclohexen-1-one and 3-methyl-3-cyclohexen-1-one. J. Org. Chem. 1972, 37, 394–397. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, C.; Zhao, Y.; Li, D.; Zhao, J.; Wang, Z.; Qu, J. Base-Promoted Double-Bond-Migration/Hydrolysis/Isomerization of 4-Aryl-1,1,1-trifluorobut-2-en-2-yl Trifluoromethanesulfonates: A Metal-Free Approach to β-Trifluoromethyl Ketones. Eur. J. Org. Chem. 2018, 2018, 6217–6222. [Google Scholar] [CrossRef]
- Kloosterziel, H.; van Drunen, J.A.A. Stereochemistry of base-catalysed double-bond migration in allyl ethers. Recl. Trav. Chim. Pays-Bas 1970, 89, 32–36. [Google Scholar] [CrossRef]
- Walker, D.P.; Eklov, B.M.; Bedore, M.W. Practical Synthesis of 3-Oxa-6-azabicyclo[3.1.1]heptane Hydrotosylate; A Novel Morpholine-Based Building Block. Synthesis 2012, 44, 2859–2862. [Google Scholar] [CrossRef]
- Krompiec, S.; Krompiec, M.; Penczek, R.; Ignasiak, H. Double bond migration in N-allylic systems catalyzed by transition metal complexes. Coord. Chem. Rev. 2008, 252, 1819–1841. [Google Scholar] [CrossRef]
- Fiorito, D.; Scaringi, S.; Mazet, C. Transition metal-catalyzed alkene isomerization as an enabling technology in tandem, sequential and domino processes. Chem. Soc. Rev. 2021, 50, 1391–1406. [Google Scholar] [CrossRef] [PubMed]
- Grigg, R.; Stevenson, P.J. Rhodium(I)-Catalysed Isomerisation of N-Allylimines to 2-Aza-1,3-dienes. Synthesis 1983, 1983, 1009–1010. [Google Scholar] [CrossRef]
- Smadja, W.; Valery, J.-M.; Ville, G.; Bernassau, J.-M. RuCl3, NaOH-catalyzed isomerization of allylic alcohols to saturated ketones: Part II Regiochemistry. J. Mol. Catal. 1985, 30, 389–394. [Google Scholar] [CrossRef]
- Nishiwaki, N.; Kamimura, R.; Shono, K.; Kawakami, T.; Nakayama, K.; Nishino, K.; Nakayama, T.; Takahashi, K.; Nakamura, A.; Hosokawa, T. Efficient double bond migration of allylbenzenes catalyzed by Pd(OAc)2–HFIP system with unique substituent effect. Tetrahedron Lett. 2010, 51, 3590–3592. [Google Scholar] [CrossRef]
- Golborn, P.; Scheinmann, F. Isomerisation of allyl phenyl ethers and allylphenols with transition metal catalysts. J. Chem. Soc. Perkin Trans. 1973, 1, 2870–2875. [Google Scholar] [CrossRef]
- Chen, Z.; Jia, X.; Huang, J.; Yuan, J. Platinum-Catalyzed Tandem Cycloisomerization Reaction of Benzoendiynyl Esters: Regioselective Long-Range 1,5-Acyl Migration. J. Org. Chem. 2014, 79, 10674–10681. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Renodon-Cornière, A.; Dijols, S.; Perollier, C.; Lefevre-Groboillot, D.; Boucher, J.-L.; Attias, R.; Sari, M.-A.; Stuehr, D.; Mansuy, D. N-Aryl N‘-Hydroxyguanidines, A New Class of NO-Donors after Selective Oxidation by Nitric Oxide Synthases: Structure−Activity Relationship. J. Med. Chem. 2002, 45, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Noshita, M.; Shimizu, Y.; Morimoto, H.; Ohshima, T. Diethylenetriamine-Mediated Direct Cleavage of Unactivated Carbamates and Ureas. Org. Lett. 2016, 18, 6062–6065. [Google Scholar] [CrossRef] [PubMed]
- Moussavi, Z.; Lesieur, D.; Lespagnol, C.; Sauzieres, J.; Olivier, P. Acyl-7 dihydro-2,3 benzoxazin-1,4 ones-3 et propriétés normolipémiantes7-Acyl-2,3-dihydro-1,4-benzoxazin-3-ones and normolipemic properties. Eur. J. Org. Chem. 1989, 24, 55–60. [Google Scholar]
- Buckle, D.R.; Cantello, B.C.C.; Smith, H.; Smith, R.J.; Spicer, B.A. Synthesis and antiallergic activity of 2-hydroxy-3-nitro-1,4-naphthoquinones. J. Med. Chem. 1977, 20, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Lovely, C.J.; Du, H.; He, Y.; Rasika Dias, H.V. Oxidative Rearrangement of Imidazoles with Dimethyldioxirane. Org. Lett. 2004, 6, 735–738. [Google Scholar] [CrossRef]
- Watson, L.J.; Harrington, R.W.; Clegg, W.; Hall, M.J. Diastereoselective intermolecular ene reactions: Synthesis of 4,5,6,7-tetrahydro-1H-benzo[d]imidazoles. Org. Biomol. Chem. 2012, 10, 6649–6655. [Google Scholar] [CrossRef]
- Larionov, E.; Li, H.; Mazet, C. Well-defined transition metal hydrides in catalytic isomerizations. Chem. Commun. 2014, 50, 9816–9826. [Google Scholar] [CrossRef]
- Suzuki, H.; Koyama, Y.; Moro-Oka, Y.; Ikawa, T. Novel peparation of silyl enol ethers from allyl alcohols. Tetrahedron Lett. 1979, 20, 1415–1418. [Google Scholar] [CrossRef]
- Jin, X.; Taniguchi, K.; Yamaguchi, K.; Nozaki, K.; Mizuno, N. A Ni–Mg–Al layered triple hydroxide-supported Pd catalyst for heterogeneous acceptorless dehydrogenative aromatization. Chem. Commun. 2017, 53, 5267–5270. [Google Scholar] [CrossRef]
- Giustra, Z.X.; Chou, L.-Y.; Tsung, C.-K.; Liu, S.-Y. Kinetics of −CH2CH2– Hydrogen Release from a BN-cyclohexene Derivative. Organometallics 2016, 35, 2425–2428. [Google Scholar] [CrossRef]
- Tian, G.; Fedoseev, P.; Van der Eycken, E.V. Hypervalent Iodine(III)-Mediated Cascade Cyclization of Propargylguanidines and Total Syntheses of Kealiinine B and C. Chem. Eur. J. 2017, 23, 5224–5227. [Google Scholar] [CrossRef] [PubMed]
- Chenna Reddy, M.L.; Patil, V.B.; Nawaz Khan, F.R.; Saravanan, V. Synthesis of Imidazo[1,2-a]pyridines and Imidazo[2,1-b]thiazoles Attached to a Cycloalkyl or Saturated Heterocycle Containing a Tertiary Hydroxy Substitution. J. Heterocycl. Chem. 2019, 56, 1486–1497. [Google Scholar] [CrossRef]
- Fursule, R.A.; Patil, P.O.; Shewale, B.D.; Kosalge, S.B.; Deshmukh, P.K.; Patil, D.A. Novel system for decarboxylative bromination of alpha,beta-unsaturated carboxylic acids with diacetoxyiodobenzene. Chem. Pharm. Bull. 2009, 57, 1243–1245. [Google Scholar] [CrossRef]
- Shi, C.; Ojima, I. Asymmetric synthesis of 1-vinyltetrahydroisoquinoline through Pd-catalyzed intramolecular allylic amination. Tetrahedron 2007, 63, 8563–8570. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Sun, X.; Du, Y. An efficient cis-reduction of alkyne to alkene in the presence of a vinyl iodide: Stereoselective synthesis of the C22–C31 fragment of leiodolide A. Tetrahedron 2013, 69, 1553–1558. [Google Scholar] [CrossRef]
- Yu, J.-Q.; Corey, E.J. A Mild, Catalytic, and Highly Selective Method for the Oxidation of α,β-Enones to 1,4-Enediones. J. Am. Chem. Soc. 2003, 125, 3232–3233. [Google Scholar] [CrossRef]
- Finkielsztein, L.M.; Aguirre, J.M.; Lantaño, B.; Alesso, E.N.; Iglesias, G.Y.M. ZnI2/NaCNBH3 as an Efficient Reagent for Regioselective Ring Opening of the Benzylic Epoxide Moiety. Synth. Commun. 2004, 34, 895–901. [Google Scholar] [CrossRef]
- Handore, K.L.; Jadhav, P.D.; Hazra, B.; Basu, A.; Reddy, D.S. Total Syntheses and Biological Evaluation of (±)-Botryosphaeridione, (±)-Pleodendione, 4-epi-Periconianone B, and Analogues. ACS Med. Chem. Lett. 2015, 6, 1117–1121. [Google Scholar] [CrossRef]
- Zhu, N.; Qian, B.; Xiong, H.; Bao, H. Copper-catalyzed regioselective allylic oxidation of olefins via C–H activation. Tetrahedron Lett. 2017, 58, 4125–4128. [Google Scholar] [CrossRef]
- Kharasch, M.S.; Sosnovsky, G. The reactions of t-butyl perbenzoate and olefins—A stereospecific reaction. J. Am. Chem. Soc. 1958, 80, 756. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.P.; Gout, D.; Mao, J.X.; Kroll, P.; Lovely, C.J. Investigation of Dearomatizing Spirocyclizations and Spirocycle Functionalization En Route to Spirocalcaridines A and B—Some Trials and Tribulations. Molecules 2025, 30, 1143. https://doi.org/10.3390/molecules30051143
Singh RP, Gout D, Mao JX, Kroll P, Lovely CJ. Investigation of Dearomatizing Spirocyclizations and Spirocycle Functionalization En Route to Spirocalcaridines A and B—Some Trials and Tribulations. Molecules. 2025; 30(5):1143. https://doi.org/10.3390/molecules30051143
Chicago/Turabian StyleSingh, Ravi P., Delphine Gout, James X. Mao, Peter Kroll, and Carl J. Lovely. 2025. "Investigation of Dearomatizing Spirocyclizations and Spirocycle Functionalization En Route to Spirocalcaridines A and B—Some Trials and Tribulations" Molecules 30, no. 5: 1143. https://doi.org/10.3390/molecules30051143
APA StyleSingh, R. P., Gout, D., Mao, J. X., Kroll, P., & Lovely, C. J. (2025). Investigation of Dearomatizing Spirocyclizations and Spirocycle Functionalization En Route to Spirocalcaridines A and B—Some Trials and Tribulations. Molecules, 30(5), 1143. https://doi.org/10.3390/molecules30051143