Summarizing the Role of Selected Adipokines in Parkinson’s Disease: What Is Known About Leptin, Adiponectin, Resistin, Visfatin, and Progranulin in Neurodegeneration?
Abstract
1. Introduction
2. Methods
3. The Role of Adipokines in Parkinson’s Disease
3.1. Leptin
3.2. Adiponectin
| Study Characteristics | Results | References |
|---|---|---|
| 30 PD subjects 28 morbidly obese subjects 33 normal-weight subjects | Adiponectin correlated with HDL in PD patients; it showed inverse correlations with waist circumference, body mass, fasting glucose concentrations, and triglycerides. | Cassani et al. [59] |
| 40 PD subjects 25 control subjects | The concentrations of adiponectin, resistin, and leptin did not correlate with the clinical data of patients with PD. | Rocha et al. [32] |
| 44 PD subjects: 20 No dyskinesia 24 With dyskinesia 20 control subjects | Adiponectin levels did not differ between the study groups. | Milanowski et al. [15] |
| 47 PD subjects: 15 bilateral DBS 16 on L-DOPA treatment 16 no L-DOPA treatment 16 controls | Adiponectin levels increased with L-DOPA treatment and reversed after DBS. | Carrillo et al. [30] |
| 54 PD subjects: 8 untreated 14 with dyskinesia 17 MSA-P 25 PSP 23 control group | Higher adiponectin levels were observed in PD compared with PSP and controls, and adiponectin levels correlated positively with HDL-C and triglycerides. | Kataoka et al. [77] |
| Neuroblastoma M17 cell-line with DJ-1 L166P mutation compared to control MCF-7 cells | Adiponectin reduced MPP+ in mutant cells. | Li et al. [71] |
| SH-SY5Y cell line treated with MPTP, measured SOD and caspase-3, intracellular H2O2, Bcl-2, Bax, cytochrome c and performed fluorescent microscopy | Adiponectin attenuated MPP+ by reducing ROS (SOD and catalase activity down), blocked nuclear morphological changes, and maintained Bax mRNA and Bcl-2 at control levels. Adiponectin inhibited caspase-3 expression. | Jung et al. [60] |
| Brain tissue from PD, DLB patients, and controls examined; B103 neuroblastoma cells producing alpha-synuclein treated with adiponectin; transgenic mice expressing wild-type human alpha-synuclein treated with gAPN every 3 days for 2 months; 5-month-old mice also treated with i.n. gAPN. | Anti-adiponectin reactivity found in Lewy bodies in PD. Adiponectin reduced alpha-synuclein in B103 cells. Globular adiponectin improved body mass and slowed motor symptoms in older mice. No improvement in advanced MS. Adiponectin reduced GMP/IMP, inhibiting alpha-synuclein aggregation. | Sekyiama et al. [54] |
| Rats treated with 6-OHDA PD-induced in 5 groups: -treated with DMSO -p.o. L-DOPA 10 mg/kg -i.n. AdipoRon at 0.1 μg in 10 μL/rat -i.n. AdipoRon at 1 μg in 10 μL/rat -i.n. AdipoRon at 10 μg in 10 μL/rat. | AdipoRon + L-Dopa improved locomotion and memory. AdipoRon reduced ROS and increased TAC and SOD in the hippocampus. L-DOPA alone was ineffective. | Alimohammadi et al. [75] |
| SH-SY5Y cells, BV-2 cells, mHippoE-14 cells cultured and treated with MPP+; The C57BL/6J mouse groups included: control, MPTP, and MPTP with osmotin. The transgenic C57BL/6 mice were divided into three groups: WT, α-syn, and α-syn + osmotin. | MPTP-treated and human α-syn-expressing mice exhibited reduced motor performance. Osmotin-treated mice showed improved neuromuscular strength, alleviating motor symptoms. AdipoR1 knockout cells demonstrated that osmotin did not activate AMPK, confirming receptor dependence. Osmotin might enhance α-synuclein clearance. | Park et al. [76] |
3.3. Resistin
3.4. Visfatin
3.5. Progranulin
4. Targeting Adipokines in the Treatment of Parkinson’s Disease
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 6-OHDA | 6-Hydroxydopamine |
| ∆Ψm | Mitochondrial Membrane Potential |
| ADI | Adiponectin |
| AdipoR1 | Adiponectin Receptor 1 |
| AdipoR2 | Adiponectin Receptor 2 |
| AMPK | AMP-Activated Protein Kinase |
| ATP | Adenosine Triphosphate |
| Bax | Bcl-2-like Protein 4 |
| BBB | Blood–Brain Barrier |
| Bcl-2 | B-cell Lymphoma 2 Protein |
| BMI | Body Mass Index |
| COMT | Catechol O-Methyltransferase |
| DBS | Deep Brain Stimulation |
| DJ-1 | Parkinson Disease Protein 7 |
| FK866 | Nicotinamide Phosphoribosyltransferase Inhibitor |
| GFAP+/BrdU+ | Glial Fibrillary Acidic Protein/Bromodeoxyuridine Positive Cells |
| GH | Growth Hormone |
| GPi | Globus Pallidus Internus |
| GRB2 | Growth Factor Receptor-Bound Protein 2 |
| HBMEC | Human Brain Microvascular Endothelial Cells |
| HDL | High-Density Lipoprotein |
| HO-1 | Heme Oxygenase 1 |
| Hsc73 | Heat Shock Cognate 71 kDa Protein |
| ICAM-5 | Intercellular Adhesion Molecule 5 |
| IGF-1 | Insulin-Like Growth Factor 1 |
| IL-6 | Interleukin 6 |
| IL-8 | Interleukin 8 |
| JAK2 | Janus Kinase 2 |
| LDH | Lactate Dehydrogenase |
| Leptin-OBR | Leptin-Oncogene Receptor |
| LRRK2 | Leucine-Rich Repeat Kinase 2 |
| L166P | Leucine 166 Proline Mutation |
| MCP-1 | Monocyte Chemoattractant Protein 1 |
| MCF-7 | Michigan Cancer Foundation-7 Cell Line |
| MMP | Matrix Metalloproteinase |
| MMP-2 | Matrix Metalloproteinase 2 |
| MPP+ | 1-Methyl-4-Phenylpyridinium |
| MPTP | 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine |
| MTP assay | Mitochondrial Transmembrane Potential Assay |
| MTT assay | 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide Assay |
| NAD+ | Nicotinamide Adenine Dinucleotide (Oxidized Form) |
| NADH | Nicotinamide Adenine Dinucleotide (Reduced Form) |
| NAMPT | Nicotinamide Phosphoribosyltransferase |
| NMNAT | Nicotinamide Mononucleotide Adenylyltransferase |
| NO | Nitric Oxide |
| PARP-1/2 | Poly(ADP-Ribose) Polymerase 1/2 |
| PD | Parkinson’s Disease |
| PGRN | Progranulin |
| PPARγ | Peroxisome Proliferator-Activated Receptor Gamma |
| ROS | Reactive Oxygen Species |
| RT-PCR | Reverse Transcription Polymerase Chain Reaction |
| SH-SY5Y | Human Neuroblastoma Cells |
| SNCA | Alpha-Synuclein |
| SOCS3 | Suppressor of Cytokine Signaling 3 |
| SOD | Superoxide Dismutase |
| SRB assay | Sulforhodamine B Assay |
| STN | Subthalamic Nucleus |
| T53A SNCA | Threonine 53 to Alanine Alpha-Synuclein Mutation |
| TNF | Tumor Necrosis Factor |
| TNF-α | Tumor Necrosis Factor Alpha |
| UPDRS | Unified Parkinson’s Disease Rating Scale |
| WT | Wild-Type |
References
- Khan, A.U.; Akram, M.; Daniyal, M.; Zainab, R. Awareness and current knowledge of Parkinson’s disease: A neurodegenerative disorder. Int. J. Neurosci. 2018, 129, 55–93. [Google Scholar] [CrossRef] [PubMed]
- Cerri, S.; Mus, L.; Blandini, F. Parkinson’s Disease in Women and Men: What’s the Difference? J. Park. Dis. 2019, 9, 501–515. [Google Scholar] [CrossRef]
- Tysnes, O.-B.; Storstein, A. Epidemiology of Parkinson’ s Disease Diagnosis of PD. J. Neural Transm. 2017, 124, 901–905. [Google Scholar] [CrossRef]
- Post, B.; van den Heuvel, L.; van Prooije, T.; van Ruissen, X.; van de Warrenburg, B.; Nonnekes, J. Young Onset Parkinson’s Disease: A Modern and Tailored Approach. J. Park. Dis. 2020, 10, S29–S36. [Google Scholar] [CrossRef]
- Gao, L.; Tang, H.; Nie, K.; Wang, L.; Zhao, J.; Gan, R.; Huang, J.; Zhu, R.; Feng, S.; Duan, Z.; et al. Cerebrospinal Fluid Alpha-Synuclein as a Biomarker for Parkinson’s Disease Diagnosis: A Systematic Review and Meta-Analysis. Int. J. Neurosci. 2014, 125, 645–654. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in Neurodegenerative Diseases: Mechanism and Potential Therapeutic Targets; Springer: New York, NY, USA, 2023; Volume 8, ISBN 4139202301588. [Google Scholar]
- Madore, C.; Yin, Z.; Leibowitz, J.; Butovsky, O. Microglia, Lifestyle Stress, and Neurodegeneration. Immunity 2020, 52, 222–240. [Google Scholar] [CrossRef]
- Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative Stress in the Aging Substantia Nigra and the Etiology of Parkinson’s Disease. Aging Cell 2019, 18, e13031. [Google Scholar] [CrossRef]
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W.; Unit, M.D.; Service, N.; Barcelona, U. De Challenges in the Diagnosis of Parkinson’s Disease. Lancet Neurol. 2022, 20, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Deeb, W.; Nozile-Firth, K.; Okun, M.S. Parkinson’s Disease: Diagnosis and Appreciation of Comorbidities, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 167, ISBN 9780128047668. [Google Scholar]
- Langston, J.W.; Wiley, J.C.; Tagliati, M. Optimizing Parkinson ’ s Disease Diagnosis: The Role of a Dual Nuclear Imaging Algorithm. npj Park. Dis. 2018, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J.; Tan, E.K. Parkinson’s Disease: Etiopathogenesis and Treatment. J. Neurol. Neurosurg. Psychiatry 2020, 91, 795–808. [Google Scholar] [CrossRef]
- Heumann, R.; Moratalla, R.; Herrero, M.T.; Chakrabarty, K.; Drucker-Colín, R.; Garcia-Montes, J.R.; Simola, N.; Morelli, M. Dyskinesia in Parkinson’s Disease: Mechanisms and Current Non-Pharmacological Interventions. J. Neurochem. 2014, 130, 472–489. [Google Scholar] [CrossRef]
- Lotankar, S.; Prabhavalkar, K.S.; Bhatt, L.K. Biomarkers for Parkinson’s Disease: Recent Advancement. Neurosci. Bull. 2017, 33, 585–597. [Google Scholar] [CrossRef]
- Milanowski, J.; Kozerawski, K.; Falęcka, W.; Dudek, D.; Lisewska, B.; Lisewski, P.; Nuszkiewicz, J.; Wesołowski, R.; Wojtasik, J.; Mila-Kierzenkowska, C.; et al. Changes in the Secretion of Melatonin and Selected Adipokines during the Progression of Parkinson’s Disease—Preliminary Studies. Metabolites 2023, 13, 668. [Google Scholar] [CrossRef]
- Milanowski, J.; Nuszkiewicz, J.; Lisewska, B.; Lisewski, P.; Szewczyk-Golec, K. Adipokines, Vitamin D, and Selected Inflammatory Biomarkers among Parkinson’s Disease Patients with and without Dyskinesia: A Preliminary Examination. Metabolites 2024, 14, 106. [Google Scholar] [CrossRef]
- Sudan, S.K.; Deshmukh, S.K.; Poosarla, T.; Holliday, N.P.; Dyess, D.L.; Singh, A.P.; Singh, S. Resistin: An inflammatory cytokine with multi-faceted roles in cancer. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188419. [Google Scholar] [CrossRef]
- Salari, M.; Barzegar, M.; Etemadifar, M.; Mirmosayyeb, O. Serum Leptin Levels in Iranian Patients with Parkinson’s Disease. Iran. J. Neurol. 2018, 17, 71–77. [Google Scholar]
- La Cava, A. Leptin in inflammation and autoimmunity. Cytokine 2017, 98, 51–58. [Google Scholar] [CrossRef]
- Yang, S.Q.; Tian, Q.; Li, D.; He, S.Q.; Hu, M.; Liu, S.Y.; Zou, W.; Chen, Y.J.; Zhang, P.; Tang, X.Q. Leptin Mediates Protection of Hydrogen Sulfide against 6-Hydroxydopamine-Induced Parkinson’s Disease: Involving Enhancement in Warburg Effect. Neurochem. Int. 2020, 135, 104692. [Google Scholar] [CrossRef] [PubMed]
- Barichella, M.; Cassani, E.; Cancello, R.; Zecchinelli, A.; Faillace, G.; Moise, G.; Zulian, A.; Privitera, G.; Pezzoli, G. The Sleeve Gastrectomy Intervention to Treat Morbid Obesity in a Parkinson’s Disease Patient. Clin. Nutr. 2013, 32, 476–478. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef] [PubMed]
- Fiszer, U.; Michałowska, M.; Baranowska, B.; Wolińska-Witort, E.; Jeske, W.; Jethon, M.; Piaścik-Gromada, M.; Marcinowska-Suchowierska, E. Leptin and Ghrelin Concentrations and Weight Loss in Parkinson’s Disease. Acta Neurol. Scand. 2010, 121, 230–236. [Google Scholar] [CrossRef]
- Malek, N. Deep Brain Stimulation in Parkinson’s Disease. Neurol. India 2019, 67, 968–978. [Google Scholar] [CrossRef]
- Dayal, V.; Limousin, P.; Foltynie, T. Subthalamic Nucleus Deep Brain Stimulation in Parkinson’s Disease: The Effect of Varying Stimulation Parameters. J. Park. Dis. 2017, 7, 235–245. [Google Scholar] [CrossRef]
- Lozano, A.M.; Lipsman, N.; Bergman, H.; Brown, P.; Chabardes, S.; Chang, J.W.; Matthews, K.; McIntyre, C.C.; Schlaepfer, T.E.; Schulder, M.; et al. Deep brain stimulation: Current challenges and future directions. Nat. Rev. Neurol. 2019, 15, 148–160. [Google Scholar] [CrossRef]
- Markaki, E.; Ellul, J.; Kefalopoulou, Z.; Trachani, E.; Theodoropoulou, A.; Kyriazopoulou, V.; Constantoyannis, C. The Role of Ghrelin, Neuropeptide y and Leptin Peptides in Weight Gain after Deep Brain Stimulation for Parkinson’s Disease. Stereotact. Funct. Neurosurg. 2012, 90, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Nováková, L.; Haluzík, M.; Jech, R.; Urgošík, D.; Růžička, F.; Růžička, E. Hormonal Regulators of Food Intake and Weight Gain in Parkinson’s Disease after Subthalamic Nucleus Stimulation. Neuroendocrinol. Lett. 2011, 32, 437–441. [Google Scholar] [PubMed]
- Escamilla-Sevilla, F.; Pérez-Navarro, M.J.; Muñoz-Pasadas, M.; Sáez-Zea, C.; Jouma-Katati, M.; Piédrola-Maroto, G.; Ramírez-Navarro, A.; Mínguez-Castellanos, A. Change of the Melanocortin System Caused by Bilateral Subthalamic Nucleus Stimulation in Parkinson’s Disease. Acta Neurol. Scand. 2011, 124, 275–281. [Google Scholar] [CrossRef]
- Carrillo, F.; Palomba, N.P.; Ghirimoldi, M.; Didò, C.; Fortunato, G.; Khoso, S.; Giloni, T.; Santilli, M.; Bocci, T.; Priori, A.; et al. Multiomics Approach Discloses Lipids and Metabolites Profiles Associated to Parkinson’s Disease Stages and Applied Therapies. Neurobiol. Dis. 2024, 202, 106698. [Google Scholar] [CrossRef]
- Lorefält, B.; Toss, G.; Granérus, A.K. Weight Loss, Body Fat Mass, and Leptin in Parkinson’s Disease. Mov. Disord. 2009, 24, 885–890. [Google Scholar] [CrossRef]
- Rocha, N.P.; Scalzo, P.L.; Barbosa, I.G.; De Sousa, M.S.; Morato, I.B.; Vieira, É.L.M.; Christo, P.P.; Reis, H.J.; Teixeira, A.L. Circulating Levels of Adipokines in Parkinson’s Disease. J. Neurol. Sci. 2014, 339, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Kenangil, G.; Özdilek, B. Parkinson Hastalarında Bilişsel Durum ve Serum Leptin Düzeyleri. Noropsikiyatri Ars. 2016, 53, 241–244. [Google Scholar] [CrossRef]
- Bernhardt, D.; Müller, H.P.; Ludolph, A.C.; Dupuis, L.; Kassubek, J. Body Fat Distribution in Parkinson’s Disease: An MRI-Based Body Fat Quantification Study. Park. Relat. Disord. 2016, 33, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Evidente, V.G.H.; Caviness, J.N.; Adler, C.H.; Gwinn-Hardy, K.A.; Pratley, R.E. Serum Leptin Concentrations and Satiety in Parkinson’s Disease Patients with and without Weight Loss. Mov. Disord. 2001, 16, 924–927. [Google Scholar] [CrossRef]
- Reda, E.; Hassaneen, S.; El-Abhar, H.S. Novel Trajectories of Bromocriptine Antidiabetic Action: Leptin-IL-6/JAK2/p-STAT3/SOCS3, p-IR/p-AKT/GLUT4, PPAR-γ/Adiponectin, Nrf2/PARP-1, and GLP-1. Front. Pharmacol. 2018, 9, 771. [Google Scholar] [CrossRef]
- Ozdilek, B.; Kenangil, G. Serum Leptin Concentrations in Turkish Parkinson’s Disease Population. Parkinsons. Dis. 2014, 2014, 576020. [Google Scholar] [CrossRef]
- Nakamura, T.; Suzuki, M.; Okada, A.; Suzuki, J.; Hasegawa, S.; Koike, H.; Hirayama, M.; Katsuno, M.; Sobue, G. Association of Leptin with Orthostatic Blood Pressure Changes in Parkinson’s Disease. Mov. Disord. 2016, 31, 1417–1421. [Google Scholar] [CrossRef]
- Kaczyńska, K.; Andrzejewski, K. 6-Hydroxydopamine-Induced Model of Parkinson’s Disease. In Genetics, Neurology, Behavior, and Diet in Parkinson’s Disease, Volume 2; Academic Press: Amsterdam, The Netherlands, 2020; Volume 11, pp. 627–642. [Google Scholar] [CrossRef]
- Bartl, M.; Dakna, M.; Galasko, D.; Hutten, S.J.; Foroud, T.; Quan, M.; Marek, K.; Siderowf, A.; Franz, J.; Trenkwalder, C.; et al. Biomarkers of Neurodegeneration and Glial Activation Validated in Alzheimer’s Disease Assessed in Longitudinal Cerebrospinal Fluid Samples of Parkinson’s Disease. PLoS ONE 2021, 16, e0257372. [Google Scholar] [CrossRef]
- Weng, Z.; Signore, A.P.; Gao, Y.; Wang, S.; Zhang, F.; Hastings, T.; Yin, X.M.; Chen, J. Leptin Protects against 6-Hydroxydopamine-Induced Dopaminergic Cell Death via Mitogen-Activated Protein Kinase Signaling. J. Biol. Chem. 2007, 282, 34479–34491. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zou, W.; Hu, M.; Tian, Q.; Xiao, F.; Li, M.; Zhang, P.; Chen, Y.J.; Jiang, J.M. Hydrogen Sulphide Attenuates Neuronal Apoptosis of Substantia Nigra by Re-Establishing Autophagic Flux via Promoting Leptin Signalling in a 6-Hydroxydopamine Rat Model of Parkinson’s Disease. Clin. Exp. Pharmacol. Physiol. 2022, 49, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Ujvári, B.; Pytel, B.; Márton, Z.; Bognár, M.; Kovács, L.Á.; Farkas, J.; Gaszner, T.; Berta, G.; Kecskés, A.; Kormos, V.; et al. Neurodegeneration in the Centrally-Projecting Edinger–Westphal Nucleus Contributes to the Non-Motor Symptoms of Parkinson’s Disease in the Rat. J. Neuroinflamm. 2022, 19, 31. [Google Scholar] [CrossRef]
- Ye, H.; Robak, L.A.; Yu, M.; Cykowski, M.; Shulman, J.M. Genetics and Pathogenesis of Parkinson’s Syndrome. Annu. Rev. Pathol. Mech. Dis. 2023, 18, 95–121. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, R.; Buschauer, R.; Böhning, J.; Audagnotto, M.; Lasker, K.; Lu, T.W.; Boassa, D.; Taylor, S.; Villa, E. The In Situ Structure of Parkinson’s Disease-Linked LRRK2. Cell 2020, 17, 1508–1518.e16. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, F.; Imai, M.; Isaka, Y.; Cookson, M.R.; Maruyama, H.; Kubo, M.; Farrer, M.J.; Kanzaki, M.; Kawashima, R.; Maekawa, T.; et al. LRRK2 Negatively Regulates Glucose Tolerance via Regulation of Membrane Translocation of GLUT4 in Adipocytes. FEBS Open Bio 2023, 13, 2200–2214. [Google Scholar] [CrossRef]
- Rothman, S.M. Metabolic Abnormalities and Hypoleptinemia in α-Synuclein A53T Mutant Mice. Comput. Model. Eng. Sci. 2014, 1, 119–131. [Google Scholar] [CrossRef]
- Ho, P.W.L.; Liu, H.F.; Ho, J.W.M.; Zhang, W.Y.; Chu, A.C.Y.; Kwok, K.H.H.; Ge, X.; Chan, K.H.; Ramsden, D.B.; Ho, S.L. Mitochondrial Uncoupling Protein-2 (UCP2) Mediates Leptin Protection against MPP+ Toxicity in Neuronal Cells. Neurotox. Res. 2010, 17, 332–343. [Google Scholar] [CrossRef]
- Shklyaev, S.S.; Melnichenko, G.A.; Volevodz, N.N.; Falaleeva, N.A.; Ivanov, S.A.; Kaprin, A.D.; Mokrysheva, N.G. Adiponectin: A Pleiotropic Hormone With Multifaceted Roles. Probl. Endokrinol. 2021, 67, 98–112. [Google Scholar] [CrossRef]
- Choi, H.M.; Doss, H.M.; Kim, K.S. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int. J. Mol. Sci. 2020, 21, 1219. [Google Scholar] [CrossRef]
- Lee, Y.A.; Hahm, D.H.; Kim, J.Y.; Sur, B.; Lee, H.M.; Ryu, C.J.; Yang, H.I.; Kim, K.S. Potential Therapeutic Antibodies Targeting Specific Adiponectin Isoforms in Rheumatoid Arthritis. Arthritis Res. Ther. 2018, 20, 245. [Google Scholar] [CrossRef]
- Achari, A.E.; Jain, S.K. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef]
- van Andel, M.; Heijboer, A.C.; Drent, M.L. Adiponectin and Its Isoforms in Pathophysiology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 85, ISBN 9780128152058. [Google Scholar]
- Sekiyama, K.; Waragai, M.; Akatsu, H.; Sugama, S.; Takenouchi, T.; Takamatsu, Y.; Fujita, M.; Sekigawa, A.; Rockenstein, E.; Inoue, S.; et al. Disease Modifying Effect of Adiponectin in Model of α-Synucleinopathies. Ann. Clin. Transl. Neurol. 2014, 1, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Root, J.; Mendsaikhan, A.; Nandy, S.; Taylor, G.; Wang, M.; Araujo, L.T.; Merino, P.; Ryu, D.; Holler, C.; Thompson, B.M.; et al. Granulins Rescue Inflammation, Lysosome Dysfunction, and Neuropathology in a Mouse Model of Progranulin Deficiency. bioRxiv Prepr. Serv. Biol. 2023, 43, 114985. [Google Scholar] [CrossRef]
- Rizzo, M.R.; Fasano, R.; Paolisso, G. Adiponectin and Cognitive Decline. Int. J. Mol. Sci. 2020, 21, 2010. [Google Scholar] [CrossRef]
- Khoramipour, K.; Chamari, K.; Hekmatikar, A.A.; Ziyaiyan, A.; Taherkhani, S.; Elguindy, N.M.; Bragazzi, N.L. Diseases, and Effects of Nutrition. Nutrients 2021, 13, 1180. [Google Scholar] [CrossRef]
- Fang, H.; Judd, R.L. Adiponectin Regulation and Function. Compr. Physiol. 2018, 8, 1031–1063. [Google Scholar] [CrossRef]
- Cassani, E.; Cancello, R.; Cavanna, F.; Maestrini, S.; Di Blasio, A.M.; Liuzzi, A.; Pezzoli, G.; Barichella, M. Serum Adiponectin Levels in Advanced-Stage Parkinson’s Disease Patients. Park. Dis. 2011, 2011, 624764. [Google Scholar] [CrossRef]
- Jung, T.W.; Lee, J.Y.; Shim, W.S.; Kang, E.S.; Kim, J.S.; Ahn, C.W.; Lee, H.C.; Cha, B.S. Adiponectin Protects Human Neuroblastoma SH-SY5Y Cells against MPP +-Induced Cytotoxicity. Biochem. Biophys. Res. Commun. 2006, 343, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Kusminski, C.M.; Scherer, P.E. Adiponectin, leptin and cardiovascular disorders. Circ. Res. 2021, 128, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Roumeliotis, S.; Liakopoulos, V.; Roumeliotis, A.; Stamou, A.; Panagoutsos, S.; D’Arrigo, G.; Tripepi, G. Mutual Effect Modification between Adiponectin and HDL as Risk Factors of Cardiovascular Events in Type 2 Diabetes Individuals: A Cohort Study. Int. Urol. Nephrol. 2021, 53, 2583–2591. [Google Scholar] [CrossRef] [PubMed]
- Hafiane, A.; Gasbarrino, K.; Daskalopoulou, S.S. The Role of Adiponectin in Cholesterol Efflux and HDL Biogenesis and Metabolism. Metabolism 2019, 100, 153953. [Google Scholar] [CrossRef]
- Miao, W.; Jiang, L.; Xu, F.; Lyu, J.; Jiang, X.; He, M.; Liu, Y.; Yang, T.; Leak, R.K.; Stetler, R.A.; et al. Adiponectin Ameliorates Hypoperfusive Cognitive Deficits by Boosting a Neuroprotective Microglial Response. Prog. Neurobiol. 2021, 205, 102125. [Google Scholar] [CrossRef]
- Uchida, T.; Ueta, T.; Honjo, M.; Aihara, M. The Neuroprotective Effect of the Adiponectin Receptor Agonist AdipoRon on Glutamate-Induced Cell Death in Rat Primary Retinal Ganglion Cells. J. Ocul. Pharmacol. Ther. 2019, 35, 535–541. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, X.; Wang, J.; Shi, Y.; Hu, Q.; Cui, W.; Bai, H.; Zhou, J.; Du, Y.; Han, L.; et al. Adiponectin/AdiopR1 Signaling Prevents Mitochondrial Dysfunction and Oxidative Injury after Traumatic Brain Injury in a SIRT3 Dependent Manner. Redox Biol. 2022, 54, 102390. [Google Scholar] [CrossRef]
- Ng, R.C.L.; Chan, K.H. Potential Neuroprotective Effects of Adiponectin in Alzheimer’s Disease. Int. J. Mol. Sci. 2017, 18, 592. [Google Scholar] [CrossRef]
- Skou, L.D.; Johansen, S.K.; Okarmus, J.; Meyer, M. Pathogenesis of DJ-1/PARK7-Mediated Parkinson’s Disease. Cells 2024, 13, 296. [Google Scholar] [CrossRef]
- Borsche, M.; Pereira, S.L.; Klein, C.; Grünewald, A. Mitochondria and Parkinson’s Disease: Clinical, Molecular, and Translational Aspects. J. Park. Dis. 2021, 11, 45–60. [Google Scholar] [CrossRef]
- Lind-Holm Mogensen, F.; Scafidi, A.; Poli, A.; Michelucci, A. PARK7/DJ-1 in Microglia: Implications in Parkinson’s Disease and Relevance as a Therapeutic Target. J. Neuroinflamm. 2023, 20, 95. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Geng, J.; Liu, J. Adiponectin Offers Protection against L166P Mutant DJ-1-Induced Neuronal Cytotoxicity Mediated by APPL1-Dependent AMPK Activation. Int. J. Neurosci. 2014, 124, 350–361. [Google Scholar] [CrossRef]
- Dolgacheva, L.P.; Berezhnov, A.V.; Fedotova, E.I.; Zinchenko, V.P.; Abramov, A.Y. Role of DJ-1 in the Mechanism of Pathogenesis of Parkinson’s Disease. J. Bioenerg. Biomembr. 2019, 51, 175–188. [Google Scholar] [CrossRef]
- Huo, X.; Wang, L.; Shao, J.; Zhou, C.; Ying, X.; Zhao, J.; Jin, X. LINC00667 Regulates MPP+-Induced Neuronal Injury in Parkinson’s Disease. Ann. Clin. Transl. Neurol. 2022, 9, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.H.; Liu, Y.; Xue, N.J.; Zheng, R.; Yan, Y.Q.; Wang, Z.X.; Li, Y.L.; Ying, C.Z.; Song, Z.; Tian, J.; et al. Quercetin Protects against MPP+/MPTP-Induced Dopaminergic Neuron Death in Parkinson’s Disease by Inhibiting Ferroptosis. Oxid. Med. Cell. Longev. 2022, 2022, 7769355. [Google Scholar] [CrossRef]
- Alimohammadi, S.; Mohaddes, G.; Keyhanmanesh, R.; Athari, S.Z.; Azizifar, N.; Farajdokht, F. Intranasal AdipoRon Mitigates Motor and Cognitive Deficits in Hemiparkinsonian Rats through Neuroprotective Mechanisms against Oxidative Stress and Synaptic Dysfunction. Neuropharmacology 2025, 262, 110180. [Google Scholar] [CrossRef]
- Park, J.S.; Choe, K.; Lee, H.J.; Park, T.J.; Kim, M.O. Neuroprotective Effects of Osmotin in Parkinson’s Disease-Associated Pathology via the AdipoR1/MAPK/AMPK/MTOR Signaling Pathways. J. Biomed. Sci. 2023, 30, 66. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Sugie, K. Serum Adiponectin Levels between Patients with Parkinson’s Disease and Those with PSP. Neurol. Sci. 2020, 41, 1125–1131. [Google Scholar] [CrossRef]
- Tripathi, D.; Kant, S.; Pandey, S.; Ehtesham, N.Z. Resistin in Metabolism, Inflammation, and Disease. FEBS J. 2020, 287, 3141–3149. [Google Scholar] [CrossRef]
- Acquarone, E.; Monacelli, F.; Borghi, R.; Nencioni, A.; Odetti, P. Resistin: A Reappraisal. Mech. Ageing Dev. 2019, 178, 46–63. [Google Scholar] [CrossRef]
- Jung, H.S.; Park, K.H.; Cho, Y.M.; Chung, S.S.; Cho, H.J.; Cho, S.Y.; Kim, S.J.; Kim, S.Y.; Lee, H.K.; Park, K.S. Resistin Is Secreted from Macrophages in Atheromas and Promotes Atherosclerosis. Cardiovasc. Res. 2006, 69, 76–85. [Google Scholar] [CrossRef]
- Taouis, M.; Benomar, Y. Is Resistin the Master Link between Inflammation and Inflammation-Related Chronic Diseases? Mol. Cell. Endocrinol. 2021, 533, 111341. [Google Scholar] [CrossRef] [PubMed]
- Mri, B. Myoclonus and Angiokeratomas in Adult Galactosialidosis. Mov. Disord. 2011, 26, 756–757. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tian, L.; Shang, Y.; Jiang, J.; Zhang, J.; Wei, J.; Liu, D.; Fang, W.; Zhao, X.; Yu, H.; et al. Resistin-Inhibited Neural Stem Cell-Derived Astrocyte Differentiation Contributes to Permeability Destruction of the Blood–Brain Barrier. Neurochem. Res. 2019, 44, 905–916. [Google Scholar] [CrossRef]
- Lu, D.Y.; Chen, J.H.; Tan, T.W.; Huang, C.Y.; Yeh, W.L.; Hsu, H.C. Resistin Protects against 6-Hydroxydopamine-Induced Cell Death in Dopaminergic-like MES23.5 Cells. J. Cell. Physiol. 2013, 228, 563–571. [Google Scholar] [CrossRef]
- Sakamuru, S.; Zhao, J.; Attene-Ramos, M.S.; Xia, M. Mitochondrial Membrane Potential Assay. Methods Mol. Biol. 2022, 2474, 11–19. [Google Scholar] [CrossRef]
- Travelli, C.; Colombo, G.; Mola, S.; Genazzani, A.A.; Porta, C. NAMPT: A Pleiotropic Modulator of Monocytes and Macrophages. Pharmacol. Res. 2018, 135, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Yoshino, J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obes. Metab. 2013, 3, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; De Giorgis, T.; Kiess, W. Physiological and Pathophysiological Roles of NAMPT and NAD Metabolism. Nat. Rev. Endocrinol. 2015, 11, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Dakroub, A.; Nasser, S.A.; Younis, N.; Bhagani, H.; Al-dhaheri, Y.; Pintus, G.; Eid, A.A.; El-yazbi, A.F.; Eid, A.H. Visfatin: A Possible Role in Cardiovasculo-Metabolic Disorders. Cells 2020, 9, 2444. [Google Scholar] [CrossRef]
- Geyer, M. Novel Antischizophrenia Treatments. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2011; Volume 203. [Google Scholar] [CrossRef]
- Dakroub, A.; Nasser, S.A.; Kobeissy, F.; Yassine, H.M.; Orekhov, A.; Sharifi-Rad, J.; Iratni, R.; El-Yazbi, A.F.; Eid, A.H. Visfatin: An Emerging Adipocytokine Bridging the Gap in the Evolution of Cardiovascular Diseases. J. Cell. Physiol. 2021, 236, 6282–6296. [Google Scholar] [CrossRef]
- Ostrakhovitch, E.A.; Song, E.S.; Macedo, J.K.; Gentry, M.S.; Quintero, J.E.; van Horne, C.; Yamasaki, T.R. Analysis of circulating metabolites to differentiate Parkinson’s disease and essential tremor. Neurosci. Lett. 2022, 19, 202–210. [Google Scholar] [CrossRef]
- Parsons, R.B.; Kocinaj, A.; Ruiz Pulido, G.; Prendergast, S.A.; Parsons, A.E.; Facey, P.D.; Hirth, F. Alpha-Synucleinopathy Reduces NMNAT3 Protein Levels and Neurite Formation That Can Be Rescued by Targeting the NAD+ Pathway. Hum. Mol. Genet. 2022, 31, 2918–2933. [Google Scholar] [CrossRef]
- Santiago, J.A.; Bottero, V.; Potashkin, J.A. Evaluation of RNA Blood Biomarkers in the Parkinson’s Disease Biomarkers Program. Front. Aging Neurosci. 2018, 10, 157. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Shi, W.; Zhang, L.; Liu, S.; Lian, Y.; Liang, S.; Wang, H. Progranulin Regulates Inflammation and Tumor. Antiinflamm. Antiallergy Agents Med. Chem. 2019, 19, 88–102. [Google Scholar] [CrossRef]
- Galimberti, D.; Fenoglio, C.; Scarpini, E. Progranulin as a Therapeutic Target for Dementia. Expert Opin. Ther. Targets 2018, 22, 579–585. [Google Scholar] [CrossRef]
- Horinokita, I.; Hayashi, H.; Oteki, R.; Mizumura, R.; Yamaguchi, T.; Usui, A.; Yuan, B.; Takagi, N. Involvement of Progranulin and Granulin Expression in Inflammatory Responses after Cerebral Ischemia. Int. J. Mol. Sci. 2019, 20, 5210. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Sampognaro, P.J.; Argouarch, A.R.; Maynard, J.C.; Welch, M.; Patwardhan, A.; Courtney, E.C.; Zhang, J.; Mason, A.; Li, K.H.; et al. Processing of progranulin into granulins involves multiple lysosomal proteases and is affected in frontotemporal lobar degeneration. Mol. Neurodegener. 2021, 3, 51. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.J.; Logan, T.; DeVos, S.L.; Di Paolo, G. Lysosomal Functions of Progranulin and Implications for Treatment of Frontotemporal Dementia. Trends Cell Biol. 2023, 33, 324–339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Paushter, D.H.; Feng, T.; Sun, L.; Reinheckel, T.; Hu, F. Lysosomal Processing of Progranulin. Mol. Neurodegener. 2017, 12, 62. [Google Scholar] [CrossRef]
- Jasinska-Myga, B.; Wider, C.; Opala, G.; Krygowska-Wajs, A.; Barcikowska, M. GRN 3 ¢ UTR + 78 C > T Is Not Associated with Risk for Parkinson Õ s Disease. Eur. J. Neurol. 2009, 16, 909–911. [Google Scholar] [CrossRef]
- Nuytemans, K.; Pals, P.; Sleegers, K.; Engelborghs, S.; Corsmit, E.; Peeters, K.; Pickut, B.; Mattheijssens, M.; Cras, P.; De Deyn, P.P.; et al. Progranulin Variability Has No Major Role in Parkinson Disease Genetic Etiology. Neurology 2008, 71, 1147–1151. [Google Scholar] [CrossRef]
- Wauters, E.; Van Mossevelde, S.; Sleegers, K.; Van Der Zee, J.; Engelborghs, S.; Sieben, A.; Vandenberghe, R.; Philtjens, S.; Van Den Broeck, M.; Peeters, K.; et al. Neurobiology of Aging Clinical Variability and Onset Age Modi Fi Ers in an Extended Belgian GRN Founder Family. Neurobiol. Aging 2018, 67, 84–94. [Google Scholar] [CrossRef]
- Brouwers, N.; Nuytemans, K.; van der Zee, J.; Gijselinck, I.; Engelborghs, S.; Theuns, J.; Kumar-Singh, S.; Pickut, B.A.; Pals, P.; Dermaut, B.; et al. Brouwers Alzheimer and Parkinson Diagnoses in Progranulin Null Mutation Carriers in an Extended Founder Family. Arch. Neurol. 2015, 64, 1436–1446. [Google Scholar] [CrossRef]
- Chang, K.; Chen, C.; Chen, Y.; Hsiao, Y.; Huang, C.; Kuo, C.; Hsu, H.; Wu, Y. Association between GRN Rs5848 Polymorphism and Parkinson 9 s Disease in Taiwanese Population. PLoS ONE 2013, 8, 5–8. [Google Scholar] [CrossRef]
- Chen, Y.P.; Cao, B.; Ou, R.W.; Chen, X.P.; Zhao, B.; Wei, Q.Q.; Wu, Y.; Shang, H.F. Association Analysis of the GRN Rs5848 and MAPT Rs242557 Polymorphisms in Parkinson’s Disease and Multiple System Atrophy: A Large-Scale Population-Based Study and Meta-Analysis. Int. J. Neurosci. 2016, 126, 947–954. [Google Scholar] [CrossRef]
- Saracino, D.; Huin, V.; Clot, F.; Cormier, F.; Christophe, J.; Beaufils, E.; Mondon, K.; Andriuta, D.; Brice, A.; Deramecourt, V.; et al. Parkinsonism and Related Disorders Isolated Parkinsonism Is an Atypical Presentation of GRN and C9orf72 Gene Mutations. Park. Relat. Disord. 2020, 80, 73–81. [Google Scholar] [CrossRef]
- Rovelet-Lecrux, A.; Deramecourt, V.; Legallic, S.; Maurage, C.; Le Ber, I.; Brice, A.; Lambert, J.; Frébourg, T.; Hannequin, D.; Pasquier, F.; et al. Deletion of the Progranulin Gene in Patients with Frontotemporal Lobar Degeneration or Parkinson Disease. Neurobiol. Dis. 2008, 31, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Caesar, M.; Felk, S.; Zach, S.; Brønstad, G.; Aasly, J.O.; Gasser, T.; Gillardon, F. Changes in Matrix Metalloprotease Activity and Progranulin Levels May Contribute to the Pathophysiological Function of Mutant Leucine-Rich Repeat Kinase 2. Glia 2014, 62, 1075–1092. [Google Scholar] [CrossRef] [PubMed]
- Mateo, I.; González-Aramburu, I.; Pozueta, A.; Vázquez-Higuera, J.L.; Rodríguez-Rodríguez, E.; Sánchez-Juan, P.; Calero, M.; Dobato, J.L.; Infante, J.; Berciano, J.; et al. Reduced Serum Progranulin Level Might Be Associated with Parkinson’s Disease Risk. Eur. J. Neurol. 2013, 20, 1571–1573. [Google Scholar] [CrossRef] [PubMed]
- Nalls, M.A.; Blauwendraat, C.; Sargent, L.; Vitale, D.; Leonard, H.; Iwaki, H.; Song, Y.; Bandres-ciga, S.; Menden, K.; Faghri, F.; et al. Evidence for GRN Connecting Multiple Neurodegenerative Diseases. Brain Commun. 2021, 3, fcab095. [Google Scholar] [CrossRef] [PubMed]
- Kanthasamy, A.G.; Rangaraju, S. Molecular Signatures of Neuroinflammation Induced by α Synuclein Aggregates in Microglial. Front. Immunol. 2020, 11, 33. [Google Scholar] [CrossRef]
- Van Kampen, J.M.; Baranowski, D.; Kay, D.G. Progranulin Gene Delivery Protects Dopaminergic Neurons in a Mouse Model of Parkinson’s Disease. PLoS ONE 2014, 9, e97032. [Google Scholar] [CrossRef]
- Yao, Y.N.; Da Wang, M.; Tang, X.C.; Wu, B.; Sun, H.M. Reduced Plasma Progranulin Levels Are Associated with the Severity of Parkinson’s Disease. Neurosci. Lett. 2020, 725, 134873. [Google Scholar] [CrossRef]
- Sanchez-Mirasierra, I.; Ghimire, S.; Hernandez-Diaz, S.; Soukup, S.F. Targeting Macroautophagy as a Therapeutic Opportunity to Treat Parkinson’s Disease. Front. Cell Dev. Biol. 2022, 10, 921314. [Google Scholar] [CrossRef]








| Study Characteristics | Results | References |
|---|---|---|
| 27 PD subjects: 11 weight loss 16 without weight loss 12 control subjects | BMI and fat tissue content positively correlated with leptin levels in PD patients. No correlation was observed between leptin and GH or IGF-1. | Fiszer et al. [23] |
| 23 PD subjects after STN-DBS | Weight gain is associated with improvements in tremor and bradykinesia during the off-medication phase, with a significant correlation observed between changes in leptin levels and these improvements. | Markaki et al. [24] |
| 35 PD subjects 51 control subjects | Statistically insignificant lower leptin levels were observed in PD patients compared to healthy controls. Men showed lower levels than women. A correlation was found between disease duration and BMI in PD patients and controls. UPDRS I: A significant correlation was observed with leptin in both genders. UPDRS II: Correlation with leptin only in women. In men, leptin was negatively correlated with disease duration. Overall, patients with lower BMI tended to have higher UPDRS scores. | Salari et al. [18] |
| 30 PD subjects 30 control subjects | Leptin levels were similar in patients with PD compared to controls. Leptin levels correlated with weight, waist circumference, and BMI in PD, but not with disease duration or dopamine dosage. | Kenangil et al. [33] |
| 36 PD subjects: 18 with unintended weight loss 18 with stable weight | Lower leptin levels were observed in PD patients with documented weight loss, despite no significant differences in appetite, hunger, fullness, food intake, and thirst before meals. | Evidente et al. [35] |
| 26 PD subjects: 14 newly diagnosed, untreated patients 12 advanced PD patients 26 controls | Correlation between leptin and body fat mass in both PD patients and controls. Patients who lost weight had lower leptin levels than those who did not. | Lorefält et al. [31] |
| 40 PD subjects 25 controls | Significant gender differences in leptin levels in PD, but no correlation with clinical indicators of PD. | Ozdilek et al. [37] |
| 55 PD subjects 25 controls | Leptin correlated with BMI and orthostatic systolic blood pressure changes in patients with PD. | Nakamura et al. [38] |
| 44 PD subjects: 20 No dyskinesia 24 With dyskinesia 20 control subjects | Leptin levels were significantly lower in PD patients than in the control group, with the lowest values in patients without dyskinesia. | Milanowski et al. [15] |
| 40 PD subjects 25 control subjects | In PD, higher leptin levels correlated with older age and higher BMI. | Rocha et al. [32] |
| 37 PD subjects with advanced PD undergoing bilateral STN-DBS. | Leptin increased significantly over 6 months post-surgery. At study end, leptin correlated positively with neuropeptide Y in surgically treated patients. In the non-STN-DBS group, neuropeptide Y levels correlated negatively with changes in leptin. | Escamilla-Sevilla et al. [29] |
| 54 PD subjects 55 controls | Leptin correlated significantly with total body fat content, whereas changes in body mass correlated with PD duration. | Bernhardt et al. [34] |
| 47 PD subjects: 15 bilateral DBS 16 on L-DOPA treatment 16 no L-DOPA treatment 16 controls | Leptin was reduced in PD and increased after DBS, reaching control levels. | Carrillo et al. [30] |
| MN9D cells treated with 6-OHDA. | Leptin reversed 6-OHDA-induced cell death in a dose-dependent manner. No protection was observed after JAK2 and GRB2 knockdown. | Weng et al. [40] |
| SH-SY5Y cell line treated with MPP+ | Leptin induced cell proliferation, counteracting the decrease caused by MPP+. Leptin also preserved mitochondrial membrane potential and ATP levels, while increasing the expression of UCP2 and UCP4. | Ho et al. [48] |
| Adult male rats exposed to leptin and H2S. | 6-OHDA reduced leptin production in the rat substantia nigra, and H2S reversed this effect. Blocking the leptin signaling pathway reversed the H2S-mediated protective effect against 6-OHDA-induced disruption of the Warburg effect in the substantia nigra. | Yang et al. [20] |
| Rats treated with 6-OHDA, NaHS, and Leptin-OBR. | NaHS increased leptin expression after prior 6-OHDA administration in the rat substantia nigra. Leptin-OBR antibody administration reversed the effects of NaHS, resulting in reduced caspase-3 activity, increased Bax expression, and decreased Bcl-2 expression. Leptin-OBR administration also reduced the number of autophagosomes and increased the number of autolysosomes in rats treated with 6-OHDA. | Jiang et al. [42] |
| Male WT rats and LRRK2 exon 41-KO mice | Leptin levels in KO mice on a high-fat diet were slightly lower than in WT mice, but this difference was not statistically significant. | Kawakami et al. [46] |
| T53A SNCA mutant and WT male mice assessed for leptin levels. | Mice with the T53A mutation in the human SNCA gene had lower leptin levels compared to WT mice. After 12 weeks of a high-calorie diet, leptin levels increased significantly in WT mice but remained substantially lower in SNCA mice under the same dietary conditions. | Rothman et al. [47] |
| Study Characteristics | Results | References |
|---|---|---|
| 44 PD subjects: -20 No dyskinesia -24 With dyskinesia 20 control subjects | Higher levels of resistin were observed in patients with dyskinesia than in those without. A positive correlation with the Hoehn and Yale scale. | Milanowski et al. [15] |
| 40 PD subjects 25 control subjects | No significant changes detected. | Rocha et al. [32] |
| C57/BL6 mice injected with resistin into the lateral ventricles of the brain, followed by immunofluorescence analysis of brain tissue. HBMEC cells incubated with resistin. | A decrease in the number of GFAP+/BrdU+ cells after resistin treatment indicates that resistin may inhibit astrocyte differentiation. | Xiaoying et al. [83] |
| MES23.5 cells. | Resistin reversed the effects of 6-OHDA on pro-apoptotic properties, reduced intracellular ROS, protected against the decline in mitochondrial membrane potential, decreased levels of caspase 3 and PARP-1/2, and induced an increase in Hsc73. | Lu et al. [84] |
| Study Characteristics | Results | References |
|---|---|---|
| 18 patients undergoing DBS surgery: -11 PD subjects -7 ET subjects | NAMPT and NADH increased significantly in PD patients. | Ostrakhovitch et al. [92] |
| 52 PD subjects: -26 no dyskinesia -26 with dyskinesia 26 control subjects | NAMPT correlated with fibrinogen; NAMPT levels were significantly higher in the group without dyskinesia than in the group with dyskinesia. | Milanowski et al. [16] |
| Post-mortem examination of NAMPT and NMNAT in the caudate nucleus vs. monomeric alpha-synuclein | FK866, an inhibitor of NAMPT, may support neurons against the expression of alpha-synuclein in DA neuron-like SH-SY5Y cells | Parsons et al. [93] |
| mRNA NAMPT evaluated in PD patients | mRNA NAMPT 69% accurate in distinguishing progressive supranuclear palsy from healthy controls; no such conclusions drawn for PD and atypical Parkinsonian disorders. | Santiago et al. [94] |
| Study Characteristics | Results | References |
|---|---|---|
| 771 PD subjects 642 controls | No correlation found between the GRN rs5848 T allele and PD in US, Polish, and combined datasets. The rs5848 TT genotype occurrence is comparable between PD patients and controls. | Jasinska-Myga et al. [101] |
| 573 PD subjects 490 controls | The GRN rs5848 SNP was found to affect PD susceptibility in Taiwanese individuals. A higher prevalence was observed in individuals with the TT genotype, particularly among females. | Chang et al. [105] |
| 1270 PD subjects 830 controls | The minor allele T of the GRN rs5848 gene is less common in patients with PD than in controls. The GRN rs5458 variant is associated with a reduced risk of PD in the Chinese population. | Chen et al. [106] |
| 255 PD subjects 459 controls | In the Belgian population, no association was found between PD and mutations in the PGRN gene. | Nuytemans et al. [102] |
| Data from the three most extensive publicly available studies on AD, PD, and ALS for the GRN gene. | The strongest association with genomic variation at the GRN gene was observed in PD, compared to AD and ALS. | Nalls et al. [111] |
| 7 PD subjects | Postural tremor associated with GRN mutations in PD. | Saracino et al. [107] |
| 43 PD subjects | Serum GRN levels are lower in Belgian patients. No correlation between age at symptom onset and GRN levels. | Wauters et al. [103] |
| 52 PD subjects: -26 No dyskinesia -26 With dyskinesia 26 control subjects | Lower PGRN levels were found in patients without dyskinesia compared to healthy controls. A correlation was detected between PGRN and fibrinogen in the dyskinetic group. | Milanowski et al. [16] |
| 63 FTLD subjects | Intrafamilial clinical heterogeneity observed. Different diagnoses given within the family; Parkinsonism in the course of FTLD or PD has not been ruled out. Cortico-subcortical atrophy ipsilateral to the dominant Parkinsonian syndrome was detected post-mortem. | Rovelet-Lecrux et al. [108] |
| 55 PD subjects 55 controls | PGRN levels are significantly lower than in controls. PGRN levels correlated with the HY score and negatively correlated with UPDRS I-IV and PSQ-39. A negative correlation was observed with disease duration, but not with age. | Yao et al. [114] |
| 304 PD subjects 126 controls | The average GRN is significantly lower than in healthy controls. Minor G allele in the rs646776 polymorphism associated with lower serum GRN levels. Age, sex, and rs5848 polymorphism did not influence GRN levels in serum in any subgroup. | Mateo et al. [110] |
| 255 PD subjects | The clinical diagnosis of PD in individuals with null mutations in PGRN is likely due to etiological heterogeneity rather than PGRN haploinsufficiency. | Brouwers et al. [104] |
| 9 LRRK2(G2019S) mutation carriers 9 controls | PGRN reduced in mouse fibroblasts (LRRK2(R1441G)) and human fibroblasts (LRRK2(G2019S)). Increased pro-inflammatory factors (IL1B, keratinocyte-derived chemokine) were observed. MMP-2 increased, MMP-9 decreased in microglia (LRRK2(R1441G)). Increased synaptic MMP activity noted. PGRN levels decreased in presymptomatic mice with LRRK2 mutation, increased in symptomatic aging mice, and in PD patients with LRRK2 mutations. | Caesar et al. [109] |
| PCR, immunohistochemistry, and functional studies were conducted on a mouse microglial cell model. | Progranulin levels decreased during PD progression, indicating dysfunction in lysosomal and autophagy pathways. αSyn is implicated in reducing PGRN levels at both mRNA and protein levels in mouse microglial neuroinflammation. | Kanthasamy et al. [112] |
| Mice with lentiviral-modified substantia nigra, MPTP-induced Parkinsonism. | PGRN prevented motor slowdown and reduced locomotor activity after MPTP treatment, protected neurons in the nigrostriatal pathway from MPTP-induced damage, preserved dopamine levels in the striatum, inhibited caspase-3 activity and apoptosis induction, and attenuated microglial activation in the striatum and substantia nigra. | Kampen et al. [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milanowski, J.; Pawłowska, M.; Woźniak, A.; Szewczyk-Golec, K. Summarizing the Role of Selected Adipokines in Parkinson’s Disease: What Is Known About Leptin, Adiponectin, Resistin, Visfatin, and Progranulin in Neurodegeneration? Molecules 2025, 30, 4431. https://doi.org/10.3390/molecules30224431
Milanowski J, Pawłowska M, Woźniak A, Szewczyk-Golec K. Summarizing the Role of Selected Adipokines in Parkinson’s Disease: What Is Known About Leptin, Adiponectin, Resistin, Visfatin, and Progranulin in Neurodegeneration? Molecules. 2025; 30(22):4431. https://doi.org/10.3390/molecules30224431
Chicago/Turabian StyleMilanowski, Jan, Marta Pawłowska, Alina Woźniak, and Karolina Szewczyk-Golec. 2025. "Summarizing the Role of Selected Adipokines in Parkinson’s Disease: What Is Known About Leptin, Adiponectin, Resistin, Visfatin, and Progranulin in Neurodegeneration?" Molecules 30, no. 22: 4431. https://doi.org/10.3390/molecules30224431
APA StyleMilanowski, J., Pawłowska, M., Woźniak, A., & Szewczyk-Golec, K. (2025). Summarizing the Role of Selected Adipokines in Parkinson’s Disease: What Is Known About Leptin, Adiponectin, Resistin, Visfatin, and Progranulin in Neurodegeneration? Molecules, 30(22), 4431. https://doi.org/10.3390/molecules30224431

