2D Porous Ti3C2 MXene as Anode Material for Sodium-Ion Batteries with Excellent Reaction Kinetics
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Preparation of Ti3C2Tx MXene Nanosheets
3.2. Preparation of PM
3.3. Material Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhong, L.; Yue, M.; Liang, Y.; Xi, B.; An, X.; Xiao, Y.; Cheng, B.; Lei, S.; Xiong, S. In Situ Universal Construction of Thiophosphite/MXene Hybrids via Lewis Acidic Etching for Superior Sodium Storage. Adv. Funct. Mater. 2024, 34, 2407740. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, Z.; Li, D.; Li, J.; Zhang, Y.; Wang, M.; Li, G.; Wang, L.; Han, W. Multi-interface Combination of Bimetallic Selenide and V4C3Tx MXene for High-Rate and Ultrastable Sodium Storage Devices. ACS Nano 2024, 18, 4733–4745. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Yang, M.; Fan, T.; Li, Z.; Wang, Y.; Li, H.; Zhu, G.; Li, J.; Jin, H.; Yu, L. A simple, efficient, fluorine-free synthesis method of MXene/Ti3C2Tx anode through molten salt etching for sodium-ion batteries. Battery Energy 2023, 2, 20230021. [Google Scholar] [CrossRef]
- Kong, L.; Liu, M.; Huang, H.; Xu, Y.; Bu, X.H. Metal/Covalent-Organic Framework Based Cathodes for Metal-Ion Batteries. Adv. Energy Mater. 2021, 12, 2100172. [Google Scholar] [CrossRef]
- Chayambuka, K.; Mulder, G.; Danilov, D.L.; Notten, P.H.L. From Li-Ion Batteries toward Na-Ion Chemistries: Challenges and Opportunities. Adv. Energy Mater. 2020, 10, 2001310. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Guo, Y.; Lin, J.; Liu, L.; You, K.; Lin, Q.; Sun, J.; Lin, L.; Zhao, Y.; et al. Coral Polyp and Spine Dual-Inspired Gradient Hierarchical Architecture for Ultrahigh-Rate and Long-Life Sodium Storage. Adv. Funct. Mater. 2024, 34, 2402178. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Ni, K.; Guan, J.; Chen, M.; Zhu, Y.; Yang, S. Fullerene Intercalation of MXene Toward Super-Long-Cycle Sodium Ion Storage. Adv. Funct. Mater. 2024, 34, 2400185. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, R.; Dong, S.; Miao, X.; Zhang, Z.; Wang, C.; Yin, L. Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 2019, 12, 2422–2432. [Google Scholar] [CrossRef]
- Yan, J.; Ma, Y.; Jia, G.; Zhao, S.; Yue, Y.; Cheng, F.; Zhang, C.; Cao, M.; Xiong, Y.; Shen, P.; et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem. Eng. J. 2022, 431, 133458. [Google Scholar] [CrossRef]
- Yu, L.; Tao, X.; Sun, D.; Zhang, L.; Wei, C.; Han, L.; Sun, Z.; Zhao, Q.; Jin, H.; Zhu, G. In Situ Phase Transformation to form MoO3−MoS2 Heterostructure with Enhanced Printable Sodium Ion Storage. Adv. Funct. Mater. 2024, 34, 2311471. [Google Scholar] [CrossRef]
- Markus, I.M.; Engelke, S.; Shirpour, M.; Asta, M.; Doeff, M. Experimental and Computational Investigation of Lepidocrocite Anodes for Sodium-Ion Batteries. Chem. Mater. 2016, 28, 4284–4291. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Z.; Mao, M.; Wang, H.; Li, Y.; Ma, J. Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater. 2019, 16, 434–454. [Google Scholar] [CrossRef]
- Wang, J.; Yue, X.; Xie, Z.; Abudula, A.; Guan, G. MOFs-derived transition metal sulfide composites for advanced sodium ion batteries. Energy Storage Mater. 2021, 41, 404–426. [Google Scholar] [CrossRef]
- Li, Z.A.; Wang, S.G.; Chen, P.P.; Lei, J.T.; Hou, Y.L.; Chen, J.Z.; Zhao, D.L. Interface Engineering of MOF-Derived Co3O4@CNT and CoS2@CNT Anodes with Long Cycle Life and High-Rate Properties in Lithium/Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2024, 16, 19730–19741. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Yao, Y.; Wu, Y.; Yu, Y. Progress and Prospects of Transition Metal Sulfides for Sodium Storage. Adv. Fiber Mater. 2020, 2, 314–337. [Google Scholar] [CrossRef]
- Lim, Y.V.; Li, X.L.; Yang, H.Y. Recent Tactics and Advances in the Application of Metal Sulfides as High-Performance Anode Materials for Rechargeable Sodium-Ion Batteries. Adv. Funct. Mater. 2020, 31, 200676. [Google Scholar] [CrossRef]
- Niu, B.; Zhang, Y.; Long, Y.; Zhao, J.; Li, Q.; Zhang, B.; Tao, Y.; Yang, Q.-H. Concentrated Laminate Structure in Dense MXene Monoliths Promises High-Capacity Sodium Storage. Small Struct. 2023, 4, 2300143. [Google Scholar] [CrossRef]
- Wei, C.; Tan, L.; Zhang, Y.; Xi, B.; Xiong, S.; Feng, J. MXene/Organics Heterostructures Enable Ultrastable and High-Rate Lithium/Sodium Batteries. ACS Appl. Mater. Interfaces 2022, 14, 2979–2988. [Google Scholar] [CrossRef]
- Cheng, Y.; Xie, Y.; Cao, H.; Li, L.; Liu, Z.; Yan, S.; Ma, Y.; Liu, W.; Yue, Y.; Wang, J.; et al. High-strength MXene sheets through interlayer hydrogen bonding for self-healing flexible pressure sensor. Chem. Eng. J. 2023, 453, 139823. [Google Scholar] [CrossRef]
- Pan, H.; Huang, Y.; Cen, X.; Zhang, M.; Hou, J.; Wu, C.; Dou, Y.; Sun, B.; Wang, Y.; Zhang, B.; et al. Hollow Carbon and MXene Dual-Reinforced MoS2 with Enlarged Interlayers for High-Rate and High-Capacity Sodium Storage Systems. Adv. Sci. 2024, 11, 2400364. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, D.; Zhang, C.; Zhao, Y.; Ma, P.; Dong, W.; Huang, Y.; Liu, T. Compressible and Lightweight MXene/Carbon Nanofiber Aerogel with “Layer-Strut” Bracing Microscopic Architecture for Efficient Energy Storage. Adv. Fiber Mater. 2022, 4, 820–831. [Google Scholar] [CrossRef]
- Wu, Z.; Shang, T.; Deng, Y.; Tao, Y.; Yang, Q.H. The Assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liang, M.; Wang, H.; Wang, X.; Huang, Y.; Coelho, J.; Pinilla, S.; Zhang, Y.; Qi, F.; Nicolosi, V.; et al. 3D MXene Architectures for Efficient Energy Storage and Conversion. Adv. Funct. Mater. 2020, 30, 2000842. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Yu, L.; Tao, X.; Tang, L.; Ye, L.; Liu, Y.; Han, L.; Li, H.; Ling, Y.; et al. Efficient sulfur atom-doped three-dimensional PM-assisted sodium ion batteries. Dalton Trans. 2024, 53, 6583–6591. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, C.; Gao, Y.; Yang, J.; Xie, Y.; Feng, S.; Zhang, J.; Li, J.; Tian, X.; Zhang, H. Pore structure and oxygen content design of amorphous carbon toward a durable anode for potassium/sodium-ion batteries. Carbon Energy 2024, 6, e534. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, R.; Jiang, D.; Cai, S.; Li, H.; Sun, D.; Tang, Y.; Wang, H. Regulating the Pore Structure of Biomass-Derived Hard Carbon for an Advanced Sodium-Ion Battery. ACS Appl. Mater. Interfaces 2024, 16, 47504–47512. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Liu, J.; Peng, W.; Zhu, Y.; Zhao, Y.; Jiang, K.; Peng, M.; Tan, Y. Highly Stable 3D Ti3C2Tx MXene-Based Foam Architectures toward High-Performance Terahertz Radiation Shielding. ACS Nano 2020, 14, 2109–2117. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Li, G.; Zhu, Y.; Wu, Z.; Xie, X.; Zhang, N. Rising from the horizon: Three-dimensional functional architectures assembled with MXene nanosheets. J. Mater. Chem. A 2020, 8, 18538–18559. [Google Scholar] [CrossRef]
- Li, K.; Wang, X.; Li, S.; Urbankowski, P.; Li, J.; Xu, Y.; Gogotsi, Y. An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors. Small 2020, 16, e1906851. [Google Scholar] [CrossRef]
- Yu, L.; Li, W.; Wei, C.; Yang, Q.; Shao, Y.; Sun, J. 3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density. Nano-Micro Lett. 2020, 12, 2311–6706. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Mathis, T.; Zhong, X.; Xiao, X.; Wang, H.; Anayee, M.; Pan, F.; Xu, B.; Gogotsi, Y. Optimizing Ion Pathway in Titanium Carbide MXene for Practical High-Rate Supercapacitor. Adv. Energy Mater. 2020, 11, 2003025. [Google Scholar] [CrossRef]
- She, K.; Huang, Y.; Fan, W.; Yu, M.; Zhang, J.; Chen, C. 3D flower-like hollow MXene@MoS2 heterostructure for fast sodium storage. J. Colloid. Interface Sci. 2024, 656, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Cheng, Y.; Zhang, H.; Cheng, F.; Wang, Y.; Huang, T.; Wei, Z.; Zhang, Y.; Ge, B.; Ma, Y.; et al. Nature-Inspired Interconnected Macro/Meso/Micro-PM Electrode. Adv. Funct. Mater. 2023, 33, 2211199. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, N.; Zhao, X.; Fang, Z.; Zhang, X.; Liu, Y.; Bai, Z.; Dou, S.; Yu, G. Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe2 nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. J. Mater. Chem. A 2020, 8, 2843–2850. [Google Scholar] [CrossRef]
- Jung, Y.M.; Choi, J.H.; Kim, D.W.; Kang, J.K. 3D Porous Oxygen-Doped and Nitrogen-Doped Graphitic Carbons Derived from Metal Azolate Frameworks as Cathode and Anode Materials for High-Performance Dual-Carbon Sodium-Ion Hybrid Capacitors. Adv. Sci. 2023, 10, e2301160. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Sun, Z.; Yu, L.; Lian, X.; Yi, Y.; Li, J.; Liu, Z.; Dou, S.; Sun, J. Enhanced Kinetics Harvested in Heteroatom Dual-Doped Graphitic Hollow Architectures toward High Rate Printable Potassium-Ion Batteries. Adv. Energy Mater. 2020, 10, 2001161. [Google Scholar] [CrossRef]
- Lu, P.; Sun, Y.; Xiang, H.; Liang, X.; Yu, Y. 3D Amorphous Carbon with Controlled Porous and Disordered Structures as a High-Rate Anode Material for Sodium-Ion Batteries. Adv. Energy Mater. 2017, 8, 1702434. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.; Gong, Z.; Yin, Z.; Guo, X.; Liu, J.; Mao, C.; Zhang, Z.; Li, G. A Robust Strategy for Engineering Fe7S8/C Hybrid Nanocages Reinforced by Defect-Rich MoS2 Nanosheets for Superior Potassium-Ion Storage. ACS Nano 2020, 14, 16046–16056. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.; Gong, Z.; Guo, X.; Liu, J.; Zhang, Z.; Li, G. Superior potassium-ion storage properties by engineering pseudocapacitive sulfur/nitrogen-containing species within three-dimensional flower-like hard carbon architectures. Carbon 2020, 161, 97–107. [Google Scholar] [CrossRef]
- Wang, F.; Ma, X.; Zou, P.; Wang, G.; Xiong, Y.; Liu, Y.; Ren, F.; Xiong, X. Nitrogen-doped carbon decorated TiO2/Ti3C2Tx MXene composites as anode material for high-performance sodium-ion batteries. Surf. Coat. Technol. 2021, 422, 127568. [Google Scholar] [CrossRef]
- Zhang, H.; Song, J.; Li, J.; Feng, J.; Ma, Y.; Ma, L.; Liu, H.; Qin, Y.; Zhao, X.; Wang, F. Interlayer-Expanded MoS2 Nanoflowers Vertically Aligned on MXene@Dual-Phased TiO2 as High-Performance Anode for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 16300–16309. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Li, A.; Li, G.; Yan, Y.; Zhang, M.; Yang, Q.; Zhou, W.; Guo, L. S-Decorated Porous Ti3C2 MXene Combined with In Situ Forming Cu2Se as Effective Shuttling Interrupter in Na–Se Batteries. Adv. Mater. 2021, 33, 2008414. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, H.; Liu, Y.; Bai, Y.; Chen, G.; Li, Y.; Wang, X.; Xu, H.; Wu, C.; Lu, J. Analysis of the Stable Interphase Responsible for the Excellent Electrochemical Performance of Graphite Electrodes in Sodium-Ion Batteries. Small 2020, 16, e2003268. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Kong, N.; Huang, M.; Fu, L.; Tian, Y.; Liu, Z.; Wang, Z.; Yang, L.; Han, F. A hierarchical nano-MoS2 flake/micro-MXene lamellar complex structure within a carbon coating for rapid sodium-ion storage. J. Mater. Chem. A 2024, 12, 6329–6340. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; Li, D.; Cao, J.; Han, W. Carbon-Reinforced Nb2CTx MXene/MoS2 Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. ACS Nano 2021, 15, 7439–7450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Peng, J.; Hua, W.; Liu, Y.; Wang, J.; Liang, Y.; Lai, W.; Jiang, Y.; Huang, Y.; Zhang, W.; et al. Architecting Amorphous VanadiumOxide/MXene Nanohybrid via Tunable Anodic Oxidation for High-Performance Sodium-IonBatteries. Adv. Energy Mater. 2021, 11, 2100757. [Google Scholar] [CrossRef]
- Zhong, W.; Tao, M.; Tang, W.; Gao, W.; Yang, T.; Zhang, Y.; Zhan, R.; Bao, S.-J.; Xu, M. MXene-derivative pompon-like Na2Ti3O7@C anode material for advanced sodium ion batteries. Chem. Eng. J. 2019, 378, 122209. [Google Scholar] [CrossRef]
- Sun, S.; Xie, Z.; Yan, Y.; Wu, S. Hybrid energy storage mechanisms for sulfur-decorated Ti3C2MXene anode material for high-rate and long-life sodium-ion batteries. Chem. Eng. J. 2019, 366, 460–467. [Google Scholar] [CrossRef]
- Wu, Y.; Nie, P.; Wang, J.; Dou, H.; Zhang, X. Few-Layer MXenes Delaminated via High-Energy Mechanical Milling for Enhanced Sodium-Ion Batteries Performance. ACS Appl. Mater. Interfaces 2017, 9, 39610–39617. [Google Scholar] [CrossRef]
- Liu, J.; Chang, Y.; Guo, H.; Cao, D.; Sun, K.; Wang, T.; Liu, D.; Fu, Y.; Liu, J.; He, D. Self-assembled Ti3C2Tx/poly(diallyldimethylammonium chloride)-graphene oxide multilayers withlarge layer spacing for high capacity sodium-ion batteries. J. Power Sources 2024, 624, 235492. [Google Scholar] [CrossRef]
- Li, J.; Hao, J.; Wang, R.; Yuan, Q.; Wang, T.; Pan, L.; Li, J.; Wang, C. Ultra-stable cycling of organiccarboxylate molecule hydrogen bonded with inorganic Ti3C2Tx MXene with improved redoxkinetics for sodium-ion batteries. Battery Energy 2023, 3, 20230033. [Google Scholar] [CrossRef]
- Sun, X.; Tan, K.; Liu, Y.; Zhang, J.; Hou, L.; Yuan, C. In-situ growth of hybrid NaTi8O13/NaTiO2nanoribbons on layered MXene Ti3C2 as a competitive anode for high-performance sodium-ionbatteries. Chin. Chem. Lett. 2020, 31, 2254–2258. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Q.; Shang, T.; Wang, F.; Zhang, J.; Geng, C.; Wu, Z.; Deng, Y.; Zhang, W.; Tao, Y.; et al. Porous MXene monoliths with locally laminated structure for enhanced pseudo-capacitance and fast sodium-ion storage. Nano Energy 2021, 86, 106091. [Google Scholar] [CrossRef]
- Mei, J.; Ayoko, G.A.; Hu, C.; Bell, J.M.; Sun, Z. Two-dimensional fluorine-free mesoporous Mo2CMXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustain. Mater. Technol. 2020, 25, e00156. [Google Scholar]
- Zhang, P.; Soomro, R.A.; Guan, Z.; Sun, N.; Xu, B. 3D carbon-coated MXene architectures withhigh and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 2020, 29, 163–171. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S.; Chen, J.; Hu, F.; Wang, X.; Huang, H.; Yao, M. Exploring the Potentials ofTi3CiN2-iTx (i = 0, 1, 2)-MXene for Anode Materials of High-Performance Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 22341–22350. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xue, P.; Ji, L.; Pan, X.; Chen, L.; Guo, W.; Tang, M.; Wang, C.; Wang, Z. Interfacial Self-assembly of Organics/MXene Hybrid Cathodes Toward High-Rate-Performance Sodium IonBatteries. ACS Appl. Mater. Interfaces 2022, 14, 8036–8047. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Zhang, L.; Yin, G.; Tao, X.; Yu, L.; Wang, X.; Sun, C.; Sun, Y.; Hong, E.; Zhao, G.; et al. 2D Porous Ti3C2 MXene as Anode Material for Sodium-Ion Batteries with Excellent Reaction Kinetics. Molecules 2025, 30, 1100. https://doi.org/10.3390/molecules30051100
Tang L, Zhang L, Yin G, Tao X, Yu L, Wang X, Sun C, Sun Y, Hong E, Zhao G, et al. 2D Porous Ti3C2 MXene as Anode Material for Sodium-Ion Batteries with Excellent Reaction Kinetics. Molecules. 2025; 30(5):1100. https://doi.org/10.3390/molecules30051100
Chicago/Turabian StyleTang, Lan, Linlin Zhang, Guohao Yin, Xin Tao, Lianghao Yu, Xiaoqing Wang, Changlong Sun, Yunyu Sun, Enhui Hong, Guangzhen Zhao, and et al. 2025. "2D Porous Ti3C2 MXene as Anode Material for Sodium-Ion Batteries with Excellent Reaction Kinetics" Molecules 30, no. 5: 1100. https://doi.org/10.3390/molecules30051100
APA StyleTang, L., Zhang, L., Yin, G., Tao, X., Yu, L., Wang, X., Sun, C., Sun, Y., Hong, E., Zhao, G., & Zhu, G. (2025). 2D Porous Ti3C2 MXene as Anode Material for Sodium-Ion Batteries with Excellent Reaction Kinetics. Molecules, 30(5), 1100. https://doi.org/10.3390/molecules30051100