Fabricating Graphene-Based Molecular Electronics via Surface Modification by Physisorption and Chemisorption
Abstract
1. Introduction
2. Graphene-Based Molecular Electronics: Physisorption
2.1. Physisorption: Surface Reactivity
2.2. Physisorption: Molecular Doping
2.3. Physisorption: Band Gap Opening
3. Graphene-Based Molecular Electronics: Chemisorption
3.1. Chemisorption: Surface Reactivity
3.2. Chemisorption: Molecular Doping
3.3. Chemisorption: Band Gap Opening
4. Graphene-Based Molecular Electronics: Physisorption vs. Chemisorption
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.A.; Grigorieva, I.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.; Dubonos, S.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Morozov, S.; Novoselov, K.; Katsnelson, M.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Guinea, F.; Katsnelson, M.I.; Geim, A. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 2010, 6, 30–33. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Katsnelson, M.I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27. [Google Scholar] [CrossRef]
- Wu, Y.; Farmer, D.B.; Xia, F.; Avouris, P. Graphene Electronics: Materials, Devices, and Circuits. Proc. IEEE 2013, 101, 1620–1637. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Farmer, D.B.; Lin, Y.-m.; Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010, 10, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-M.; Valdes-Garcia, A.; Han, S.-J.; Farmer, D.B.; Meric, I.; Sun, Y.; Wu, Y.; Dimitrakopoulos, C.; Grill, A.; Avouris, P. Wafer-scale graphene integrated circuit. Science 2011, 332, 1294–1297. [Google Scholar] [CrossRef]
- Sun, Z.; Kohama, S.-i.; Zhang, Z.; Lomeda, J.R.; Tour, J. Soluble graphene through edge-selective functionalization. Nano Res. 2010, 3, 117–125. [Google Scholar] [CrossRef]
- Jin, Z.; McNicholas, T.P.; Shih, C.-J.; Wang, Q.H.; Paulus, G.L.; Hilmer, A.J.; Shimizu, S.; Strano, M.S. Click chemistry on solution-dispersed graphene and monolayer CVD graphene. Chem. Mater. 2011, 23, 3362–3370. [Google Scholar] [CrossRef]
- Chen, W.; Fan, Z.; Zeng, G.; Lai, Z. Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam. J. Power Sources 2013, 225, 251–256. [Google Scholar] [CrossRef]
- Jiang, J.-W.; Tang, H.; Wang, B.-S.; Su, Z.-B. Raman and infrared properties and layer dependence of the phonon dispersions in multilayered graphene. Phys. Rev. B 2008, 77, 235421. [Google Scholar] [CrossRef]
- Li, W.; Cheng, G.; Liang, Y.; Tian, B.; Liang, X.; Peng, L.; Walker, A.H.; Gundlach, D.J.; Nguyen, N. Broadband optical properties of graphene by spectroscopic ellipsometry. Carbon 2016, 99, 348–353. [Google Scholar] [CrossRef]
- Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Giannazzo, F.; Schilirò, E.; Lo Nigro, R.; Roccaforte, F.; Yakimova, R. Atomic layer deposition of high-k insulators on epitaxial graphene: A review. Appl. Sci. 2020, 10, 2440. [Google Scholar] [CrossRef]
- Shin, W.C.; Bong, J.H.; Choi, S.-Y.; Cho, B. Functionalized graphene as an ultrathin seed layer for the atomic layer deposition of conformal high-k dielectrics on graphene. ACS Appl. Mater. Interfaces 2013, 5, 11515–11519. [Google Scholar] [CrossRef]
- Vervuurt, R.H.; Karasulu, B.; Verheijen, M.A.; Kessels, W.M.; Bol, A. Uniform atomic layer deposition of Al2O3 on graphene by reversible hydrogen plasma functionalization. Chem. Mater. 2017, 29, 2090–2100. [Google Scholar] [CrossRef] [PubMed]
- Alaboson, J.M.; Wang, Q.H.; Emery, J.D.; Lipson, A.L.; Bedzyk, M.J.; Elam, J.W.; Pellin, M.J.; Hersam, M. Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers. ACS Nano 2011, 5, 5223–5232. [Google Scholar] [CrossRef]
- Wang, L.; Ye, X.; Zhu, Y.; Jiang, H.; Xia, J.; Yue, Z.; Wan, Z.; Jia, C.; Yao, X. Conjugated molecule functionalized graphene films for energy storage devices with high energy density. Electrochimica Acta 2020, 340, 135804. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Zhou, W.; Jiang, F.; Zhang, H.; Jiang, Q.; Jia, Y.; Wang, R.; Liang, A.; Xu, J. Fused heterocyclic molecule-functionalized N-doped reduced graphene oxide by non-covalent bonds for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 45202–45213. [Google Scholar] [CrossRef]
- Xu, C.; Li, J.; Wang, X.; Wang, J.; Wan, L.; Li, Y.; Zhang, M.; Shang, X.; Yang, Y. Physics. Synthesis of hemin functionalized graphene and its application as a counter electrode in dye-sensitized solar cells. Mater. Chem. Phys. 2012, 132, 858–864. [Google Scholar] [CrossRef]
- Porfarzollah, A.; Mohammad-Rezaei, R.; Bagheri, M. Ionic liquid-functionalized graphene quantum dots as an efficient quasi-solid-state electrolyte for dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 2020, 31, 2288–2297. [Google Scholar] [CrossRef]
- Homma, C.; Tsukiiwa, M.; Noguchi, H.; Tanaka, M.; Okochi, M.; Tomizawa, H.; Sugizaki, Y.; Isobayashi, A.; Hayamizu, Y. Designable peptides on graphene field-effect transistors for selective detection of odor molecules. Biosens. Bioelectron. 2023, 224, 115047. [Google Scholar] [CrossRef]
- Xu, S.; Wang, T.; Liu, G.; Cao, Z.; Frank, L.A.; Jiang, S.; Zhang, C.; Li, Z.; Krasitskaya, V.V.; Li, Q. Analysis of interactions between proteins and small-molecule drugs by a biosensor based on a graphene field-effect transistor. Sens. Actuators B Chem. 2021, 326, 128991. [Google Scholar] [CrossRef]
- Shin, D.; Kim, H.R.; Hong, B. Gold nanoparticle-mediated non-covalent functionalization of graphene for field-effect transistors. Nanoscale Adv. 2021, 3, 1404–1412. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Zhao, D.; Zeng, D.; Xia, J.; Aldalbahi, A.; Wang, C.; San, L.; Fan, C.; Zuo, X. Universal fluorescence biosensor platform based on graphene quantum dots and pyrene-functionalized molecular beacons for detection of microRNAs. ACS Appl. Mater. Interfaces 2015, 7, 16152–16156. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Li, Z.; Song, R.; Li, Y.; Guo, C.; Sha, Y.; Cui, W.; Xu, S.; Hu, G.; Wang, J. Graphene biosensor as affinity biosensors for biorecognition between Guanine riboswitch and ligand. Appl. Surf. Sci. 2020, 503, 144303. [Google Scholar] [CrossRef]
- Liu, J.Q.; Tang, J.G.; Gooding, J.J. Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 2012, 22, 12435–12452. [Google Scholar] [CrossRef]
- Kong, L.M.; Enders, A.; Rahman, T.S.; Dowben, P.A. Molecular adsorption on graphene. J. Phys. Condens. Matter. 2014, 26, 443001. [Google Scholar] [CrossRef]
- Lauffer, P.; Emtsev, K.V.; Graupner, R.; Seyller, T.; Ley, L. Molecular and electronic structure of PTCDA on bilayer graphene on SiC (0001) studied with scanning tunneling microscopy. Phys. Status Solidi B. 2008, 245, 2064–2067. [Google Scholar] [CrossRef]
- MacLeod, J.; Rosei, F. Molecular self-assembly on graphene. Small 2014, 10, 1038–1049. [Google Scholar] [CrossRef] [PubMed]
- Xing, P.; Bai, L.; Chen, H.; Tham, P.H.; Hao, A.; Zhao, Y.J.C. Self-Assembly of Organic Building Blocks with Directly Exfoliated Graphene to Fabricate Di-and Tricomponent Hybrids. ChemNanoMat 2015, 1, 517–527. [Google Scholar] [CrossRef]
- De La Rie, J.; Enache, M.; Wang, Q.; Lu, W.; Kivala, M.; Stöhr, M. Self-Assembly of a Triphenylene-Based Electron Donor Molecule on Graphene: Structural and Electronic Properties. J. Phys. Chem. C 2022, 126, 9855–9861. [Google Scholar] [CrossRef]
- Wang, J.; Huang, X.; Xi, S.; Lee, J.M.; Wang, C.; Du, Y.; Wang, X. Linkage effect in the heterogenization of cobalt complexes by doped graphene for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2019, 58, 13532–13539. [Google Scholar] [CrossRef]
- Singh, A.; Uddin, M.; Tolson, J.; Maire-Afeli, H.; Sbrockey, N.; Tompa, G.; Spencer, M.; Vogt, T.; Sudarshan, T.; Koley, G. Electrically tunable molecular doping of graphene. Appl. Phys. Lett. 2013, 102, 043101. [Google Scholar] [CrossRef]
- Medina, H.; Lin, Y.C.; Obergfell, D.; Chiu, P. Tuning of charge densities in graphene by molecule doping. Adv. Funt. Mater. 2011, 21, 2687–2692. [Google Scholar] [CrossRef]
- Yavari, F.; Kritzinger, C.; Gaire, C.; Song, L.; Gulapalli, H.; Borca-Tasciuc, T.; Ajayan, P.M.; Koratkar, N. Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 2010, 6, 2535–2538. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, S.M.; Viñes, F.; Görling, A. Bandgap engineering of graphene by physisorbed adsorbates. Adv. Mater. 2011, 23, 2638–2643. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Lei, Z.D.; Zhang, Y. Non-covalent interactions of graphene surface: Mechanisms and applications. Chem 2022, 8, 947–979. [Google Scholar] [CrossRef]
- Rinkovec, T.; Croket, E.; Cao, H.; Harvey, J.N.; De Feyter, S. Investigation of the temperature effect on the formation of a two-dimensional self-assembled network at the liquid/solid interface. Nanoscale 2024, 16, 21916–21927. [Google Scholar] [CrossRef]
- Wang, X.T.; Ismael, A.; Alanazi, B.; Al-Jobory, A.; Wang, J.S.; Lambert, C.J. High Seebeck coefficient from isolated oligo-phenyl arrays on single layered graphene via stepwise assembly. J. Mater. Chem. C 2023, 11, 14652–14660. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.Y.; Cheng, Z.W.; Chen, A.X.; Wang, P.D.; Wang, X.Y.; Lei, X.X.; Bian, Q.; Li, S.J.; Yuan, B.K.; et al. Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands. Nat. Commun. 2024, 15, 5934. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.T.; Ismael, A.; Ning, S.L.; Althobaiti, H.; Al-Jobory, A.; Girovsky, J.; Astier HP, A.G.; O’Driscoll, L.J.; Bryce, M.R.; Lambert, C.J.; et al. Electrostatic Fermi level tuning in large-scale self-assembled monolayers of oligo(phenylene–ethynylene) derivatives. Nanoscale Horiz. 2022, 7, 1201–1209. [Google Scholar] [CrossRef]
- Mertens, S.F.L. Adsorption and Self-Organization of Organic Molecules under Electrochemical Control. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Wandelt, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 4, pp. 13–23. [Google Scholar] [CrossRef]
- Cui, K.; Dorner, I.; Mertens, S.F.L. Interfacial supramolecular electrochemistry. Curr. Opin. Electrochem. 2018, 8, 156–163. [Google Scholar] [CrossRef]
- Huang, H.; Chen, S.; Gao, X.; Chen, W.; Wee, A. Structural and electronic properties of PTCDA thin films on epitaxial graphene. ACS Nano 2009, 3, 3431–3436. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Hersam, M. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat. Chem. 2009, 1, 206–211. [Google Scholar] [CrossRef]
- Fu, W.; Nef, C.; Tarasov, A.; Wipf, M.; Stoop, R.; Knopfmacher, O.; Weiss, M.; Calame, M.; Schönenberger, C.J.N. High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 2013, 5, 12104–12110. [Google Scholar] [CrossRef]
- Mann, J.A.; Dichtel, W. Noncovalent functionalization of graphene by molecular and polymeric adsorbates. J. Phys. Chem. Lett. 2013, 4, 2649–2657. [Google Scholar] [CrossRef]
- Wang, X.; Tabakman, S.M.; Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 2008, 130, 8152–8153. [Google Scholar] [CrossRef]
- Alaboson, J.M.; Sham, C.-H.; Kewalramani, S.; Emery, J.D.; Johns, J.E.; Deshpande, A.; Chien, T.; Bedzyk, M.J.; Elam, J.W.; Pellin, M. Templating sub-10 nm atomic layer deposited oxide nanostructures on graphene via one-dimensional organic self-assembled monolayers. Nano Lett. 2013, 13, 5763–5770. [Google Scholar] [CrossRef]
- Li, Z.; Van Gorp, H.; Walke, P.; Phan, T.H.; Fujita, Y.; Greenwood, J.; Ivasenko, O.; Tahara, K.; Tobe, Y.; Uji-i, H.; et al. Area-selective passivation of sp2 carbon surfaces by supramolecular self-assembly. Nanoscale 2017, 9, 5188–5193. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Manning, M.; Burke, M.; Szafranek, B.N.; Visimberga, G.; Thompson, D.; Greer, J.C.; Povey, I.M.; MacHale, J.; Lejosne, G. Non-covalent functionalization of graphene using self-assembly of alkane-amines. Adv. Funt. Mater. 2012, 22, 717–725. [Google Scholar] [CrossRef]
- Vervuurt, R.H.J.; Kessels, W.M.M.; Bol, A.A. Atomic layer deposition for graphene device integration. Adv. Mater. Interfaces 2017, 4, 170232. [Google Scholar] [CrossRef]
- Snure, M.; Vangala, S.R.; Prusnick, T.; Grzybowski, G.; Crespo, A.; Leedy, K.D. Two-dimensional BN buffer for plasma enhanced atomic layer deposition of Al2O3 gate dielectrics on graphene field effect transistors. Sci. Rep. 2020, 10, 14699. [Google Scholar] [CrossRef] [PubMed]
- Wehling, T.; Novoselov, K.; Morozov, S.; Vdovin, E.; Katsnelson, M.; Geim, A.; Lichtenstein, A. Molecular doping of graphene. Nano Lett. 2008, 8, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Yuan, J. Modulating the electronic and magnetic structures of P-doped graphene by molecule doping. J. Phys. Condens. Matter 2010, 22, 225501. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Shao, X.; Cao, D. Nitrogen-doped graphene as an excellent candidate for selective gas sensing. Sci. China Chem. 2014, 57, 911–917. [Google Scholar] [CrossRef]
- Márkus, B.; Szirmai, P.; Edelthalhammer, K.; Eckerlein, P.; Hirsch, A.; Hauke, F.; Nemes, N.; Chacón-Torres, J.C.; Náfrádi, B.; Forró, L. Ultralong spin lifetime in light alkali atom doped graphene. ACS Nano 2020, 14, 7492–7501. [Google Scholar] [CrossRef] [PubMed]
- Praveen, C.; Piccinin, S.; Fabris, S. Adsorption of alkali adatoms on graphene supported by the Au/Ni (111) surface. Phys. Rev. B 2015, 92, 075403. [Google Scholar] [CrossRef]
- Bianchi, M.; Rienks, E.; Lizzit, S.; Baraldi, A.; Balog, R.; Hornekær, L.; Hofmann, P. Electron-phonon coupling in potassium-doped graphene: Angle-resolved photoemission spectroscopy. Phys. Rev. B 2010, 81, 041403. [Google Scholar] [CrossRef]
- Xue, M.; Chen, G.; Yang, H.; Zhu, Y.; Wang, D.; He, J.; Cao, T. Superconductivity in potassium-doped few-layer graphene. J. Am. Chem. Soc. 2012, 134, 6536–6539. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, J.; Hao, X.; Wang, Y.; Chen, Y.; Li, P.; Dong, M. Investigating the stability of molecule doped graphene field effect transistors. New J. Chem. 2019, 43, 15275–15279. [Google Scholar] [CrossRef]
- Hong, G.; Wu, Q.-H.; Ren, J.; Wang, C.; Zhang, W.; Lee, S.-T. Recent progress in organic molecule/graphene interfaces. Nanotoday 2013, 8, 388–402. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.-B.; Xie, W.; Du, J. Quantitative analysis of graphene doping by organic molecular charge transfer. J. Phys. Chem. C 2011, 115, 7596–7602. [Google Scholar] [CrossRef]
- Giovannetti, G.; Khomyakov, P.A.; Brocks, G.; Karpan, V.v.; van den Brink, J.; Kelly, P. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803. [Google Scholar] [CrossRef]
- Ji, E.; Kim, M.J.; Lee, J.-Y.; Sung, D.; Kim, N.; Park, J.-W.; Hong, S.; Lee, G.-H.J.C. Substrate effect on doping and degradation of graphene. Carbon 2021, 184, 651–658. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Ni, Z.H.; Yu, T.; Shen, Z.X.; Wang, H.M.; Wu, Y.H.; Chen, W.; Shen Wee, A. Raman studies of monolayer graphene: The substrate effect. J. Phys. Chem. C 2008, 112, 10637–10640. [Google Scholar] [CrossRef]
- Wang, Q.H.; Jin, Z.; Kim, K.K.; Hilmer, A.J.; Paulus, G.L.; Shih, C.-J.; Ham, M.-H.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi, T. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 2012, 4, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Klekachev, A.V.; Cantoro, M.; Huyghebaert, C.; Stesmans, A.; Asselberghs, I.; De Gendt, S.; De Feyter, S. Toward tunable doping in graphene FETs by molecular self-assembled monolayers. Nanoscale 2013, 5, 9640–9644. [Google Scholar] [CrossRef] [PubMed]
- Phillipson, R.; de la Rosa, C.J.L.; Teyssandier, J.; Walke, P.; Waghray, D.; Fujita, Y.; Adisoejoso, J.; Mali, K.S.; Asselberghs, I.; Huyghebaert, C. Tunable doping of graphene by using physisorbed self-assembled networks. Nanoscale 2016, 8, 20017–20026. [Google Scholar] [CrossRef]
- Prado, M.C.; Nascimento, R.; Moura, L.G.; Matos, M.J.; Mazzoni, M.S.; Cancado, L.G.; Chacham, H.; Neves, B. Two-dimensional molecular crystals of phosphonic acids on graphene. ACS Nano 2011, 5, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Shayeganfar, F. Tunable band gap in bilayer graphene by trimesic acid molecular doping. J. Phys. Chem. C 2014, 118, 27157–27163. [Google Scholar] [CrossRef]
- Yin, Y.; Cervenka, J.; Medhekar, N. Tunable hybridization between electronic states of graphene and physisorbed hexacene. J. Phys. Chem. C 2015, 119, 19526–19534. [Google Scholar] [CrossRef]
- Sinha, S.; Ghosal, S.; Jana, D. Electronic and optical properties of PTCDI adsorbed graphene heterostructure: A first principles study. J. Phys. Chem. Solids 2021, 155, 110109. [Google Scholar] [CrossRef]
- Hildebrand, M.; Abualnaja, F.; Makwana, Z.; Harrison, N. Strain engineering of adsorbate self-assembly on graphene for band gap tuning. J. Phys. Chem. C 2019, 123, 4475–4482. [Google Scholar] [CrossRef]
- Tian, X.; Xu, J.; Wang, X. Self-assembly of PTCDA ultrathin films on graphene: Structural phase transition and charge transfer saturation. J. Phys. Chem. C 2010, 114, 20917–20924. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, C.-T.; Liu, K.-K.; Tite, T.; Su, C.-Y.; Chang, C.-H.; Lee, Y.-H.; Chu, C.-W.; Wei, K.-H.; Kuo, J.-L. Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano 2011, 5, 7517–7524. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Duong, D.L.; Vu, Q.A.; Jin, Y.; Kim, P.; Lee, Y. Chemically modulated band gap in bilayer graphene memory transistors with high on/off ratio. ACS Nano 2015, 9, 9034–9042. [Google Scholar] [CrossRef] [PubMed]
- Schwierz, F. Graphene transistors. Nat. Nanotech. 2010, 5, 487–496. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.A.; van Wees, B.J. Band gap opening of graphene by noncovalent π-π interaction with porphyrins. Graphene 2013, 2, 102–108. [Google Scholar] [CrossRef]
- Englert, J.M.; Dotzer, C.; Yang, G.; Schmid, M.; Papp, C.; Gottfried, J.M.; Steinrück, H.-P.; Spiecker, E.; Hauke, F.; Hirsch, A. Covalent bulk functionalization of graphene. Nat. Chem. 2011, 3, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanyam, K.S.; Ghosh, A.n.u.p.a.m.a.; Gomathi, A.; Govindaraj, A.; Rao, C.N.R. Covalent and Noncovalent Functionalization and Solubilization of Graphene. Nanosci. Nanotech. Let. 2009, 1, 28–31. [Google Scholar] [CrossRef]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.; Holland, B.; Byrne, M.; Gun’Ko, Y.K. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotech. 2008, 3, 563–568. [Google Scholar] [CrossRef]
- Mukherjee, M.; Mukherjee, S.; Kumar, R.; Shunmugam, R.J.P. Improved thermal and mechanical properties of polynorbornene upon covalent attachment with graphene sheets. Polymer 2017, 123, 321–333. [Google Scholar] [CrossRef]
- Wang, X.; Wu, P. Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Appl. Mater. Interfaces 2019, 11, 21946–21954. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Sun, Q.; Wang, H.; Zhang, X.; Shi, H. Enhanced stress transfer and thermal properties of polyimide composites with covalent functionalized reduced graphene oxide. Compos. Part A Appl. Sci. Manuf. 2015, 68, 140–148. [Google Scholar] [CrossRef]
- Chhetri, S.; Adak, N.C.; Samanta, P.; Mallisetty, P.K.; Murmu, N.C.; Kuila, T. Interface engineering for the improvement of mechanical and thermal properties of covalent functionalized graphene/epoxy composites. J. Appl. Polym. Sci. 2018, 135, 46124. [Google Scholar] [CrossRef]
- Guo, S.; Ma, L.; Song, G.; Li, X.; Li, P.; Wang, M.; Shi, L.; Gu, Z.; Huang, Y. Covalent grafting of triazine derivatives onto graphene oxide for preparation of epoxy composites with improved interfacial and mechanical properties. J. Mater. Sci. 2018, 53, 16318–16330. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Yang, W.-H.; Yu, S.-H.; Sun, R.; Wong, C.-P.; Liao, W.-H. Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites. Compos. Sci. Technol. 2016, 122, 27–35. [Google Scholar] [CrossRef]
- Tan, Y.; Fang, L.; Xiao, J.; Song, Y.; Zheng, Q. Grafting of copolymers onto graphene by miniemulsion polymerization for conductive polymer composites: Improved electrical conductivity and compatibility induced by interfacial distribution of graphene. Polym. Chem. 2013, 4, 2939–2944. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, B.; Hu, Y.; Mu, X.; Hong, N.; Liew, K.M.; Hu, Y. Electrical conductive and graphitizable polymer nanofibers grafted on graphene nanosheets: Improving electrical conductivity and flame retardancy of polypropylene. Compos. Part A Appl. Sci. Manuf. 2016, 84, 76–86. [Google Scholar] [CrossRef]
- Remyamol, T.; John, H.; Gopinath, P. Synthesis and nonlinear optical properties of reduced graphene oxide covalently functionalized with polyaniline. Carbon 2013, 59, 308–314. [Google Scholar] [CrossRef]
- Liu, Z.-B.; Xu, Y.-F.; Zhang, X.-Y.; Zhang, X.-L.; Chen, Y.-S.; Tian, J.-G. Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B 2009, 113, 9681–9686. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; He, C.; Zhang, W.; Gao, Y.; Yang, Y.; Wu, Y.; Chen, Z.; Li, X.; Dong, Y. Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine. Carbon 2014, 77, 1020–1030. [Google Scholar] [CrossRef]
- Wang, A.; Yu, W.; Huang, Z.; Zhou, F.; Song, J.; Song, Y.; Long, L.; Cifuentes, M.P.; Humphrey, M.G.; Zhang, L. Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci. Rep. 2016, 6, 23325. [Google Scholar] [CrossRef] [PubMed]
- Boukhvalov, D.; Katsnelson, M. Tuning the gap in bilayer graphene using chemical functionalization: Density functional calculations. Phys. Rev. B 2008, 78, 085413. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Bekyarova, E.; Huang, J.-W.; Zhao, Z.; Bao, W.; Wang, F.; Haddon, R.C.; Lau, C.N. Aryl functionalization as a route to band gap engineering in single layer graphene devices. Nano Lett. 2011, 11, 4047–4051. [Google Scholar] [CrossRef]
- Bekyarova, E.; Itkis, M.E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W.A.; Haddon, R.C. Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131, 1336–1337. [Google Scholar] [CrossRef]
- KiangáChua, C. Introducing dichlorocarbene in graphene. Chem. Comm. 2012, 48, 5376–5378. [Google Scholar] [CrossRef]
- Strom, T.A.; Dillon, E.P.; Hamilton, C.E.; Barron, A.R. Nitrene addition to exfoliated graphene: A one-step route to highly functionalized graphene. Chem. Comm. 2010, 46, 4097–4099. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gomez, A.; Wojtaszek, M.; Tombros, N.; van Wees, B.J. Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy. Small 2012, 8, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Han, M.Y.; Maultzsch, J.; Heinz, T.F.; Kim, P.; Steigerwald, M.L.; Brus, L.E. Reversible basal plane hydrogenation of graphene. Nano Lett. 2008, 8, 4597–4602. [Google Scholar] [CrossRef] [PubMed]
- Sofo, J.O.; Chaudhari, A.S.; Barber, G.D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401. [Google Scholar] [CrossRef]
- Robinson, J.T.; Burgess, J.S.; Junkermeier, C.E.; Badescu, S.C.; Reinecke, T.L.; Perkins, F.K.; Zalalutdniov, M.K.; Baldwin, J.W.; Culbertson, J.C.; Sheehan, P.E. Properties of fluorinated graphene films. Nano Lett. 2010, 10, 3001–3005. [Google Scholar] [CrossRef] [PubMed]
- Poh, H.L.; Šimek, P.; Sofer, Z.; Pumera, M. Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chem-Eur. J. 2013, 19, 2655–2662. [Google Scholar] [CrossRef]
- Karlicky, F.; Kumara Ramanatha Datta, K.; Otyepka, M.; Zboril, R. Halogenated graphenes: Rapidly growing family of graphene derivatives. ACS Nano 2013, 7, 6434–6464. [Google Scholar] [CrossRef]
- Greenwood, J.; Phan, T.H.; Fujita, Y.; Li, Z.; Ivasenko, O.; Vanderlinden, W.; Van Gorp, H.; Frederickx, W.; Lu, G.; Tahara, K.; et al. Covalent Modification of Graphene and Graphite Using Diazonium Chemistry: Tunable Grafting and Nanomanipulation. ACS Nano 2015, 9, 5520–5535. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.M.T.; Phan, T.H.; Ivasenko, O.; Mertens, S.F.L.; De Feyter, S. Nanoconfined Self-Assembly on a Grafted Graphitic Surface under Electrochemical Control. Nanoscale 2017, 9, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Mertens, S.F.L.; Hemmi, A.; Muff, S.; Gröning, O.; De Feyter, S.; Osterwalder, J.; Greber, T. Switching stiction and adhesion of a liquid on a solid. Nature 2016, 534, 676–679. [Google Scholar] [CrossRef]
- Wang, Q.; Vasilescu, A.; Wang, Q.; Coffinier, Y.; Li, M.; Boukherroub, R.; Szunerits, S. Electrophoretic approach for the simultaneous deposition and functionalization of reduced graphene oxide nanosheets with diazonium compounds: Application for lysozyme sensing in serum. ACS Appl. Mater. Interfaces 2017, 9, 12823–12831. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Jimenez, G.C.; Mahvash, F.; Guermoune, A.; Tlili, C.; Szkopek, T.; Zourob, M.; Siaj, M. Functionalized CVD monolayer graphene for label-free impedimetric biosensing. Nano Res. 2015, 8, 1698–1709. [Google Scholar] [CrossRef]
- Qiu, Z.; Yu, J.; Yan, P.; Wang, Z.; Wan, Q.; Yang, N. Electrochemical grafting of graphene nano platelets with aryl diazonium salts. ACS Appl. Mater. Interfaces 2016, 8, 28291–28298. [Google Scholar] [CrossRef]
- Li, Z.; Van Guyse, J.F.R.; de la Rosa, V.R.; Van Gorp, H.; Walke, P.; Uji-i, H.; Hoogenboom, R.; De Feyter, S.; Mertens, S.F.L. One-Step Covalent Immobilization of β-Cyclodextrin on sp2 Carbon Surfaces for Selective Trace Amount Probing of Guests. Adv. Funct. Mater. 2019, 29, 1901488. [Google Scholar] [CrossRef]
- Li, Z.; Guo, Y.; Li, K.; Wang, S.; De Bonis, E.; Cao, H.; Mertens, S.F.; Teng, C. Shape Control of Bimetallic MOF/Graphene Composites for Efficient Oxygen Evolution Reaction. J. Electroanal. Chem. 2023, 930, 117144. [Google Scholar] [CrossRef]
- Brown, A.; Greenwood, J.; de la Rosa, C.J.L.; González, M.C.R.; Verguts, K.; Brems, S.; Zhang, H.; Hirsch, B.E.; De Gendt, S.; Delabie, A. A chemisorbed interfacial layer for seeding atomic layer deposition on graphite. Nanoscale 2021, 13, 12327–12341. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Lee, J.S.; Shin, H.-J.; Shin, H.S.; Choi, H. Spatially resolved spontaneous reactivity of diazonium salt on edge and basal plane of graphene without surfactant and its doping effect. Langmuir 2010, 26, 12278–12284. [Google Scholar] [CrossRef] [PubMed]
- Bissett, M.A.; Konabe, S.; Okada, S.; Tsuji, M.; Ago, H. Enhanced chemical reactivity of graphene induced by mechanical strain. ACS Nano 2013, 7, 10335–10343. [Google Scholar] [CrossRef]
- Ferrari, A. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotech. 2008, 3, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K.S.; Geim, A.K.; Ferrari, A.C.; Mauri, F. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, M.; Mauri, F. Nonadiabatic Kohn anomaly in a doped graphene monolayer. Phys. Rev. Lett. 2006, 97, 266407. [Google Scholar] [CrossRef] [PubMed]
- Koehler, F.M.; Luechinger, N.A.; Ziegler, D.; Athanassiou, E.K.; Grass, R.N.; Rossi, A.; Hierold, C.; Stemmer, A.; Stark, W.J. Permanent Pattern-Resolved Adjustment of the Surface Potential of Graphene-Like Carbon through Chemical Functionalization. Angew. Chem. Int. Ed. 2009, 48, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, G.; Brown, A.; Daukiya, L.; Drera, G.; Di Santo, G.; Petaccia, L.; De Feyter, S.; Sangaletti, L.; Pagliara, S. Impact of covalent functionalization by diazonium chemistry on the electronic properties of graphene on SiC. Nanoscale 2020, 12, 9032–9037. [Google Scholar] [CrossRef] [PubMed]
- Mali, K.S.; Greenwood, J.; Adisoejoso, J.; Phillipson, R.; De Feyter, S. Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale 2015, 7, 1566–1585. [Google Scholar] [CrossRef] [PubMed]
- Elias, D.C.; Nair, R.R.; Mohiuddin, T.; Morozov, S.; Blake, P.; Halsall, M.; Ferrari, A.; Boukhvalov, D.; Katsnelson, M.; Geim, A. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613. [Google Scholar] [CrossRef] [PubMed]
- Pumera, M.; Wong, C.H.A. Graphane and hydrogenated graphene. Chem. Soc. Rev. 2013, 42, 5987–5995. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, J.; Zhu, J. Fluorination of graphene: A spectroscopic and microscopic study. ACS Nano 2014, 8, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-H.; Zou, K.; Okino, F.; Gutierrez, H.R.; Gupta, A.; Shen, N.; Eklund, P.; Sofo, J.O.; Zhu, J. Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 2010, 81, 205435. [Google Scholar] [CrossRef]
- Niyogi, S.; Bekyarova, E.; Itkis, M.E.; Zhang, H.; Shepperd, K.; Hicks, J.; Sprinkle, M.; Berger, C.; Lau, C.N.; Deheer, W.A. Spectroscopy of covalently functionalized graphene. Nano Lett. 2010, 10, 4061–4066. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Walsh, M.A.; Hersam, M. Scanning tunneling microscopy, spectroscopy, and nanolithography of epitaxial graphene chemically modified with aryl moieties. J. Am. Chem. Soc. 2010, 132, 15399–15403. [Google Scholar] [CrossRef]
- Bekyarova, E.; Itkis, M.E.; Ramesh, P.; Haddon, R. Chemical approach to the realization of electronic devices in epitaxial graphene. Phys. Status Solidi 2009, 3, 184–186. [Google Scholar] [CrossRef]
- Shih, C.-J.; Wang, Q.H.; Jin, Z.; Paulus, G.L.; Blankschtein, D.; Jarillo-Herrero, P.; Strano, M.S. Disorder imposed limits of mono-and bilayer graphene electronic modification using covalent chemistry. Nano Lett. 2013, 13, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-Y.; Nouchi, R.; Yin, L.-C.; Tanigaki, K. Effects of electron-transfer chemical modification on the electrical characteristics of graphene. Nanotechnology 2010, 21, 475208. [Google Scholar] [CrossRef]
- Edelthalhammer, K.F.; Dasler, D.; Jurkiewicz, L.; Nagel, T.; Al-Fogra, S.; Hauke, F.; Hirsch, A. Covalent 2D-Engineering of Graphene by Spatially Resolved Laser Writing/Reading/Erasing. Angew. Chem. Int. Ed. 2020, 59, 23329–23334. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Kohring, M.; Chen, M.; Yang, S.; Weber, H.B.; Hauke, F.; Hirsch, A. Highly Efficient and Reversible Covalent Patterning of Graphene: 2D-Management of Chemical Information. Angew. Chem. Int. Ed. 2020, 59, 5602–5606. [Google Scholar] [CrossRef]
- Rodríguez González, M.C.; Leonhardt, A.; Stadler, H.; Eyley, S.; Thielemans, W.; De Gendt, S.; Mali, K.S.; De Feyter, S. Multicomponent Covalent Chemical Patterning of Graphene. ACS Nano 2021, 15, 10618–10627. [Google Scholar] [CrossRef]
- Tahara, K.; Ishikawa, T.; Hirsch, B.E.; Kubo, Y.; Brown, A.; Eyley, S.; Daukiya, L.; Thielemans, W.; Li, Z.; Walke, P.; et al. Self-assembled monolayers as templates for linearly nanopatterned covalent chemical functionalization of graphite and graphene surfaces. ACS Nano 2018, 12, 11520–11528. [Google Scholar] [CrossRef]
- Tahara, K.; Kubo, Y.; Hashimoto, S.; Ishikawa, T.; Kaneko, H.; Brown, A.; Hirsch, B.E.; De Feyter, S.; Tobe, Y. Porous self-assembled molecular networks as templates for chiral-position-controlled chemical functionalization of graphitic surfaces. J. Am. Chem. Soc. 2020, 142, 7699–7708. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Leonardi, F.; Gobbi, M.; Liu, Y.; Bellani, V.; Liscio, A.; Kovtun, A.; Li, R.; Feng, X.; Orgiu, E. Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts. ACS Nano 2016, 10, 7125–7134. [Google Scholar] [CrossRef] [PubMed]
- Arano-Martinez, J.A.; Martínez-González, C.L.; Salazar, M.I.; Torres-Torres, C. A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning. Biosensors 2022, 12, 710. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.K.; Kato, M.; Uesaka, J.; Tsubouchi, R.; Go, K.; Choi, Y.J.; Noda, T.; Sawada, K.; Takahashi, K. Fabrication and characterization of strain-induced graphene for chemisorption-based graphene resonant mass sensors. Appl. Phys. Express 2024, 17, 127001. [Google Scholar] [CrossRef]
- Li, Z.; Mali, K.; Hapiot, P.; De Feyter, S.; Attias, A.J.; Mertens, S. Reversible Redox-Driven Crystallization in a Paracyclophane Monolayer at a Solid–Liquid Interface. Adv. Funct. Mater. 2024, 34, 2315861. [Google Scholar] [CrossRef]
ADVANTAGES | CHALLENGES |
---|---|
Atomically thin | Lack of band gap |
~97.7% optical transparency | Low chemical reactivity |
~200,000 cm2/V s electron mobility | Poor solubility |
~1 TPa mechanical strength | Easy agglomeration |
~5000 W/mK RT thermal conductivity | Poor processability |
Physisorption | Chemisorption |
---|---|
(+) Mild reaction conditions | (−) Harsh reaction conditions |
(+) Zero graphene degradation | (−) Nonzero graphene degradation |
(+) Reversible modification | (+) Reversible modification |
(−) Weak interaction | (+) Strong bonding |
(−) Limited functionalization effect | (+) Significant functionalization effect |
(−) Metastable, fragile | (+) Stable, durable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Guo, K.; Yin, C.; Li, Y.; Mertens, S.F.L. Fabricating Graphene-Based Molecular Electronics via Surface Modification by Physisorption and Chemisorption. Molecules 2025, 30, 926. https://doi.org/10.3390/molecules30040926
Li Z, Guo K, Yin C, Li Y, Mertens SFL. Fabricating Graphene-Based Molecular Electronics via Surface Modification by Physisorption and Chemisorption. Molecules. 2025; 30(4):926. https://doi.org/10.3390/molecules30040926
Chicago/Turabian StyleLi, Zhi, Keying Guo, Chengjie Yin, Yanan Li, and Stijn F. L. Mertens. 2025. "Fabricating Graphene-Based Molecular Electronics via Surface Modification by Physisorption and Chemisorption" Molecules 30, no. 4: 926. https://doi.org/10.3390/molecules30040926
APA StyleLi, Z., Guo, K., Yin, C., Li, Y., & Mertens, S. F. L. (2025). Fabricating Graphene-Based Molecular Electronics via Surface Modification by Physisorption and Chemisorption. Molecules, 30(4), 926. https://doi.org/10.3390/molecules30040926