Mineral Composition Analysis of Red Horse-Chestnut (Aesculus × Carnea) Seeds and Hydroalcoholic Crude Extract Using ICP OES
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Analysis of Seeds
2.2. Analysis of Crude Extracts Obtained by Hydroalcoholic Maceration
Optimization of the Extraction Method
3. Materials and Methods
3.1. Sample Collection
3.2. Sample Handling
3.3. Crude Extract Preparation
3.4. Mineralization Procedure
3.5. Reagents and Standard
3.6. Proximate Analysis
3.7. ICP OES Analysis
3.8. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owczarek-Januszkiewicz, A.; Kicel, A.; Olszewska, M.A. Aesculus Hippocastanum in the Pharmaceutical Industry and beyond—Phytochemistry, Bioactivity, Present Application, and Future Perspectives. Ind. Crop. Prod. 2023, 193, 116187. [Google Scholar] [CrossRef]
- D’Eusanio, V.; Malferrari, D.; Marchetti, A.; Roncaglia, F.; Tassi, L. Waste By-Product of Grape Seed Oil Production: Chemical Characterization for Use as a Food and Feed Supplement. Life 2023, 13, 326. [Google Scholar] [CrossRef] [PubMed]
- D’Eusanio, V.; Genua, F.; Marchetti, A.; Morelli, L.; Tassi, L. Characterization of Some Stilbenoids Extracted from Two Cultivars of Lambrusco—Vitis Vinifera Species: An Opportunity to Valorize Pruning Canes for a More Sustainable Viticulture. Molecules 2023, 28, 4074. [Google Scholar] [CrossRef] [PubMed]
- Deutsches Arzneibuch 2020 Digital: Amtliche Ausgabe (DAB 2020); 1. Auflage; Deutscher Apotheker Verlag: Stuttgart, Germany, 2020; ISBN 978-3-7692-7554-4.
- EDQM. European Pharmacopoeia, 10th ed.; EDQM: Strasbourg, France, 2022. [Google Scholar]
- Baraldi, C.; Bodecchi, L.M.; Cocchi, M.; Durante, C.; Ferrari, G.; Foca, G.; Grandi, M.; Marchetti, A.; Tassi, L.; Ulrici, A. Chemical Composition and Characterisation of Seeds from Two Varieties (Pure and Hybrid) of Aesculus Hippocastanum. Food Chem. 2007, 104, 229–236. [Google Scholar] [CrossRef]
- Baraldi, C.; Foca, G.; Maletti, L.; Marchetti, A.; Roncaglia, F.; Sighinolfi, S.; Tassi, L. Red Horse-Chestnut Seeds of Aesculus × Carnea. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 27–43. ISBN 978-0-12-818553-7. [Google Scholar]
- Foca, G.; Ulrici, A.; Cocchi, M.; Durante, C.; Vigni, M.L.; Marchetti, A.; Sighinolfi, S.; Tassi, L. Seeds of Horse Chestnut (Aesculus Hippocastanum L.) and Their Possible Utilization for Human Consumption. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 653–661. ISBN 978-0-12-375688-6. [Google Scholar]
- Durante, C.; Cocchi, M.; Lancellotti, L.; Maletti, L.; Marchetti, A.; Roncaglia, F.; Sighinolfi, S.; Tassi, L. Analytical Concentrations of Some Elements in Seeds and Crude Extracts from Aesculus Hippocastanum, by ICP-OES Technique. Agronomy 2021, 11, 47. [Google Scholar] [CrossRef]
- Casili, G.; Lanza, M.; Campolo, M.; Messina, S.; Scuderi, S.; Ardizzone, A.; Filippone, A.; Paterniti, I.; Cuzzocrea, S.; Esposito, E. Therapeutic Potential of Flavonoids in the Treatment of Chronic Venous Insufficiency. Vascul. Pharmacol. 2021, 137, 106825. [Google Scholar] [CrossRef] [PubMed]
- Dudek-Makuch, M.; Studzińska-Sroka, E.; Korybalska, K.; Czepulis, N.; Łuczak, J.; Rutkowski, R.; Marczak, Ł.; Długaszewska, J.; Grabowska, K.; Stobiecki, M.; et al. Biological Activity of Aesculus Hippocastanum Flower Extracts on Vascular Endothelial Cells Cultured in Vitro. Phytochem. Lett. 2019, 30, 367–375. [Google Scholar] [CrossRef]
- Giglio, R.V.; Patti, A.M.; Cicero, A.F.G.; Lippi, G.; Rizzo, M.; Toth, P.P.; Banach, M. Polyphenols: Potential Use in the Prevention and Treatment of Cardiovascular Diseases. Curr. Pharm. Des. 2018, 24, 239–258. [Google Scholar] [CrossRef]
- Sin, I.N.; Perini, M.A.; Martínez, G.A.; Civello, P.M. Analysis of the Carbohydrate-Binding-Module from Fragaria x Ananassa α-L-Arabinofuranosidase 1. Plant Physiol. Biochem. 2016, 107, 96–103. [Google Scholar] [CrossRef]
- Cabot, C.; Martos, S.; Llugany, M.; Gallego, B.; Tolrà, R.; Poschenrieder, C. A Role for Zinc in Plant Defense Against Pathogens and Herbivores. Front. Plant Sci. 2019, 10, 1171. [Google Scholar] [CrossRef] [PubMed]
- Nandal, V.; Solanki, M. ZN AS A VITAL MICRONUTRIENT IN PLANTS. J. Microbiol. Biotechnol. Food Sci. 2021, 11, e4026. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The Critical Role of Potassium in Plant Stress Response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.K.; Mahiwal, S. Role of Potassium: An Overview. In Role of Potassium in Plants; SpringerBriefs in Plant Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–9. ISBN 978-3-030-45952-9. [Google Scholar]
- Frossard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrell, R. Potential for Increasing the Content and Bioavailability of Fe, Zn and Ca in Plants for Human Nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Zhao, A.-Q.; Bao, Q.-L.; Tian, X.-H.; Lu, X.-C.; William, J.G. Combined Effect of Iron and Zinc on Micronutrient Levels in Wheat (Triticum Aestivum L.). J. Environ. Biol. 2011, 32, 235–239. [Google Scholar]
- Sadeghzadeh, B. A Review of Zinc Nutrition and Plant Breeding. J. Soil Sci. Plant Nutr. 2013, 13, 905–927. [Google Scholar] [CrossRef]
- McLean, R.M.; Wang, N.X. Chapter Three—Potassium. In Advances in Food and Nutrition Research; Eskin, N.A.M., Ed.; The Latest Research and Development of Minerals in Human Nutrition; Academic Press: Cambridge, MA, USA, 2021; Volume 96, pp. 89–121. [Google Scholar]
- Kaur, H.; Kaur, H.; Kaur, H.; Srivastava, S. The Beneficial Roles of Trace and Ultratrace Elements in Plants. Plant Growth Regul. 2023, 100, 219–236. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Zia-ur-Rehman, M.; Irshad, M.K.; Bharwana, S.A. The Effect of Excess Copper on Growth and Physiology of Important Food Crops: A Review. Environ. Sci. Pollut. Res. 2015, 22, 8148–8162. [Google Scholar] [CrossRef]
- Bukhari, S.B.; Memon, S.; Mahroof-Tahir, M.; Bhanger, M.I. Synthesis, Characterization and Antioxidant Activity Copper–Quercetin Complex. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2009, 71, 1901–1906. [Google Scholar] [CrossRef]
- Briat, J.-F.; Curie, C.; Gaymard, F. Iron Utilization and Metabolism in Plants. Curr. Opin. Plant Biol. 2007, 10, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.B.; Husted, S. The Biochemical Properties of Manganese in Plants. Plants 2019, 8, 381. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Jensen, P.E.; Husted, S. Manganese Deficiency in Plants: The Impact on Photosystem II. Trends Plant Sci. 2016, 21, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Chapter 7—Function of Nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 191–248. ISBN 978-0-12-384905-2. [Google Scholar]
- Li, J.; Jia, Y.; Dong, R.; Huang, R.; Liu, P.; Li, X.; Wang, Z.; Liu, G.; Chen, Z. Advances in the Mechanisms of Plant Tolerance to Manganese Toxicity. Int. J. Mol. Sci. 2019, 20, 5096. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.F.; Kondo Santini, J.M.; Paixão, A.P.; Júnior, E.F.; Lavres, J.; Campos, M.; Reis, A.R. dos Physiological Highlights of Manganese Toxicity Symptoms in Soybean Plants: Mn Toxicity Responses. Plant Physiol. Biochem. 2017, 113, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.S.; Moshfegh, A.J.; Tucker, K.L. Assessing the Health Impact of Phosphorus in the Food Supply: Issues and Considerations. Adv. Nutr. 2014, 5, 104–113. [Google Scholar] [CrossRef]
- Bird, R.P.; Eskin, N.A.M. Chapter Two—The Emerging Role of Phosphorus in Human Health. In Advances in Food and Nutrition Research; Eskin, N.A.M., Ed.; The Latest Research and Development of Minerals in Human Nutrition; Academic Press: Cambridge, MA, USA, 2021; Volume 96, pp. 27–88. [Google Scholar]
- Yan, A.; Chen, Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef] [PubMed]
- Moshirian Farahi, S.M.; Taghavizadeh Yazdi, M.E.; Einafshar, E.; Akhondi, M.; Ebadi, M.; Azimipour, S.; Mahmoodzadeh, H.; Iranbakhsh, A. The Effects of Titanium Dioxide (TiO2) Nanoparticles on Physiological, Biochemical, and Antioxidant Properties of Vitex Plant (Vitex Agnus—Castus L.). Heliyon 2023, 9, e22144. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Hassan, W.; Shah, A.N.; Anjum, S.A.; Cheema, S.A.; Ali, I. Lithium Toxicity in Plants: Reasons, Mechanisms and Remediation Possibilities—A Review. Plant Physiol. Biochem. 2016, 107, 104–115. [Google Scholar] [CrossRef]
- Shakoor, N.; Adeel, M.; Ahmad, M.A.; Zain, M.; Waheed, U.; Javaid, R.A.; Haider, F.U.; Azeem, I.; Zhou, P.; Li, Y.; et al. Reimagining Safe Lithium Applications in the Living Environment and Its Impacts on Human, Animal, and Plant System. Environ. Sci. Ecotechnology 2023, 15, 100252. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Dotaniya, C.K.; Solanki, P.; Meena, V.D.; Doutaniya, R.K. Lead Contamination and Its Dynamics in Soil–Plant System. In Lead in Plants and the Environment; Gupta, D.K., Chatterjee, S., Walther, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 83–98. ISBN 978-3-030-21638-2. [Google Scholar]
- Kumar, A.; Prasad, M.N.V. Plant-Lead Interactions: Transport, Toxicity, Tolerance, and Detoxification Mechanisms. Ecotoxicol. Environ. Saf. 2018, 166, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, U.; Farooq, M.; Hussain, S.; Maqsood, M.; Hussain, M.; Ishfaq, M.; Ahmad, M.; Anjum, M.Z. Lead Toxicity in Plants: Impacts and Remediation. J. Environ. Manage. 2019, 250, 109557. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.H. Nickel. In Handbook of Plant Nutrition; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-0-429-13445-6. [Google Scholar]
- Fabiano, C.C.; Tezotto, T.; Favarin, J.L.; Polacco, J.C.; Mazzafera, P. Essentiality of Nickel in Plants: A Role in Plant Stresses. Front. Plant Sci. 2015, 6, 754. [Google Scholar] [CrossRef] [PubMed]
- Krstić, B.; Stanković, D.; Igić, R.; Nikolic, N. The Potential of Different Plant Species for Nickel Accumulation. Biotechnol. Biotechnol. Equip. 2007, 21, 431–436. [Google Scholar] [CrossRef]
- Eurpean Commission. Directorate-General for Health and Food Safety Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, 119, 103–157. [Google Scholar]
- Durante, C.; Baschieri, C.; Bertacchini, L.; Cocchi, M.; Sighinolfi, S.; Silvestri, M.; Marchetti, A. Geographical Traceability Based on 87Sr/86Sr Indicator: A First Approach for PDO Lambrusco Wines from Modena. Food Chem. 2013, 141, 2779–2787. [Google Scholar] [CrossRef] [PubMed]
- Associataion of Official Analytical Chemist. AOAC Official Methods of Analysis of the Association of Official’s Analytical Chemists, 14th ed.; Associataion of Official Analytical Chemist: Washington, DC, USA, 1990; pp. 223–225, 992–995. [Google Scholar]
- De La Montaña Míguelez, J.; Míguez Bernárdez, M.; García Queijeiro, J.M. Composition of Varieties of Chestnuts from Galicia (Spain). Food Chem. 2004, 84, 401–404. [Google Scholar] [CrossRef]
2016 | 2017 | 2018 | 2019 | Mean | |
---|---|---|---|---|---|
Mass * (g) (min-max) | 10.7 (7.46–21.2) | 9.96 (8.07–18.5) | 10.3 (8.16–22.3) | 10.1 (7.94–19.5) | 10.3 (7.46–22.3) |
No. of seeds/kg | 93.1 | 100 | 97.0 | 98.5 | 97.2 |
Bark-crust% | 18.9 | 20.6 | 19.5 | 19.8 | 19.7 |
Kernel% | 81.1 | 79.4 | 80.5 | 80.2 | 80.3 |
Shape | Typical, almost irregular, ovoid, or more rounded and flattened. |
2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|
Humidity% * | 50.1 ± 0.9 a | 50.6 ± 0.7 a | 50.8 ± 0.6 a | 50.3 ± 0.7 a |
Moisture% # | 10.5 ± 0.4 a | 10.4 ± 0.3 a | 10.1 ± 0.4 a | 10.0 ± 0.5 a |
Proteins% | 3.25 ± 0.44 a | 3.16 ± 0.40 a | 3.11 ± 0.37 a | 3.37 ± 0.42 a |
Lipids% | 4.56 ± 0.48 a | 4.34 ± 0.42 a | 4.41 ± 0.38 a | 4.27 ± 0.46 a |
Carbohydrates% | 15.8 ± 0.7 a | 15.6 ± 0.7 a | 15.2 ± 0.6 a | 15.3 ± 0.6 a |
Ashes% | 3.08 ± 0.10 a | 3.14 ± 0.10 a | 3.20 ± 0.11 a | 3.10 ± 0.13 a |
CWS% | 54.9 ± 0.4 a | 55.1 ± 0.6 a | 54.8 ± 0.5 a | 54.5 ± 0.6 a |
TISS% | 2.69 ± 0.18 a | 2.79 ± 0.15 a | 2.81 ± 0.12 a | 2.73 ± 0.16 a |
C% | 44.63 ± 0.19 a | 44.92 ± 0.23 a | 44.59 ± 0.21 a | 44.10 ± 0.27 a |
H% | 6.34 ± 0.14 a | 6.25 ± 0.14 a | 6.12 ± 0.17 a | 6.58 ± 0.15 a |
N% | 1.49 ± 0.12 a | 1.52 ± 0.10 a | 1.32 ± 0.13 a | 1.41 ± 0.11 a |
S% | <0.1 | <0.1 | <0.1 | <0.1 |
2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|
Major elements (mg/100 g) | ||||
Al | 3.10 ± 0.30 a | 3.27 ± 0.42 a | 3.12 ± 0.34 a | 3.19 ± 0.24 a |
Ca | 51.5 ± 2.1 a | 57.3 ± 4.6 ab | 59.9 ± 1.3 b | 54.2 ± 1.9 ab |
Cu | 1.77 ± 0.15 a | 1.81 ± 0.14 a | 1.95 ± 0.12 a | 1.82 ± 0.13 a |
Fe | 4.59 ± 0.48 a | 4.65 ± 0.42 a | 4.51 ± 0.34 a | 4.30 ± 0.38 a |
K | 1322 ± 103 a | 1392 ± 136 a | 1398 ± 78 a | 1476 ± 88 a |
Mg | 91.5 ± 6.8 a | 96.3 ± 9.3 a | 100.4 ± 6.6 a | 96.8 ± 4.1 a |
Na | 9.39 ± 0.43 a | 9.35 ± 0.61 a | 9.08 ± 0.55 a | 9.23 ± 0.56 a |
P | 858 ± 50 a | 869 ± 78 a | 871 ± 58 a | 854 ± 46 a |
Zn | 1.75 ± 0.25 a | 1.82 ± 0.20 a | 1.78 ± 0.18 a | 1.90 ± 0.18 |
Minor elements (μg/100 g) | ||||
Ag | 2.18 ± 0.26 a | 2.27 ± 0.31 a | 2.41 ± 0.17 a | 2.03 ± 0.14 a |
As | 3.55 ± 0.29 a | 3.71 ± 0.26 a | 3.18 ± 0.11 a | 3.61 ± 0.20 a |
B | 1.61 ± 0.13 ab | 1.57 ± 0.21 ab | 1.52 ± 0.17 b | 1.74 ± 0.10 a |
Cd | 2.09 ± 0.34 a | 1.97 ± 0.56 a | 2.01 ± 0.53 a | 2.05 ± 0.20 a |
Co | 4.36 ± 0.43 a | 4.57 ± 0.82 a | 4.82 ± 0.54 a | 3.91 ± 0.51 a |
Cr | 10.8 ± 1.0 a | 11.0 ± 2.3 a | 10.2 ± 1.1 a | 11.1 ± 0.6 a |
Li | 1.74 ± 0.29 a | 1.68 ± 0.16 b | 1.53 ± 0.29 ab | 1.61 ± 0.22 ab |
Mn | 256 ± 57 a | 249 ± 46 a | 263 ± 49 a | 238 ± 53 a |
Mo | 1.20 ± 0.16 a | 1.98 ± 0.18 b | 1.68 ± 0.10 b | 1.51 ± 0.11 a |
Ni | 606 ± 86 a | 647 ± 42 a | 635 ± 47 a | 693 ± 48 a |
Pb | 742 ± 53 a | 771 ± 79 a | 805± 54 a | 713 ± 42 a |
Sb | 2.62 ± 0.34 ab | 2.52 ± 0.17 ab | 2.95 ± 0.27 a | 2.17 ± 0.26 b |
Se | 254 ± 33 a | 287 ± 39 a | 318 ± 60 a | 307 ± 49 a |
Si | 892 ± 52 a | 983 ± 44 a | 952 ± 68 a | 918 ± 66 a |
Sr | 82.2 ± 4.3 a | 83.2 ± 5.5 a | 78.2 ± 4.9 a | 84.5 ± 6.0 a |
Ti | 1.72 ± 0.08 a | 1.32 ± 0.13 b | 1.70 ± 0.08 a | 1.60 ± 0.07 ab |
V | 2.46 ± 0.17 a | 2.73 ± 0.18 a | 2.31 ± 0.19 ab | 2.10 ± 0.20 b |
Element | Concentration (mg/100 g) |
---|---|
Ag | 0.0004 ± 0.0003 |
Al | 5739 ± 178 |
As | 0.84 ± 0.10 |
B | 2.27 ± 0.17 |
Bi | 1.95 ± 0.13 |
Ca | 3934 ± 262 |
Cd | 0.23 ± 0.03 |
Co | 2.66 ± 0.16 |
Cr | 9.67 ± 0.19 |
Cu | 10.8 ± 0.6 |
Fe | 3078 ± 262 |
Ga | 2.82 ± 0.12 |
In | 1.31 ± 0.17 |
K | 2998 ± 197 |
Li | 1.05 ± 0.11 |
Mn | 454.7 ± 38.0 |
Mg | 121.1 ± 5.6 |
Mo | 1.08 ± 0.08 |
Na | 2866 ± 121 |
Ni | 5.71 ± 0.32 |
P | 55.4 ± 2.2 |
Pb | 10.7 ± 0.5 |
Sb | 0.103 ± 0.009 |
Se | 0.041 ± 0.005 |
Si (%) | 20.7 ± 0.2 |
Sr | 30.9 ± 1.8 |
Ti | 1.64 ± 0.09 |
Tl | 0.035 ± 0.014 |
V | 3.37 ± 0.20 |
Zn | 14.3 ± 1.1 |
2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|
Hydroalcoholic macerative extraction | ||||
Dry Residue (g/100 mL) | 1.146 ± 0.118 | 1.262 ± 0.103 | 1.175 ± 0.115 | 1.233 ± 0.092 |
Ashes (mg/100 mL) | 125.6 ± 4.8 | 143.9 ± 3.9 | 137.7 ± 4.3 | 144.8 ± 3.7 |
Hydroalcoholic extraction by sonication | ||||
Dry Residue (g/100 mL) | 1.215 ± 0.122 | 1.279 ± 0.141 | 1.288 ± 0.136 | 1.287 ± 0.105 |
Ashes (mg/100 mL) | 173.3 ± 5.2 | 204.2 ± 6.1 | 195.5 ± 5.5 | 181.7 ± 4.6 |
2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|
Major elements (mg/100 g) | ||||
Ca | 1.39 ± 0.11 a | 1.17 ± 0.11 a | 1.49 ± 0.18 ab | 1.45 ± 0.11 b |
K | 97.9 ± 12.1 a | 90.9 ± 5.8 a | 95.0 ± 8.6 a | 93.7 ± 8.7 a |
Mg | 3.90 ± 0.14 a | 4.01 ± 0.08 a | 3.41 ± 0.19 b | 3.69 ± 0.12 ab |
P | 16.7 ± 2.5 a | 16.1 ± 3.2 a | 18.2 ± 1.9 a | 15.1 ± 1.8 a |
Minor elements (μg/100 g) | ||||
Ag | 0.15 ± 0.03 ab | 0.09 ± 0.03 a | 0.12 ± 0.02 ab | 0.17 ± 0.03 b |
Al | 232 ± 54 a | 263 ± 44 a | 229 ± 39 a | 242 ± 76 a |
As | n.d. | n.d. | n.d. | n.d. |
B | 1.26 ± 0.14 a | 1.49 ± 0.14 a | 1.27 ± 0.19 a | 1.32 ± 0.14 a |
Cd | 0.127 ± 0.035 a | 0.147 ± 0.035 a | 0.103 ± 0.021 a | 0.153 ± 0.040 a |
Co | 1.37 ± 0.08 a | 1.69 ± 0.09 a | 1.23 ± 0.07 a | 1.41 ± 0.09 a |
Cr | 1.29 ± 0.13 ab | 1.56 ± 0.14 a | 1.14 ± 0.10 b | 1.43 ± 0.12 ab |
Cu | 180 ± 14 a | 158 ± 16 ab | 134 ± 18 b | 166 ± 18 ab |
Fe | 789 ± 105 a | 749 ± 60 a | 628 ± 81 a | 795 ± 112 a |
Li | n.d. | n.d. | n.d. | n.d. |
Mn | 59.2 ± 9.4 a | 51.5 ± 7.6 a | 61.0 ± 7.8 a | 56.0 ± 8.2 a |
Mo | n.d. | n.d. | n.d. | n.d. |
Na | 767 ± 26 a | 968 ± 75 b | 939 ± 40 ab | 856 ± 58 b |
Ni | 179 ± 12 ab | 196 ± 9 a | 158 ± 12 b | 165 ± 10 b |
Pb | 8.07 ± 0.86 a | 8.98 ± 0.66 a | 7.84 ± 0.27 a | 7.69 ± 0.54 a |
Sb | n.d. | n.d. | n.d. | n.d. |
Se | 11.7 ± 3.0 a | 14.9 ± 3.6 a | 19.3 ± 4.2 a | 15.3 ± 4.3 a |
Si | 29.9 ± 4.5 a | 38.8 ± 3.3 a | 31.5 ± 3.1 a | 39.7 ± 4.1 a |
Sr | 8.23 ± 0.85 a | 7.73 ± 1.1 a | 9.64 ± 0.98 a | 11.6 ± 2.7 a |
Ti | n.d. | n.d. | n.d. | n.d. |
V | n.d. | n.d. | n.d. | n.d. |
Zn | 126 ± 15 a | 102 ± 12 a | 117 ± 10 a | 122 ± 11 a |
2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|
Major elements (mg/100 g) | ||||
Ca | 2.92 ± 0.26 a | 2.51 ± 0.18 a | 2.73 ± 0.12 a | 2.87 ± 0.11 a |
Fe | 1.40 ± 0.20 a | 1.46 ± 0.22 a | 1.17 ± 0.12 a | 1.10 ± 0.14 a |
K | 106 ± 12 a | 133 ± 14 a | 126 ± 16 a | 118 ± 18 a |
Mg | 5.05 ± 0.19 a | 5.45 ± 0.18 a | 5.76 ± 0.19 a | 5.26 ± 0.17 a |
Na | 1.46 ± 0.11 a | 1.22 ± 0.15 a | 1.53 ± 0.19 a | 1.41 ± 0.18 a |
P | 19.4 ± 0.9 a | 15.7 ± 0.7 a | 19.0 ± 1.2 a | 17.6 ± 1.6 a |
Minor elements (μg/100 g) | ||||
Ag | 0.51 ± 0.12 a | 0.73 ± 0.09 a | 0.65 ± 0.11 a | 0.59 ± 0.12 a |
Al | 329 ± 40 a | 285 ± 51 a | 312 ± 26 a | 394 ± 42 a |
As | n.d. | n.d. | n.d. | n.d. |
B | 1.30 ± 0.16 a | 1.18 ± 0.17 a | 1.22 ± 0.14 a | 1.42 ± 0.16 a |
Cd | 0.28 ± 0.08 a | 0.19 ± 0.07 a | 0.24 ± 0.07 a | 0.21 ± 0.07 a |
Co | 1.69 ± 0.14 a | 1.27 ± 0.09 a | 1.56 ± 0.11 a | 1.85 ± 0.12 a |
Cr | 1.79 ± 0.20 a | 1.51 ± 0.24 a | 1.23 ± 0.19 a | 1.98 ± 0.17 a |
Cu | 297 ± 10 a | 227 ± 18 a | 266 ± 14 a | 243 ± 15 a |
Li | n.d. | n.d. | n.d. | n.d. |
Mn | 0.61 ± 0.10 a | 227 ± 18 a | 266 ± 14 a | 243 ± 15 a |
Mo | n.d. | n.d. | n.d. | n.d. |
Ni | 234 ± 22 a | 276 ± 17 a | 215 ± 15 a | 228 ± 16 a |
Pb | 9.58 ± 0.32 a | 9.10 ± 0.23 a | 9.24 ± 0.12 a | 9.82 ± 0.12 a |
Sb | n.d. | n.d. | n.d. | n.d. |
Se | 10.5 ± 2.5 a | 11.8 ± 2.7 a | 13.4 ± 3.0 a | 11.1 ± 3.1 a |
Si | 51.6 ± 5.1 a | 61.1 ± 6.0 a | 57.8 ± 9.6 a | 68.3 ± 7.8 a |
Sr | 17.0 ± 5.1 a | 21.0 ± 5.8 a | 18.5 ± 6.1 a | 17.5 ± 5.4 a |
Ti | n.d. | n.d. | n.d. | n.d. |
V | n.d. | n.d. | n.d. | n.d. |
Zn | 152 ± 33 a | 137 ± 22 a | 158 ± 45 a | 184 ± 25 a |
Maceration | Sonication | AXC_Herb | |
---|---|---|---|
Ethanol% | 75% | 75% | 38% |
pH | 7.5 ± 0.1 | 7.6 ± 0.2 | 7.4 ± 0.1 |
Dry residue (g/100 mL) | 1.204 ± 0.108 | 1.269 ± 0.131 | 1.05 ± 0.06 |
Ashes (mg/100 mL) | 138.0 ± 4.22 | 188.7 ± 5.3 | 40.8 ± 0.3 |
Element | mg/100 mL | ||
K | 94.6 ± 9.1 a | 121 ± 15 a | 34.4 ± 7.8 b |
P | 16.1 ± 2.1 a | 17.9 ± 0.9 a | 3.58 ± 0.42 b |
μg/100 mL | |||
Ag | 0.14 ± 0.02 a | 0.75 ± 0.11 b | n.d. |
Al | 249 ± 56 a | 316 ± 41 b | 149 ± 16 c |
As | n.d. | n.d. | n.d. |
B | 1.33 ± 0.08 a | 1.28 ± 0.16 a | n.d. |
Ca | 1382 ± 131 a | 2763 ± 178 b | 432 ± 27 c |
Cd | 0.13 ± 0.01 a | 0.23 ± 0.04 b | n.d. |
Co | 1.38 ± 0.08 a | 1.57 ± 0.12 b | n.d. |
Cr | 1.36 ± 0.12 a | 1.67 ± 0.20 a | n.d. |
Cu | 159 ± 17 a | 258 ± 15 b | 55.5 ± 6.1 c |
Fe | 741 ± 92 a | 1280 ± 175 b | 110 ± 11 c |
Li | n.d. | n.d. | n.d. |
Mg | 3752 ± 138 a | 5384 ± 182 b | 89.7 ± 6.0 c |
Mn | 57.7 ± 8.3 a | 72.5 ± 7.5 a | 25.5 ± 5.3 b |
Mo | n.d. | n.d. | n.d. |
Na | 882 ± 53 a | 1413 ± 161 b | 772 ± 115 a |
Ni | 180 ± 11 a | 236 ± 18 b | 66.6 ± 4.5 c |
Pb | 7.95 ± 0.62 a | 9.39 ± 0.21 b | 5.93 ± 0.09 c |
Sb | n.d. | n.d. | n.d. |
Se | 14.1 ± 3.8 a | 11.7 ± 2.8 b | 0.26 ± 0.03 c |
Si | 33.7 ± 3.8 a | 59.9 ± 6.5 b | 12.2 ± 0.4 c |
Sr | 9.35 ± 1.60 a | 18.5 ± 5.6 b | n.d. |
Ti | n.d. | n.d. | n.d. |
V | n.d. | n.d. | n.d. |
Zn | 119 ± 13 a | 158 ± 32 b | 38.5 ± 3.4 c |
2016–2019 | Soil Samples (2019) | |
---|---|---|
No. of trees | 5 | 5 |
Replicates per tree | 2 + 1 spiked * + 1 fortified # | 1 + 1 spiked * + 1 fortified # |
Total no. of replicates for five trees | 10 + 5 spiked * + 5 fortified # | 5 + 5 spiked * + 5 fortified # |
Crude extracts from flour of AXC mixed seeds from five trees | 2 + 1 spiked * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Eusanio, V.; Marchetti, A.; Rivi, M.; Morelli, L.; Scarponi, P.; Forti, L.; Tassi, L. Mineral Composition Analysis of Red Horse-Chestnut (Aesculus × Carnea) Seeds and Hydroalcoholic Crude Extract Using ICP OES. Molecules 2025, 30, 819. https://doi.org/10.3390/molecules30040819
D’Eusanio V, Marchetti A, Rivi M, Morelli L, Scarponi P, Forti L, Tassi L. Mineral Composition Analysis of Red Horse-Chestnut (Aesculus × Carnea) Seeds and Hydroalcoholic Crude Extract Using ICP OES. Molecules. 2025; 30(4):819. https://doi.org/10.3390/molecules30040819
Chicago/Turabian StyleD’Eusanio, Veronica, Andrea Marchetti, Mirco Rivi, Lorenzo Morelli, Paolina Scarponi, Luca Forti, and Lorenzo Tassi. 2025. "Mineral Composition Analysis of Red Horse-Chestnut (Aesculus × Carnea) Seeds and Hydroalcoholic Crude Extract Using ICP OES" Molecules 30, no. 4: 819. https://doi.org/10.3390/molecules30040819
APA StyleD’Eusanio, V., Marchetti, A., Rivi, M., Morelli, L., Scarponi, P., Forti, L., & Tassi, L. (2025). Mineral Composition Analysis of Red Horse-Chestnut (Aesculus × Carnea) Seeds and Hydroalcoholic Crude Extract Using ICP OES. Molecules, 30(4), 819. https://doi.org/10.3390/molecules30040819