Validation of an LC–HRMS Method for Quantifying Indoxyl Sulfate and p-Cresyl Sulfate in Human Serum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of the Method
2.2. Method Validation
2.2.1. Linearity of the Calibration Curves
2.2.2. Matrix Effect
2.2.3. Accuracy and Imprecision
2.2.4. Recovery, Selectivity, and Carry-over
2.2.5. Stability of Serum Samples and Stability of the Extracts on the Autosampler
2.3. Method Application
2.3.1. IndS and pCS Serum Levels Measurements Correlate with Renal Function
2.3.2. IndS and pCS Serum Levels Measurements Correlate with Renal Function
2.3.3. Simultaneous Untargeted HRMS
3. Materials and Methods
3.1. Chemical Reagents
3.2. Preparation of Stock Solutions, Working Solutions, Calibrator, and Quality Control Samples
3.3. Sample Preparation
3.4. Instrumentation
3.5. Method Validation
3.5.1. Linearity of the Calibration Curves
3.5.2. Matrix Effect
3.5.3. Accuracy and Imprecision
3.5.4. Recovery, Selectivity, and Carry-over
3.5.5. Stability of Serum Samples and Stability of the Extracts on the Autosampler
3.6. Method Application and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaidya, S.R.; Aeddula, N.R. Chronic Kidney Disease. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535404/ (accessed on 5 February 2025).
- Rosner, M.H.; Reis, T.; Husain-Syed, F.; Vanholder, R.; Hutchison, C.; Stenvinkel, P.; Blankestijn, P.J.; Cozzolino, M.; Juillard, L.; Kashani, K.; et al. Classification of Uremic Toxins and Their Role in Kidney Failure. Clin. J. Am. Soc. Nephrol. 2021, 16, 1918–1928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vanholder, R.; Schepers, E.; Pletinck, A.; Nagler, E.V.; Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J. Am. Soc. Nephrol. 2014, 25, 1897–1907. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liabeuf, S.; Villain, C.; Massy, Z.A. Protein-bound toxins: Has the Cinderella of uraemic toxins turned into a princess? Clin. Sci. 2016, 130, 2209–2216. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Miyamoto, Y.; Otagiri, M.; Maruyama, T. Update on the pharmacokinetics and redox properties of protein-bound uremic toxins. J. Pharm. Sci. 2011, 100, 3682–3695. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.C.; Huq, T.A.; Kantes, H.L.; Crane, J.N.; Strein, T.G. Determination of creatinine and other uremic toxins in human blood sera with micellar electrokinetic capillary electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 1997, 690, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Caslavska, J.; Gassmann, E.; Thormann, W. Modification of a tunable UV-visible capillary electrophoresis detector for simultaneous absorbance and fluorescence detection: Profiling of body fluids for drugs and endogenous compounds. J. Chromatogr. A 1995, 709, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.L.; Chen, S.M.; Hsu, C.Y.; Hsieh, M.M. On-line concentration and separation of indolamines, catecholamines, and metanephrines in capillary electrophoresis using high concentration of poly(diallyldimethylammonium chloride). Anal. Chim. Acta 2008, 613, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Rappold, B.A. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part II-Operations. Ann. Lab. Med. 2022, 42, 531–557. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niwa, T. Update of uremic toxin research by mass spectrometry. Mass. Spectrom. Rev. 2011, 30, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.R.; Meireles, A.N.; Marques, S.S.; Silva, L.; Barreiros, L.; Sampaio-Maia, B.; Miró, M.; Segundo, M.A. Sample preparation and chromatographic methods for the determination of protein-bound uremic retention solutes in human biological samples: An overview. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2023, 1215, 123578. [Google Scholar] [CrossRef] [PubMed]
- Rochat, B. From targeted quantification to untargeted metabolomics: Why LC-high-resolution-MS will become a key instrument in clinical labs. TrAC Trends Anal. Chem. 2016, 84, 151–164. [Google Scholar] [CrossRef]
- Maurer, H.H. Hyphenated high-resolution mass spectrometry-the “all-in-one” device in analytical toxicology? Anal. Bioanal. Chem. 2021, 413, 2303–2309. [Google Scholar] [CrossRef] [PubMed]
- Fabresse, N.; Uteem, I.; Lamy, E.; Massy, Z.; Larabi, I.A.; Alvarez, J.C. Quantification of free and protein bound uremic toxins in human serum by LC-MS/MS: Comparison of rapid equilibrium dialysis and ultrafiltration. Clin. Chim. Acta 2020, 507, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.N.; Wu, I.W.; Huang, Y.F.; Peng, S.Y.; Huang, Y.C.; Ning, H.C. Measuring serum total and free indoxyl sulfate and p-cresyl sulfate in chronic kidney disease using UPLC-MS/MS. J. Food Drug Anal. 2019, 27, 502–509. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- André, C.; Bennis, Y.; Titeca-Beauport, D.; Caillard, P.; Cluet, Y.; Kamel, S.; Choukroun, G.; Maizel, J.; Liabeuf, S.; Bodeau, S. Two rapid, accurate liquid chromatography tandem mass spectrometry methods for the quantification of seven uremic toxins: An application for describing their accumulation kinetic profile in a context of acute kidney injury. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1152, 122234. [Google Scholar] [CrossRef] [PubMed]
- Prokopienko, A.J.; West III, R.E.; Stubbs, J.R.; Nolin, T.D. Development and validation of a UHPLC-MS/MS method for measurement of a gut-derived uremic toxin panel in human serum: An application in patients with kidney disease. J. Pharm. Biomed. Anal. 2019, 174, 618–624. [Google Scholar] [CrossRef]
- Kanemitsu, Y.; Asaji, K.; Matsumoto, Y.; Tsukamoto, H.; Saigusa, D.; Mukawa, C.; Tachikawa, T.; Abe, T.; Tomioka, Y. Simultaneous quantitative analysis of uremic toxins by LC–MS/MS with a reversed-phase/cation-exchange/anion-exchange tri-modal mixed-mode column. J. Chromatogr. B 2017, 1068–1106, 1–8. [Google Scholar] [CrossRef]
- Lim, Y.J.; Sidor, N.A.; Tonial, N.C.; Che, A.; Urquhart, B.L. Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins 2021, 13, 142. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fujii, H.; Goto, S.; Fukagawa, M. Role of uremic toxins for kidney, cardiovascular, and bone dysfunction. Toxins 2018, 10, 202. [Google Scholar] [CrossRef]
- Lin, C.J.; Chen, H.H.; Pan, C.F.; Chuang, C.K.; Wang, T.J.; Sun, F.J.; Wu, C.J. p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J. Clin. Lab. Anal. 2011, 25, 191–197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meijers, B.K.; De Loor, H.; Bammens, B.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P. p-Cresyl sulfate and indoxyl sulfate in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1932–1938. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martinez, A.W.; Recht, N.S.; Hostetter, T.H.; Meyer, T.W. Removal of P-Cresol Sulfate by Hemodialysis. J. Am. Soc. Nephrol. 2005, 16, 3430–3436. [Google Scholar] [CrossRef] [PubMed]
- Madero, M.; Cano, K.B.; Campos, I.; Tao, X.; Maheshwari, V.; Brown, J.; Cornejo, B.; Handelman, G.; Thijssen, S.; Kotanko, P. Removal of protein-bound uremic toxins during hemodialysis using a binding competitor. Clin. J. Am. Soc. Nephrol. 2019, 14, 394–402. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, D.; Cuadrado-Payán, E.; Rico, N.; Torra, M.; Fernández, R.M.; Gómez, M.; Morantes, L.; Casals, G.; Rodriguez-Garcia, M.; Maduell, F.; et al. Comparative Effects of Acetate- and Citrate-Based Dialysates on Dialysis Dose and Protein-Bound Uremic Toxins in Hemodiafiltration Patients: Exploring the Impact of Calcium and Magnesium Concentrations. Toxins 2024, 16, 426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- ICH. Guideline M10—Bioanalytical Method Validation and Study Sample Analysis. 2022. Available online: https://database.ich.org/sites/default/files/M10_Guideline_Step4_2022_0524.pdf (accessed on 5 February 2025).
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
Ref. | Sample Volume | Internal Standards | Sample Preparation | Calibration Range (ng/mL) | LLOQ (ng/mL) | Mobile Phase | Stationary Phase | MS | RT (min) | Quantification Ions |
---|---|---|---|---|---|---|---|---|---|---|
[14] | 50 µL | IndS-d4 pCS-d7 | Methanol | 1–50,000 | 1 | H2O + 0.1% FA ACN1 | HPLC Accucore PFP column (100 × 2.1 mm, 2.6 μm) | MS/MS | IndS: 5.8 pCS: 6.2 | IndS: 212.1 > 80.0 pCS: 187.1 > 107.1 |
[15] | 50 µL | IndS-13C6 pCS-d4 | ACN | 50–50,000 | 50 | H20 + 0.1% FA ACN1 + 0.1% FA | UPLC Acquity UPLC BEHC 18 column (100 × 2.1 mm, 1.7 mm) | MS/MS | IndS: 1.1 pCS: 1.6 | IndS: 212.04 > 80.14 pCS: 186.98 > 107.03 |
[16] | 50 µL | IndS-d4 pCS-d7 | ACN | 100–10,000 | 100 | H2O + 0.1% FA ACN1 + 0.1% FA | HPLC Ultra PFP Propyl column (50 × 2.1 mm, 5 μm) | MS/MS | IndS: 0.5 pCS: 0.6 | IndS: 211.9 > 79.9 pCS: 186.8 > 106.8 |
[17] | 50 µL | IndS-d4 pCS-d7 | Methanol | 200–80,000 250–80,000 | IndS: 200 pCS: 250 | 10 mM ammonium formate (pH 4.3) ACN1 + 0.1% FA | UPLC Acquity BEH C18 (100 × 2.1 mm, 1.7 μm) | MS/MS | IndS: 2.1 pCS: 3.3 | IndS: 212.0 > 80.4 pCS: 186.9 > 107.5 |
[18] | 10 µL | IndS-d4 pCS-d4 | ACN + 0.1% FA | 485–50,000 534–26,324 | IndS: 485 pCS: 534 | Methanol/H2O (20:80, v/v) + 0.1% acetic acid Methanol/H2O (80:20, v/v) + 10 mmol/L ammonium acetate | HPLC Scherzo SS-C18 (50 mm × 2 mm, 3 μm) | MS/MS | IndS: 12.7 pCS: 11.6 | IndS: 212.1 > 131.9 pCS: 186.8 > 106.9 |
OUR | 50 µL | IndS-13C6 pCS-d7 | Methanol | 100–40,000 100–40,000 | 100 | H2O + 0.1% FA Methanol + 0.1% FA | micro-LC HALO 90 Å C18 (100 × 0.3 mm, 2.7 µm) | HRMS | IndS: 2.6 pCS: 3.1 | IndS: 212.0023 pCS: 187.0071 |
ng/mL | Indoxyl Sulfate | p-Cresyl Sulfate | ||
---|---|---|---|---|
Accuracy (%) | Imprecision (%) | Accuracy (%) | Imprecision (%) | |
100 | 105 | 11.7 | 100 | 15.1 |
500 | 100 | 8.8 | 100 | 6.8 |
1000 | 97 | 5.4 | 99 | 11.4 |
2500 | 97 | 9.0 | 86 | 14.0 |
5000 | 97 | 8.6 | 95 | 8.4 |
10,000 | 102 | 5.3 | 104 | 5.8 |
40,000 | 101 | 4.7 | 97 | 5.5 |
Concentration (ng/mL) | Accuracy (%) | Imprecision (%) | |
---|---|---|---|
Indoxyl sulfate | |||
LLOQ | 100 | 105 | 11.7 |
QC | 750 | 100 | 8.2 |
QC | 3500 | 92 | 8.8 |
QC | 30,000 | 101 | 0.7 |
Serum | 1978 | - | 3.2 |
p-Cresyl sulfate | |||
LLOQ | 100 | 100 | 15.1 |
QC | 750 | 96 | 5.8 |
QC | 3500 | 87 | 12.6 |
QC | 30,000 | 99 | 1.2 |
Serum | 8439 | - | 11.8 |
Concentration | Accuracy (%) | |||
---|---|---|---|---|
ng/mL | 24 h (25 °C) | 24h (4 °C) | F&T | |
Indoxyl sulfate | 3956 | 95 | 102 | 95 |
7597 | 114 | 116 | 117 | |
p-Cresyl sulfate | 19,627 | 98 | 98 | 105 |
31,248 | 89 | 98 | 101 |
Concentration | Accuracy (%) | ||
---|---|---|---|
(ng/mL) | 24 h | 48 h | |
Indoxyl sulfate | |||
QC | 3500 | 106 | 93 |
Serum | 6831 | 102 | 96 |
p-Cresyl sulfate | |||
QC | 3500 | 106 | 107 |
Serum | 37,674 | 103 | 102 |
Name | Molecular Formula | m/z | Log 2 Fold Change | p | Brief Summary |
---|---|---|---|---|---|
3-(Sulfooxy)benzenepropanoic acid | C9H10O6S | 245.01958 | −5.14 | 5.6 × 10−4 | Sulfonated metabolite of a phenolic compound |
(Carbamoylamino)(4-hydroxyphenyl)acetic acid | C9H10N2O4 | 209.06393 | −4.26 | 1.3 × 10−2 | Conjugated metabolite from amino acid metabolism |
1,3-Dimethyluric acid | C7H₈N4O3 | 195.05220 | −3.13 | 4.4 × 10−2 | Breakdown product of purine metabolism |
Gluconic acid | C6H12O7 | 135.02982 | −3.11 | 4.0 × 10−3 | Glucose metabolism |
Uric Acid | C5H4N4O3 | 167.02087 | −2.80 | 1.2 × 10−3 | Purine metabolism |
Perseitol | C7H16O7 | 152.06112 | −2.78 | 5.8 × 10−3 | Sugar alcohol metabolite |
L-α-Aspartyl-L-phenylalanine | C13H16N2O5 | 279.10598 | −2.73 | 1.6 × 10−4 | Protein metabolism |
4-phenolsulfonic acid | C6H6O4S | 172.99871 | −2.59 | 5.2 × 10−2 | Metabolite of phenolic compounds |
2-Hydroxyhippuric acid | C9H9NO4 | 194.04576 | −2.44 | 1.1 × 10−2 | Metabolite of aromatic compounds |
Phenylac-gln-OH | C13H16N2O4 | 263.10347 | −2.36 | 2.9 × 10−4 | Amino acid metabolism |
p-Cresyl glucuronide | C13H16O7 | 283.08240 | −2.23 | 6.0 × 10−3 | p-Cresyl conjugated with glucuronic acid |
Hippuric acid | C9H9NO3 | 178.05065 | −2.12 | 8.4 × 10−3 | Metabolism of benzoic acid |
Homovanillic acid | C9H10O4 | 181.05065 | −1.82 | 2.4 × 10−2 | Metabolite of dopamine, a neurotransmitter |
Erythritol | C4H10O4 | 121.05046 | −1.26 | 3.3 × 10−2 | Sugar alcohol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-García, M.; Martínez, I.; Aliart, I.; Sainz de Medrano, J.I.; Rico, N.; Escudero-Saiz, V.J.; Maduell, F.; Morales-Ruiz, M.; Casals, G. Validation of an LC–HRMS Method for Quantifying Indoxyl Sulfate and p-Cresyl Sulfate in Human Serum. Molecules 2025, 30, 782. https://doi.org/10.3390/molecules30040782
Rodríguez-García M, Martínez I, Aliart I, Sainz de Medrano JI, Rico N, Escudero-Saiz VJ, Maduell F, Morales-Ruiz M, Casals G. Validation of an LC–HRMS Method for Quantifying Indoxyl Sulfate and p-Cresyl Sulfate in Human Serum. Molecules. 2025; 30(4):782. https://doi.org/10.3390/molecules30040782
Chicago/Turabian StyleRodríguez-García, María, Irene Martínez, Irene Aliart, Jaime I. Sainz de Medrano, Nayra Rico, Víctor Joaquín Escudero-Saiz, Francisco Maduell, Manuel Morales-Ruiz, and Gregori Casals. 2025. "Validation of an LC–HRMS Method for Quantifying Indoxyl Sulfate and p-Cresyl Sulfate in Human Serum" Molecules 30, no. 4: 782. https://doi.org/10.3390/molecules30040782
APA StyleRodríguez-García, M., Martínez, I., Aliart, I., Sainz de Medrano, J. I., Rico, N., Escudero-Saiz, V. J., Maduell, F., Morales-Ruiz, M., & Casals, G. (2025). Validation of an LC–HRMS Method for Quantifying Indoxyl Sulfate and p-Cresyl Sulfate in Human Serum. Molecules, 30(4), 782. https://doi.org/10.3390/molecules30040782