Lipophilic Substances of the Leaves and Inflorescences of Centaurea scabiosa L.: Their Composition and Activity Against the Main Protease of SARS-CoV-2
Abstract
1. Introduction
2. Results
2.1. Chemical Composition of Lipophilic Substances of Centaurea scabiosa L.
2.2. Inhibition of the Main Protease of SARS-CoV-2 by Extracts
3. Discussion
3.1. Comprehensive Profiling of Lipophilic Diversity in C. scabiosa
3.2. Organ-Specific Metabolic Differences and Their Implications
3.3. Correlation Between Chemical Composition and Bioactivity
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Centaurea L. Extracts
4.3. Sample Preparation for GC-MS Analysis
4.4. GC-MS Analysis
4.5. 3CL Inhibition Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 3CL | Main SARS-CoV-2 protease |
| GC-MS | Gas chromatography–mass spectrometry |
| mg % | mg/100 g of raw material |
| MTBE | Methyl-tert-butyl ether |
| MTBE-extract | Extract obtained with MTBE as extractant |
| MTBE/Hexane-extract | Extract obtained with MTBE after hexane extraction |
| Nd | Not detected |
| RT | Retention time |
| IC50 | Half-inhibitory concentration |
| CentL | Aerial part (leaves with stems) of Centaurea scabiosa L. |
| Centinflor | Centinflor inflorescences of C. scabiosa L. |
| Cent-roots | Roots of C. scabiosa L. |
| Et | Ethanol |
| UR | Unsaponifiable residue |
References
- Keil, D.J.; Ochmann, J. Centaurea. In Flora of North America North of Mexico; (Magnoliophyta: Asteridae, part 6: Asteraceae, part 1, 24); Oxford University Press: Oxford, UK, 2006; Volume 19. [Google Scholar]
- Panero, J.L.; Funk, V.A. Toward a phylogenetic subfamilial classification for the Compositae (Asteraceae). Proc. Biol. Soc. Wash. 2002, 115, 909–922. [Google Scholar]
- Krasnoborov, I.M. (Ed.) Flora of Siberia; Scientific Publishers, Inc.: Plymouth, UK, 2007; Volume 13, pp. 1–499. [Google Scholar]
- Cherepanov, S.K.; Tsvelev, N.N.; Klokov, M.V.; Sosnovsky, D.I. Genus 1624. Cornflower–Centaurea. In Flora of the USSR: In 30 Volumes; Komarova, V.L., Bobrov, E.G., Cherepanov, S.K., Eds.; Publishing House of the Academy of Sciences of the USSR: Leningrad/Moscow, Russian, 1963; Volume 28, pp. 370–579. [Google Scholar]
- Stankov, S.S.; Larin, I.V. Wild Useful Plants of Russia; Budantsev, A.L., Lesiovskaya, E.E., Eds.; Publishing House of SPHFA: Sankt-Peterburg, Russia, 2001; p. 663. [Google Scholar]
- Budantsev, A.L. (Ed.) Plant Resources of Russia: Wild Flowering Plants, Their Component Composition and Biological Activity; Family Asteraceae (Compositae). Part 1; Partnership of Scientific Publications KMK: Moscow, Russia, 2012; Volume 5, p. 317. [Google Scholar]
- Yesilada, E.; Sezik, E.; Honda, G.; Takaishi, Y.; Takeda, Y.; Tanaka, T. Traditional medicine in Turkey. IX: Folk medicine in Northwest Anatolia. J. Ethnopharmacol. 1999, 64, 195–210. [Google Scholar] [CrossRef]
- Sezik, E.; Yesilada, E.; Honda, G.; Takaishi, Y.; Takeda, Y.; Tanaka, T. Traditional medicine in Turkey. X. Folk medicine in Central Anatolia. J. Ethnopharmacol. 2001, 5, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Sharonova, N.; Nikitin, E.; Terenzhev, D.; Lyubina, A.; Amerhanova, S.; Bushmeleva, K.; Rakhmaeva, A.; Fitsev, I.; Sinyashin, K. Comparative Assessment of the Phytochemical Compositi, on and Biological Activity of Extracts of Flowering Plants of Centaurea cyanus L., Centaurea jacea L. and Centaurea scabiosa L. Plants 2021, 10, 1279. [Google Scholar] [CrossRef] [PubMed]
- Khammar, A.; Djeddi, S. Pharmacological and biological properties of some Centaurea species. Eur. J. Res. 2012, 84, 398–416. [Google Scholar]
- Rustaiyan, A.; Faridchehr, A. Constituents and biological activities of selected genera of the Iranian Asteraceae family. J. Herb. Med. 2020, 25, 100405. [Google Scholar] [CrossRef]
- Ayad, R.; Akkal, S. Phytochemistry and biological activities of algerian Centaurea and related genera. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 63, pp. 357–414. [Google Scholar]
- Al-Easa, H.S.; Eizk, A.M. Constituents of Centaurea species. Qatar Univ. Sci. J. 1992, 12, 27–57. [Google Scholar]
- Arif, R.; Küpeli, E.; Ergun, F. The biological activity of Centaurea L. species. J. Sci. 2004, 17, 149–164. [Google Scholar]
- Krasnov, E.A.; Kaminskii, I.P.; Shul’ts, E.E.; Kadyrova, T.V. Isolation of repin from the aerial part of Centaurea scabiosa. Chem. Nat. Compd. 2011, 47, 311–312. [Google Scholar] [CrossRef]
- Krasnov, E.A.; Raldugin, V.A.; Kadyrova, T.V.; Kaminsky, I.P. Isolation of grossheimin from the Siberian population of Centaurea scabiosa. Chem. Nat. Compd. 2006, 42, 495–496. [Google Scholar] [CrossRef]
- Amen, Y.; Abdelwahab, G.; Heraiz, A.A.; Sallam, M.; Othman, A. Exploring sesquiterpene lactones: Structural diversity and antiviral therapeutic insights. RSC Adv. 2025, 15, 1970. [Google Scholar] [CrossRef]
- Kaıj-A-Kamb, M.; Amoros, M.; Chulia, A.J.; Kaouadji, M.; Mariotte, A.M.; Girre, L. Screening of In Vitro Antiviral Activity from Brittany Plants, Specially from Centaurea nigra L. J. Pharm. Belg. 1991, 46, 325–326. [Google Scholar]
- Helal, A.M.; Nakamura, N.; Meselhy, M.H.; El-Fishawy, A.; Hattori, M.; Mahran, G.H. Guaianoldes from Centaurea scoparia. Phytochemistry 1997, 45, 551–554. [Google Scholar] [CrossRef]
- Skaltsa, H.; Lazari, D.; Panagouleas, C.; Georgiadou, E.; Garcia, B.; Sokovic, M. Sesquiterpene lactones from Centaurea thessala and Centaurea attica. Antifungal activity. Phytochemistry 2000, 55, 903–908. [Google Scholar] [CrossRef]
- Vajs, V.; Todorovic, N.; Ristic, M.; Tesevic, V.; Todorovic, B.; Janackovic, P.; Marin, P.; Milosavljevic, S. Guaianolides from Centaurea nicolai: Antifungal activity. Phytochemistry 1999, 52, 383–386. [Google Scholar] [CrossRef]
- Reda, E.H.; Shakour, Z.T.A.; El-Halawany, A.M.; El-Kashoury, E.-S.A.; Shams, K.A.; Mohamed, T.A.; Saleh, I.; Elshamy, A.I.; Atia, M.A.M.; El-Beih, A.A.; et al. Comparative study on the essential oils from five wild Egyptian Centaurea species: Effective extraction techniques, antimicrobial activity and in-silico analyses. Antibiotics 2021, 10, 252. [Google Scholar] [CrossRef]
- Carev, I.; Golemac, A.; Siljak-Yakovlev, S.; Pellay, F.X.; Politeo, O. Volatile Oil Chemical Composition of Wild, Edible Centaurea scabiosa L. and Its Cytotoxic Activity. Plants 2022, 11, 3267. [Google Scholar] [CrossRef] [PubMed]
- Carev, I.; Gelemanović, A.; Glumac, M.; Tutek, K.; Dželalija, M.; Paiardini, A.; Prosseda, G. Centaurea triumfetii essential oil chemical composition, comparative analysis, and antimicrobial activity of selected compounds. Sci. Rep. 2023, 13, 7475. [Google Scholar] [CrossRef] [PubMed]
- Kumarasamy, Y.; Nahar, L.; Cox, P.J.; Dinan, L.N.; Ferguson, C.A.; Finnie, D.A.; Jaspars, M.; Sarker, S.D. Biological Activity of Lignans from the Seeds of Centaurea scabiosa. Pharm. Biol. 2003, 41, 203–206. [Google Scholar] [CrossRef]
- Carev, I.; Maravić, A.; Bektašević, M.; Ruščić, M.; Siljak-Yakovlev, S.; Politeo, O. Centaurea rupestris L.: Cytogenetics, Essential Oil Chemistry and Biological Activity. Croat. Chem. Acta 2018, 91, 11–19. [Google Scholar] [CrossRef]
- Novaković, J.; Rajčević, N.; Garcia-Jacas, N.; Susanna, A.; Marin, P.D.; Janaćković, P. Capitula Essential Oil Composition of Seven Centaurea Species (sect. Acrocentron, Asteraceae)—Taxonomic Implication and Ecological Significance. Biochem. Syst. Ecol. 2019, 83, 83–90. [Google Scholar] [CrossRef]
- Tava, A.; Esposti, S.; Boracchia, M.; Viegi, L. Volatile Constituents of Centaurea paniculata subsp. carueliana and C. rupestris s.l. (Asteraceae) from Mt. Ferrato (Tuscany, Italy). J. Essent. Oil Res. 2010, 22, 223–227. [Google Scholar] [CrossRef]
- Bancheva, S.; Badalamenti, N.; Bruno, M. The Essential Oil Composition of Centaurea immanuelis-loewii Degen Growing Wild in Bulgaria and Chemotaxonomy of Section Acrocentron. Nat. Prod. Res. 2022, 36, 5289–5296. [Google Scholar] [CrossRef] [PubMed]
- Kahriman, N.; Tosun, G.; Iskender, N.Y.; Karaoglu, S.A.; Yayli, N. Antimicrobial activity and a comparative essential oil analysis of Centaurea pulcherrima Willd. Var. Pulcherrima extracted by hydrodistillation and microwave distillation. Nat. Prod. Res. 2012, 26, 703–712. [Google Scholar] [CrossRef]
- Esmaeili, A.; Panahi, Z.A.; Ebrahimzadeh, M.A. Investigation of phytochemistry of gene of Centaurea grown in Iran. J. Essent. Oil-Bear. Plants 2014, 17, 806–812. [Google Scholar] [CrossRef]
- Djeddi, S.; Sokovic, M.; Skaltsa, H. Analysis of the essential oils of some Centaurea species (Asteraceae) growing wild in Algeria and Greece and investigation of their antimicrobial activities. J. Essent. Oil-Bear. Plants 2011, 14, 658–666. [Google Scholar] [CrossRef]
- Yayli, N.; Yaşar, A.; Güleç, C.; Usta, A.; Kolayli, S.; Coşkunçelebi, K.; Karaoğlu, S. Composition and antimicrobial activity of essential oils from Centaurea sessilis and Centaurea armena. Phytochemistry 2005, 66, 1741–1745. [Google Scholar] [CrossRef]
- Senatore, F.; Formisano, C.; Raio, A.; Bellone, G.; Bruno, M. Volatile components from fower-heads of Centaurea nicaeensis All., C. parlatorishelder and C. solstitialis L. sspschouwii (DC.) Dostal growing wild in southern Italy and their biological activity. Nat. Prod. Res. 2008, 22, 825–832. [Google Scholar]
- Erel, S.B.; Demirci, B.; Demir, S.; Karaalp, C.; Hüsnü Can Baser, K. Composition of the Essential Oils of Centaurea aphrodisea, C. polyclada, C. athoa, C. hyalolepis and C. iberica. J. Essent. Oil Res. 2013, 25, 79–84. [Google Scholar] [CrossRef]
- Erdogan, T.; Gonenc, T.; Cakilcioglu, U.; Kivcak, B. Fatty Acid Composition of the Aerial Parts of Some Centaurea Species in Elazıg, Turkey. Trop. J. Pharm. 2014, 13, 613–616. [Google Scholar] [CrossRef]
- Tekeli, Y.; Zengin, H.G.; Aktumsek, A.; Sezgin, M. Comparision of the fatty acid compositions of six Centaurea species. Chem. Nat. Compd. 2013, 49, 496–498. [Google Scholar] [CrossRef]
- Yildirim, N.; Sunar, S.; Agar, G.; Bozari, S.; Aksakal, O. Biochemical and molecular characterization of some Centaurea species growing in the Eastern Anatolia region of Turkey. Biochem. Genetic. 2009, 47, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Aktumsek, A.; Guler, G.O.; Cakmak, Y.S.; Yildiztugay, E. Antioxidant properties of methanolic extract and fatty acid composition of Centaurea urvillei DC. subsp. Hayekiana Wagenitz. Rec. Nat. Prod. 2011, 5, 123–132. [Google Scholar]
- Teneva, O.; Petkova, Z.; Antova, G.; Angelova-Romova, M.; Stoyanov, P.; Todorov, K.; Mladenova, T.; Radoukova, T.; Mladenov, R.; Petkov, P.; et al. Chemical Composition and Lipid Bioactive Components of Centaurea thracica Dwelling in Bulgaria. Molecules 2024, 29, 3282. [Google Scholar] [CrossRef] [PubMed]
- Teneva, O.; Petkova, Z.; Dobreva, A.; Dzhurmanski, A.; Stoyanova, L.; Angelova-Romova, M. Centaurea benedicta—A Potential Source of Nutrients and Bioactive Components. Plants 2024, 13, 3579. [Google Scholar] [CrossRef]
- Tesevic, V.; Djokovic, D.; Vajs, V.; Martin, P.; Miloslavjevic, S. Constituents of the roots of plant species Centaurea scabiosa. J. Serb. Chem. Soc. 1994, 59, 979–981. [Google Scholar]
- Tešević, V.; Aljančić, I.; Milosavljević, S.; Vajs, V.; Đorđević, I.; Jadranin, M.; Menković, N.; Matevski, V. Secondary metabolites of three endemic Centaurea L. species. J. Serb. Chem. Soc. 2014, 79, 1355–1362. [Google Scholar] [CrossRef]
- Patent Ru 2458121 C1; Method of cultivation of callus tissue of Centaurea scabiosa L. Russian Federation (ROSPATENT): Moscow, Russia, 10 August 2012.
- Kaminskiy, I.P.; Yermilova, Y.V.; Kadyrova, T.V.; Lar’kina, M.S.; D’yakonov, A.A.; Belousov, M.V. Antiradical Activity of extracts from Siberian flora genus Centaurea plants. Chem. Plant Raw Mater. 2019, 4, 174–179. [Google Scholar] [CrossRef]
- Kaminskiy, I.P.; Krasnov, Y.A.; Kadyrova, T.V.; Sazonov, A.E.; Rachimova, B.B.; Ivasenko, S.A.; Adekenov, S.M. Anti-opisthorchiasis properties of extracts from Centaurea scabiosa L. (Asteraceae). Plant Resour. 2010, 46, 106–111. [Google Scholar]
- Kadyrova, T.V.; Krasnov, E.A.; Kornyakova, A.V.; Terentyeva, S.V.; Ermilova, E.V. Anticonvulsant properties of extracts from Centaurea scabiosa (Asteraceae). Plant Resour. 2006, 42, 70–75. [Google Scholar]
- Larkina, M.S.; Kadyrova, T.V.; Ermilova, E.V. Phenolic compounds of species of the genus Centaurea of the world flora. Chem. Plant Raw Mater. 2011, 4, 7–14. [Google Scholar]
- Larkina, M.S.; Krivoshchekov, S.V.; Guryev, A.M.; Kadyrova, T.V.; Ermilova, E.V.; Kotserubskaya, V.V.; Yusubov, M.S. Characteristic of Polysaccharide Complexes from Centaurea scabiosa L. and Centaurea pseudomaculosa Dobrocz. Russ. J. Bioorg. Chem. 2017, 43, 766–770. [Google Scholar] [CrossRef]
- Andersen, A.B.; Lam, J.; Wrang, P. Polyunsaturated Compounds of Centaurea scabiosa. Phytochemistry 1977, 16, 1829–1831. [Google Scholar] [CrossRef]
- da Silva, J.K.R.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential Oils as Antiviral Agents, Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation. Int. J. Mol. Sci. 2020, 21, 3426. [Google Scholar] [CrossRef]
- Das, A.; Pandita, D.; Jain, G.K.; Agarwal, P.; Grewal, A.S.; Khar, R.K.; Lather, V. Role of Phytoconstituents in the Management of COVID-19. Chem. Biol. Interact. 2021, 341, 109449. [Google Scholar] [CrossRef]
- Diniz, L.R.L.; Perez-Castillo, Y.; Elshabrawy, H.A.; Filho, C.D.S.M.B.; de Sousa, D.P. Bioactive Terpenes and Their Derivatives as Potential SARS-CoV-2 Proteases Inhibitors from Molecular Modeling Studies. Biomolecules 2021, 11, 74. [Google Scholar] [CrossRef]
- Chen, R.; Gao, Y.; Liu, H.; Li, H.; Chen, W.; Ma, J. Advances in Research on 3C-like Protease (3CLpro) Inhibitors against SARS-CoV-2 since 2020. RSC Med. Chem. 2023, 14, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Franchini, M.; Maggi, F.; Shoham, S. COVID-19 Therapeutics. Clin. Microbiol. Rev. 2024, 37, e00119-23. [Google Scholar] [CrossRef]
- Kukina, T.P.; Elshin, I.A.; Sal’nikova, O.I.; Kolosov, P.V.; Sandag, T.; Karakai, D.A.; Shcherbakov, D.N. Composition of Lipophilic Components of Rhododendron adamsii Rehd. Ether Extract and Activity against SARS-CoV-2 Main Protease. Russ. J. Bioorg. Chem. 2023, 49, 1730–1739. [Google Scholar] [CrossRef]
- Kukina, T.P.; Kukina, T.P.; Yelshin, I.A.; Sal’nikova, O.I.; Kolosov, P.V.; Khashchuluun, S.; Badmaarag, B.; Chimidtseren, S.; Erdenezayaa, O.; Sandag, T.; et al. Study of the Composition of Lipophilic Components of Rhododendron adamsii Rehd. and Their Biological Activity. Kh. Rastit. Syr’ya 2024, 4, 333–343. (In Russian) [Google Scholar] [CrossRef]
- Baev, D.S.; Blokhin, M.E.; Chirkova, V.Y.; Belenkaya, S.V.; Luzina, O.A.; Yarovaya, O.I.; Salakhutdinov, N.F.; Shcherbakov, D.N. Triterpenic Acid Amides as Potential Inhibitors of the SARS-CoV-2 Main Protease. Molecules 2023, 28, 303. [Google Scholar] [CrossRef]
- Yarovaya, O.I.; Filimonov, A.S.; Baev, D.S.; Borisevich, S.S.; Zaykovskaya, A.V.; Chirkova, V.Y.; Marenina, M.K.; Meshkova, Y.V.; Belenkaya, S.V.; Shcherbakov, D.N.; et al. The Potential of Usnic-Acid-Based Thiazolo-Thiophenes as Inhibitors of the Main Protease of SARS-CoV-2 Viruses. Viruses 2024, 16, 215. [Google Scholar] [CrossRef] [PubMed]
- Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Sarek, J. Pharmacological Activities of Natural Triterpenoids and Their Therapeutic Implications. Nat. Prod. Rep. 2006, 23, 394–411. [Google Scholar] [CrossRef]
- Kim, C.H. Anti-SARS-CoV-2 Natural Products as Potentially Therapeutic Agents. Front. Pharmacol. 2021, 12, 590509. [Google Scholar] [CrossRef]
- Darshani, P.; Shreya Sen Sarma, S.S.; Srivastava, A.K.; Baishya, R.; Kumar, D. Anti-viral triterpenes: A review. Phytochem. Rev. 2022, 21, 1761–1842. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, L.; Wang, H.; Xiong, Y. Recent Advances in Antiviral Activities of Triterpenoids. Pharmaceuticals 2022, 15, 1169. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Tian, Z.; Wang, Y.; Si, L.; Zhang, L.; Zhou, D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med. Res. Rev. 2018, 38, 951–976. [Google Scholar] [CrossRef]
- Wimmerová, M.; Bildziukevich, U.; Wimmer, Z. Selected Plant Triterpenoids and Their Derivatives as Antiviral Agents. Molecules 2023, 28, 7718. [Google Scholar] [CrossRef]
- Popov, S.A.; Shults, E.E.; Baev, D.S.; Chirkova, V.Y.; Volosnikova, E.A.; Belenkaya, S.V.; Shcherbakov, D.N.; Pokrovsky, M.A.; Hamad, M.S.; Pokrovsky, A.G. Ursane Hybrids with 5-Amino-1,2,3,4-thiatriazole, 1-Tetrazole-5-thione, and 1-Tetrazole-5-amines and Study of Their Inhibition of Main SARS-CoV-2 Protease. Steroids 2025, 220, 109638. [Google Scholar] [CrossRef]
- Hayashi, K.; Kamiya, M.; Hayashi, T. Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta Med. 1995, 61, 237–241. [Google Scholar] [CrossRef]
- Avato, P.; Tava, A. Rare fatty acids and lipids in plant oilseeds: Occurrence and bioactivity. Phytochem. Rev. 2022, 21, 401–428. [Google Scholar] [CrossRef]
- Belenkaya, S.V.; Merkuleva, I.A.; Yarovaya, O.I.; Chirkova, V.Y.; Sharlaeva, E.A.; Shanshin, D.V.; Volosnikova, E.A.; Vatsadze, S.Z.; Khvostov, M.V.; Salakhutdinov, N.F.; et al. The Main Protease 3CLpro of the SARS-CoV-2 Virus: How to Turn an Enemy into a Helper. Front. Bioeng. Biotechnol. 2023, 11, 1187761. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]

| Component | RT (min) | Content, mg% | ||
|---|---|---|---|---|
| Hexane Extract | Extract with MTBE After Hexane | MTBE Extract | ||
| Aldehydes | ||||
| Heneicosanal | 22.974 | 0.26 | Nd | 0.2 |
| Tricosanal | 24.620 | 0.44 | Nd | 0.38 |
| Tetracosanal | 25.392 | 0.51 | Nd | 0.49 |
| Pentacosanal | 26.143 | 1.02 | Nd | 0.96 |
| Hexacosanal | 26.865 | 1.46 | Nd | 1.42 |
| Heptacosanal | 27.601 | 1.15 | Nd | 1.12 |
| Octacosanal | 28.411 | 0.77 | Nd | 0.79 |
| Triacontanal | 30.422 | 0.28 | Nd | 0.26 |
| Aliphatic ketones | ||||
| Hexahydrofarnesyl-acetone | 18.483 | 13.29 | 46.03 | 39.46 |
| 2-Heptadecanone | 19.254 | 1.62 | 0.09 | 0.36 |
| 2-Nonadecanone | 21.210 | 0.43 | Nd | 0.44 |
| 2-Heneicosanone | 23.008 | 2.26 | Nd | 2.86 |
| 2-Tricosanone | 24.668 | 2.34 | Nd | 2.33 |
| 2-Pentacosanone | 25.999 | 2.2 | 0.12 | 2.14 |
| 9-Heptacosanone | 27.426 | 5.64 | 0.23 | 5.82 |
| 2-Heptacosanone | 27.394 | 1.59 | 0.27 | 2.69 |
| 10-Nonacosanone | 29.115 | 5.04 | 0.36 | 5.28 |
| 2-Nonacosanone | 29.448 | 0.92 | 0.05 | 0.96 |
| Aliphatic alcohols | ||||
| Decanol | 11.618 | 0.07 | 1.13 | 1.09 |
| Dodecanol | 14.274 | 0.18 | 0.66 | 0.48 |
| Tetradecanol | 16.664 | 0.28 | 1.26 | 0.92 |
| Pentadecanol | 17.783 | 0.24 | Nd | 0.27 |
| 3,7,11,15-Tetramethyl-1-hexadecanol | 18.519 | 0.12 | Nd | 0.14 |
| Hexadecanol | 18.866 | 1.42 | 0.66 | 1.73 |
| Octadecanol | 20.822 | 3.51 | 1.5 | 3.85 |
| Isophytol | 20.895 | 0.32 | 1.01 | 1.57 |
| Phytol | 21.111 | 20.34 | 16.67 | 32.22 |
| Eicosanol | 22.656 | 2.08 | 0.35 | 2.97 |
| Geranylgeraniol | 23.452 | 0.48 | 0.26 | 0.71 |
| 1-Docosanol | 24.331 | 2.41 | 1.68 | 3.8 |
| 1-Tricosanol | 24.375 | 0.64 | 0.15 | 0.79 |
| 10-Tricosanol | 24.375 | 1.45 | 0.34 | 1.72 |
| 1-Tetracosanol | 25.876 | 3.23 | 0.21 | 3.31 |
| 1-Pentacosanol | 26.001 | 2.25 | 0.13 | 2.46 |
| 9-Heptacosanol | 27.335 | 12.02 | 0.13 | 12.53 |
| 1-Hexacosanol | 27.535 | 1.39 | 0.38 | 1.48 |
| 9-Octacosanol | 28.100 | 1.23 | 0.14 | 0.99 |
| 10-Nonacosanol | 28.916 | 48.64 | 0.72 | 42.14 |
| 1-Octacosanol | 28.966 | 1.21 | 2.53 | 3.75 |
| 10-Triacontanol | 30.006 | 1.55 | 0.09 | 0.62 |
| 1-Triacontanol | 31.183 | 0.68 | 1.37 | 1.98 |
| 10-Hentriacontanol | 31.204 | 1.26 | 0.12 | 0.99 |
| Terpene ketones | ||||
| Stigma-3,5-dien-7-one | 31.798 | 0.79 | 1.03 | 1.84 |
| Cholesta-3,5-dien-7-one | 30.892 | 0.09 | 0.26 | 0.31 |
| β-Amirenone | 32.530 | 0.94 | 0.12 | 0.89 |
| α-Amirenone | 32.607 | 0.27 | 0.31 | 0.47 |
| 22,23-dihydrostigma-3-one | 33.112 | 0.57 | 0.21 | 0.75 |
| Terpene alcohols (including sterols and tocopherols) | ||||
| Spathulenol | 15.726 | 0.75 | 2.93 | 2.79 |
| Caryophyllene-α-oxide | 15.805 | 0.71 | 0.26 | 1.06 |
| Porosadienol | 15.512 | 0.1 | 0.89 | 1.04 |
| Eudesmol, β- | 16.585 | 0.03 | 0.11 | 0.13 |
| Caryophylla-3,8(13)-dien-5β-ol, 3Z- | 16.780 | 0.11 | 0.67 | 0.47 |
| Eudesma-4(15),7-dien-1β-ol | 16.975 | 0.18 | 0.36 | 0.42 |
| Cholesterol | 29.479 | 0.97 | 2.02 | 2.32 |
| Campesterol | 30.677 | 3.74 | 9.8 | 12.29 |
| Stigmasterol | 31.089 | 13.97 | 20.08 | 32.75 |
| Obtusifoliol | 31.507 | 0.28 | 0.19 | 0.45 |
| β-Sitosterol | 31.941 | 22.42 | 33.83 | 62.5 |
| Stigmastanol | 32.034 | 0.23 | 0.82 | 1.15 |
| Fucosterol | 32.071 | 1.12 | 0.38 | 1.42 |
| 24-Methylenelophenol | 32.201 | 0.26 | 0.16 | 0.41 |
| β-Amyrin | 32.395 | 4.66 | 3.54 | 15.46 |
| Butirospermol | 32.482 | 0.15 | 0.19 | 0.29 |
| Stigmast-7-en-3-ol | 32.641 | 9.29 | 4.28 | 4.97 |
| Cycloartenol | 32.901 | 3.56 | 0.58 | 12.25 |
| α-Amyrin | 33.096 | 11.76 | 6.9 | 21.2 |
| Glutinol | 33.240 | 0.16 | 0.04 | 0.17 |
| Citrost-7-en-3-ol | 33.645 | 1.12 | 0.91 | 1.38 |
| 24-Methylenecycloartanol | 33.861 | 1.52 | 0.34 | 2.28 |
| Citrostadien-3-ol | 33.973 | 0.51 | 0.64 | 0.44 |
| Cycloart-23-ene-3,25-diol | 34.061 | 6.12 | 0.59 | 7.57 |
| Simiarenol | 34.648 | 0.21 | 0.03 | 0.26 |
| Moretenol | 34.540 | 0.15 | 3.18 | 1.84 |
| Taraxasterol | 34.756 | 0.62 | 0.16 | 0.85 |
| Cycloart-23-ene-3,25-diol isomer | 34.834 | 0.36 | 0.55 | 0.86 |
| Cycloart-25-ene-3,24-diol | 36.003 | 10.01 | 3.97 | 13.17 |
| 11-Oxo-β-amyrin | 36.606 | 0.42 | 0.82 | 1.28 |
| 11-Oxo-α-amyrin | 37.523 | 1.12 | 0.69 | 1.68 |
| Cycloart-25-ene-3,24-diol, isomer | 38.292 | 10.63 | 0.13 | 11.04 |
| Eritrodiol | 38.296 | 0.29 | 0.08 | 0.34 |
| Uvaol | 39.508 | 0.17 | 0.04 | 0.26 |
| Faradiol | 40.042 | 0.27 | 0.02 | 0.32 |
| Betulin | 40.114 | 0.18 | 0.02 | 0.21 |
Nd—not detected; RT—retention time; MTBE—methyl tert-butyl ether.![]() 0.01 mg% 70.0 mg% | ||||
| Component | RT (min) | Content, mg% | ||
|---|---|---|---|---|
| Hexane Extract | Extract with MTBE After Hexane | MTBE Extract | ||
| Aldehydes | ||||
| Heneicosanal | 22.974 | 0.23 | Nd | 0.21 |
| Tricosanal | 24.620 | 0.46 | Nd | 0.48 |
| Tetracosanal | 25.392 | 0.5 | Nd | 0.47 |
| Pentacosanal | 26.143 | 1.09 | Nd | 1.06 |
| Hexacosanal | 26.865 | 1.41 | Nd | 1.39 |
| Heptacosanal | 27.601 | 1.05 | Nd | 1.11 |
| Octacosanal | 28.41 | 0.75 | Nd | 0.77 |
| Triacontanal | 30.424 | 0.31 | Nd | 0.29 |
| Aliphatic ketones | ||||
| Hexahydrofarnesyl-acetone | 18.483 | 12.29 | 36.83 | 49.26 |
| 2-Heptadecanone | 19.254 | 1.09 | 0.23 | 1.36 |
| 2-Pentacosanone | 25.999 | 0.39 | 0.12 | 0.54 |
| 9-Heptacosanone | 27.426 | 2.17 | Nd | 1.98 |
| 2-Heptacosanone | 27.394 | 0.15 | Nd | 0.12 |
| 10-Nonacosanone | 29.115 | 5.27 | 0.45 | 5.89 |
| 2-Nonacosanone | 29.448 | 1.02 | Nd | 0.9 |
| Aliphatic alcohols | ||||
| 1-Tetradecanol | 16.664 | 0.21 | 0.26 | 0.41 |
| 1-Pentadecanol | 17.783 | 0.09 | 0.03 | 0.11 |
| 3,7,11,15-Tetramethyl-1-hexadecanol | 18.519 | 0.08 | 0.02 | 0.09 |
| 1-Hexadecanol | 18.866 | 0.21 | 0.36 | 0.63 |
| 9,12-Octadecadien-1-ol | 20.560 | 0.11 | 0.07 | 1.18 |
| 9-Octadecenol | 20.604 | 0.23 | 0.11 | 0.3 |
| 1-Octadecanol | 20.822 | 0.51 | 0.57 | 1.15 |
| Isophytol | 20.895 | 1.21 | 1.91 | 3.37 |
| Phytol | 21.111 | 21.39 | 20.63 | 42.27 |
| Eicosanol | 22.656 | 0.48 | 1.84 | 2.34 |
| Geranylgeraniol | 23.452 | 0.58 | 0.12 | 0.51 |
| 1-Docosanol | 24.331 | 2.25 | 0.29 | 0.97 |
| 1-Tricosanol | 24.375 | 0.44 | 0.02 | 0.38 |
| 10-Tricosanol | 24.375 | 1.13 | 0.46 | 1.51 |
| 1-Tetracosanol | 25.876 | 0.46 | 0.21 | 1.11 |
| 1-Pentacosanol | 26.001 | 0.45 | 0.12 | 0.42 |
| 9-Heptacosanol | 27.335 | 10.28 | Nd | 8.53 |
| 1-Hexacosanol | 27.535 | 0.39 | 0.38 | 0.48 |
| 9-Octacosanol | 28.100 | 1.34 | Nd | 1.04 |
| 10-Nonacosanol | 28.916 | 48.66 | Nd | 43.14 |
| 1-Octacosanol | 28.966 | 1.21 | 3.53 | 2.75 |
| 10-Triacontanol | 30.006 | 1.45 | Nd | 1.22 |
| 1-Triacontanol | 31.183 | 0.6 | 1.37 | 0.98 |
| 10-Hentriacontanol | 31.204 | 3 | Nd | 2.03 |
| Terpene ketones | ||||
| β-Amirenone | 32.530 | 1.04 | Nd | 1.49 |
| α-Amirenone | 32.607 | 1.67 | Nd | 2.47 |
| Stigma-3,5-dien-7-one | 33.112 | 5.17 | 1.32 | 4.32 |
| Terpene alcohols (including sterols) | ||||
| Spathulenol | 15.726 | 0.07 | 0.53 | 0.73 |
| Caryophyllene-alpha-oxide | 15.805 | 3.76 | 0.36 | 4.17 |
| Porosadienol | 15.512 | 0.12 | 1.26 | 1.18 |
| Eudesmol, beta- | 16.585 | 0.14 | 0.05 | 0.16 |
| Caryophylla-3,8(13)-dien- 5β-ol, 3Z- | 16.780 | 0.31 | 0.67 | 0.88 |
| Eudesma-4(15),7-dien-β-ol | 16.975 | 0.04 | 0.21 | 0.24 |
| Cholesterol | 29.479 | 0.78 | 0.62 | 0.72 |
| Campesterol | 30.677 | 12.24 | 3.9 | 12.09 |
| Stigmasterol | 31.089 | 32.75 | 10.58 | 28.59 |
| Obtusifoliol | 31.507 | 4.18 | 0.19 | 3.22 |
| β-Sitosterol | 31.941 | 97.26 | 40.81 | 123.96 |
| Stigmastanol | 32.034 | 2.03 | 2.09 | 11.52 |
| Fucosterol | 32.071 | 0.59 | 0.18 | 0.64 |
| 24-Methylenelophenol | 32.201 | 5.86 | 0.16 | 3.87 |
| β-Amyrin | 32.395 | 17.12 | 7.84 | 21.62 |
| Butirospermol | 32.482 | 0.41 | 0.22 | 0.59 |
| Stigmast-7-en-3-ol | 32.641 | 1.89 | 3.76 | 4.97 |
| Cycloartenol | 32.901 | 3.56 | 0.58 | 4.25 |
| α-Amyrin | 33.096 | 21.9 | 9.67 | 30.79 |
| Citrost-7-en-3-ol | 33.645 | 2.12 | 0.32 | 1.55 |
| 24-Methylenecycloartanol | 33.861 | 2.28 | 0.81 | 3.58 |
| Citrostadien-3-ol | 33.973 | 17.82 | 0.6 | 15.72 |
| Cycloart-23-ene-3,25-diol, | 34.061 | 0.68 | 14.12 | 15.54 |
| Moretenol | 34.540 | 5.53 | 0.89 | 6.28 |
| Simiarenol | 34.648 | 0.21 | 0.03 | 0.26 |
| Taraxasterol | 34.756 | 0.78 | 0.22 | 2.08 |
| Cycloart-23-ene-3,25-diol isomer | 34.834 | 0.13 | 0.76 | 1.06 |
| Cycloart-25-ene-3,24-diol | 36.003 | 3.21 | 16.3 | 23.7 |
| 11-Oxo-β-amyrin | 36.606 | 4.43 | 0.53 | 4.65 |
| 11-Oxo-α-amyrin | 37.523 | 8.18 | 0.22 | 7.94 |
| Cycloart-25-ene-3,24-diol isomer | 38.292 | 17.61 | 0.24 | 15.43 |
| Eritrodiol | 38.296 | 0.59 | 0.12 | 0.46 |
| Uvaol | 39.508 | 0.28 | 0.11 | 0.23 |
| Faradiol | 40.042 | 0.49 | 0.08 | 0.39 |
| Betulin | 40.114 | 0.22 | 0.05 | 0.24 |
Nd—not detected; RT—retention time; MTBE—methyl tert-butyl ether.![]() 0.01 mg% 70.0 mg% | ||||
| Code | Raw Material | Extractant | IC50, mg/mL |
|---|---|---|---|
| 12-7 | CentL * | Hexane | 0.38 ± 0.08 |
| 12-8 | CentL | Hexane | 0.44 ± 0.09 |
| 12-9 | CentL | Hexane (22) ** | 0.43 ± 0.08 |
| 12-10 | CentL | MTBE (22) ** | 0.55 ± 0.06 |
| 12-11 | Centinflor *** | Hexane | 0.17 ± 0.02 |
| 12-12 | Centinflor | Hexane | 0.15 ± 0.01 |
| 12-13 | Centinflor | MTBE/Hexane | **** |
| 12-14 | Centinflor | MTBE/Hexane | **** |
| 12-15 | CentL | MTBE/Hexane | 0.35 ± 0.06 |
| 12-16 | CentL | MTBE/Hexane | 0.55 ± 0.08 |
| 12-17 | CentL | MTBE | 0.44 ± 0.04 |
| 12-18 | CentL | MTBE | 0.37 ± 0.02 |
| 12-19 | Centinflor | MTBE | 0.27 ± 0.11 |
| 12-20 | Centinflor | MTBE | 0.21 ± 0.05 |
| 12-21 | Centinflor | Et:H2O 70:30 | **** |
| 12-22 | Centinflor | Et:H2O 70:30 | **** |
| 12-23 | Centinflor | Et:H2O 40:60 | **** |
| 12-24 | Centinflor | Et:H2O 40:60 | **** |
| 12-25 | Centinflor | H2O | >5 |
| 12-26 | Centinflor | H2O | >5 |
| 12-27 | CentL | Et:H2O 70:30 | 1.10 ± 0.44 |
| 12-28 | CentL | Et:H2O 70:30 | 1.08 ± 0.12 |
| 12-29 | CentL | Et:H2O 40:60 | 2.14 ± 0.38 |
| 12-30 | CentL | Et:H2O 40:60 | >5 |
| 12-31 | CentL | H2O | **** |
| 12-32 | CentL | H2O | **** |
| 12-33 | Cent-roots ***** | Hexane | **** |
| 12-34 | Cent-roots | Hexane | **** |
| 14-1 | Rhizob ****** | H2O | >5 |
| 14-2 | Rhizob | H2O | >5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukina, T.P.; Elshin, I.A.; Marenina, M.K.; Kolosova, E.A.; Meshkova, Y.V.; Sal’nikova, O.I.; Belenkaya, S.V.; Volosnikova, E.A.; Khvostov, M.V.; Shcherbakov, D.N. Lipophilic Substances of the Leaves and Inflorescences of Centaurea scabiosa L.: Their Composition and Activity Against the Main Protease of SARS-CoV-2. Molecules 2025, 30, 4568. https://doi.org/10.3390/molecules30234568
Kukina TP, Elshin IA, Marenina MK, Kolosova EA, Meshkova YV, Sal’nikova OI, Belenkaya SV, Volosnikova EA, Khvostov MV, Shcherbakov DN. Lipophilic Substances of the Leaves and Inflorescences of Centaurea scabiosa L.: Their Composition and Activity Against the Main Protease of SARS-CoV-2. Molecules. 2025; 30(23):4568. https://doi.org/10.3390/molecules30234568
Chicago/Turabian StyleKukina, Tatiana P., Ivan A. Elshin, Maria K. Marenina, Evgeniia A. Kolosova, Yulia V. Meshkova, Ol’ga I. Sal’nikova, Svetlana V. Belenkaya, Ekaterina A. Volosnikova, Mikhail V. Khvostov, and Dmitry N. Shcherbakov. 2025. "Lipophilic Substances of the Leaves and Inflorescences of Centaurea scabiosa L.: Their Composition and Activity Against the Main Protease of SARS-CoV-2" Molecules 30, no. 23: 4568. https://doi.org/10.3390/molecules30234568
APA StyleKukina, T. P., Elshin, I. A., Marenina, M. K., Kolosova, E. A., Meshkova, Y. V., Sal’nikova, O. I., Belenkaya, S. V., Volosnikova, E. A., Khvostov, M. V., & Shcherbakov, D. N. (2025). Lipophilic Substances of the Leaves and Inflorescences of Centaurea scabiosa L.: Their Composition and Activity Against the Main Protease of SARS-CoV-2. Molecules, 30(23), 4568. https://doi.org/10.3390/molecules30234568



