Cobalt-Catalyzed C–Se Bond Activation: Cross-Coupling of Organoselenides with Grignard Reagents
Abstract
1. Introduction
2. Results & Discussion
3. Materials and Methods
General Procedure for the Cobalt-Catalyzed Cross-Coupling Reaction of Organoselenides with Organomagnesium Reagents
Spectral Data of Synthesized Products (3a–3j, 5a–5c, 7a, 9a)
- (Z)-1-methoxy-4-styrylbenzene 3a [44]. Yield: 83% (0.035 g), colorless liquid. RMN 1H (CDCl3, 500 MHz): δ = 7.27–7.17 (m, 7H); 6.75 (d, J = 8.7 Hz, 2H); 6.54–6.48 (m, 2H); 3.77 (s, 3H). RMN 13C (CDCl3, 125 MHz): δ = 158.60; 135.56; 137.57; 130.16; 129.78; 129.67; 128.83; 128.77; 128.25; 126.9; 55.20.
- (Z)-1-methil-4-styrylbenzene 3b [45]. Yield: 87% (0.034 g), colorless liquid. RMN 1H (CDCl3, 500 MHz): δ = 7.46 (d, J = 7.9 Hz, 3H); 7.25–7.12 (m, 5H); 6.54 (s, 1H); 2.37 (s, 3H). RMN 13C (CDCl3, 125 MHz): δ = 138.49; 136.91; 130.41; 129.64; 129.11; 129.05; 128.99; 128.37; 128.39; 127.02; 21.25.
- (Z)-1,2-diphenylethene 3c [44]. Yield: 72% (0.026 g), colorless liquid. RMN 1H (CDCl3, 500 MHz): δ = 7.65 (d, J = 7.2 Hz, 1H); 7.50 (t, J = 7,7 Hz, 1H) 7.43–7.39 (m, 1H); 7.31–7.23 (m, 7H); 6.66 (s, 2H). RMN 13C (CDCl3, 125 MHz): δ = 137.29, 130.29, 128.92, 128.25, 127.13.
- (Z)-1-fluoro-4-styrylbenzene 3d [44]. Yield: 63% (0.024 g), colorless liquid. RMN 1H (CDCl3, 500 MHz): δ = 7.49–7.46 (m, 1H); 7.22–7.17 (m, 5H); 7.12–7,09 (m, 1H); 6,91–6.87 (m, 2H); 6,56 (q, J = 12.1 Hz, 2H). RMN 13C (CDCl3, 125 MHz): δ = 161,97 (d, J = 246.6 Hz); 137.24; 1336.37 (d, J = 3.4 HZ); 130.73 (d, 7.9 Hz); 130.46; 129.28, 129.03; 128.51; 127.40; 115.45 (d, J = 21.4 Hz).
- (Z)-1-methoxy-4-(4-methylstyryl)benzene 3f [45]. Yield: 87% (0.0386 g), colorless liquid. RMN 1H (CDCl3, 500 MHz): δ = 7.21–7.14 (m, 4H); 7.03 (d, J = 8.0 Hz, 2H); 6.75 (d, J = 8.7 Hz, 2H); 6.47 (s, 2H); 2.31 (s, 3H); 3.79 (s, 3H); 2.33 (s, 3H). RMN 13C (CDCl3, 125 MHz): δ = 158.60; 136.65; 134.63; 130.28; 130.12; 129.12; 128.94; 128.76; 128.76; 113.58; 55.20; 21.25.
- (Z)-1-methoxy-4-(4-methylstyryl)benzene 3g [44]. Yield: 69% (0.031 g), colorless liquid. RMN 1H (CDCl3, 500 MHz): δ = 7.22–7.17 (m, 4H); 7.05 (d, J = 8.0 Hz, 2H); 6.77 (d, J = 8.7 Hz, 2H); 6.49 (s, 2H); 2.31 (s, 3H); 3.79 (s, 3H); 2.33 (s, 3H). RMN 13C (CDCl3, 125 MHz): δ = 158.68; 136.81; 134.80; 130.29; 130.12; 129.28; 129.11; 128.93; 128.90; 113.75; 55.35; 21.42.
- (Z)-1-choro-4-(4-methoxystyryl)benzene 3h [46]. Yield: 77% (0.038 g), colorless liquid. RMN 1H (CDCl3, 500 MHz): δ = 7.17 (d, J = 7.3 Hz, 4H); 7.15 (d, J = 8.6 Hz, 2H); 6.75 (d, J = 8.6 Hz, 2H); 6.49 (s, 2H); 6.53 (d, J = 12.1 Hz, 1H); 6.42 (d, J = 12.1 Hz, 1H); 3.79 (s, 3H). RMN 13C (CDCl3, 125 MHz): δ = 158.68; 136.81; 134.80; 130.29; 130.12; 129.28; 129.11; 128.93; 128.90; 113.75; 55.35.
- (Z)-1-methoxy-4-(4-(trifluoromethyl)ystyryl)benzene 3i [47]. Yield: 69% (0.038 g), colorless liquid. RMN 1H (CDCl3, 500 MHz): 7.46 (d, J = 8.1 Hz, 2H); 7.35 (d, J = 8.1 Hz, 2H); 7.14 (d, J = 8.6 Hz, 2H); 6.76 (d, J = 8.6 Hz, 2H); 6.63 (d, J = 12.2 Hz, 1H); 6.48 (d, J = 12.2 Hz, 1H); 3.78 (s, 3H). RMN 13C (CDCl3, 125 MHz): δ = 159.25; 141.53; 132.02; 130.38; 129.28; 129.11; 127.41; 125.37 (q, J = 3.8 Hz); 123.34; 113.99; 54.42.
- (Z)-3-(4-mehoxyphenyl)prop-2-en-1-ol 3j [44]. Yield: 43% (0.013 g), colorless liquid. RMN 1H (CDCl3, 500 MHz): 7.14 (d, J = 8.6 Hz, 2H); 6.85 (d, J = 8.6 Hz, 2H); 6.49 (d, J = 11.6 Hz, 1H); 5.78–5.73 (m, 1H); 4.41 (d, J = 6.4 Hz, 1H); 3.80 (s, 3H). RMN 13C (CDCl3, 125 MHz): δ = 158.75; 130.67; 130.11; 129.41; 127.15; 113.71; 59.78; 55.29.
- 2-(4-methoxyphenyl)pyridine5a [30]. Yield: 83% (0.031 g), colorless solid. RMN 1H (CDCl3, 500 MHz): δ = 8.63 (ddd, J = 4.8, 1.6, 1.0 Hz, 1H); 7.95–7.91 (m, 2H); 7.71–7.63 (m, 2H); 7.15 (ddd, J = 7.2, 4.8, 1.3 Hz, 1H); 7.71–7.63 (m, 2H); 3.84 (s, 3H). RMN 13C (CDCl3, 125 MHz): δ = 160.65; 157.29; 149.93; 136.85; 132.24; 128.19; 121.67; 120.00; 114.41; 55.44.
- 2-(p-tolyl)pyridine5b [48]. Yield: 73% (0.025 g), colorless solid. RMN 1H (CDCl3, 500 MHz): δ = 8.66 (ddd, J = 4.8, 1.6, 1.0 Hz, 1H); 7.87 (d, J = 8.2 Hz, 1H); 7.73–7.67 (m, 2H); 7.26 (d, J = 8.2 Hz, 1H); 7.18 (ddd, J = 6.7, 4.8, 1.6, Hz, 1H); 3.84 (s, 3H). RMN 13C (CDCl3, 125 MHz): δ = 157.70; 149.68; 139.19; 136.91; 129.69; 126.88; 122.01; 120.37; 115.36; 21.47.
- 2-(4-chorophenyl)pyridine5c [48]. Yield: 61% (0.023 g), colorless solid. RMN 1H (CDCl3, 500 MHz): δ = 8.71 (ddd, J = 4.8, 1.6, 1.0 Hz, 1H); 7.96 (d, J = 7.9 Hz, 2H); 7.77 (td, J = 7.7, 1.7 Hz, 2H); 7.72 (d, J = 8.0 Hz, 2H); 7.47 (d, J = 7.9 Hz, 2H); 7.28–7.25 (m, 1H). RMN 13C (CDCl3, 125 MHz): δ = 156.42; 150.00; 138.01; 137.13; 129.16; 128.37; 122.56; 120.40.
- 1-methoxy-4-(phenylethynyl)benzene7a [30]. Yield: 35% (0.015 g), colorless solid. RMN 1H (CDCl3, 500 MHz): δ = 7.51–7.49 (m, 2H); 7.45 (d, J = 8.6 Hz, 2H); 7.34–7.29 (m, 3H); 6.86. (d, J = 8.6 Hz, 2H); 3.81 (s, 3H). RMN 13C (CDCl3, 125 MHz): δ = 159.23; 133.20; 131.66; 128.61; 128.09; 123.66; 115.49; 114.13; 89.57; 88.23; 55.51.
- 4-methoxy-1,1′-biphenyl9a [30]. Yield: 61% (0.022 g), white solid. RMN 1H (CDCl3, 500 MHz): δ = 7.55–7.51 (m, 4H); 7.42–7.39 (m, 2H); 7.31–7.28 (m, 1H); 6.97 (d, J = 8.6 Hz, 2H); 3.84 (s, 3H). RMN 13C (CDCl3, 125 MHz): δ = 159.34; 141.03; 135.44; 133.92; 128.92; 128.36; 126.94; 114.29; 55.55.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korch, K.M.; Watson, D.A. Cross-Coupling of Heteroatomic Electrophiles. Chem. Rev. 2019, 119, 8192–8228. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2010, 49, 9047–9050. [Google Scholar] [CrossRef] [PubMed]
- Beletskaya, I.P.; Alonso, F.; Tyurin, V. The Suzuki-Miyaura reaction after the Nobel prize. Coord. Chem. Rev. 2019, 385, 137–173. [Google Scholar] [CrossRef]
- Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett. 1979, 36, 3437. [Google Scholar] [CrossRef]
- Tamao, K.; Sumitani, K.; Kumada, M. Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J. Am. Chem. Soc. 1972, 94, 4374. [Google Scholar] [CrossRef]
- Sonogashira, K.; Tohda, Y.; Hasihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975, 50, 4467. [Google Scholar] [CrossRef]
- Milstein, D.; Stille, K. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J. Am. Chem. Soc. 1978, 100, 3636. [Google Scholar] [CrossRef]
- King, A.O.; Okukado, N.; Negishi, E. Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J. Chem. Soc. Chem. Commun. 1977, 683–684. [Google Scholar] [CrossRef]
- Fujita, M.; Hiyama, T. Fluoride ion-catalyzed reduction of aldehydes and ketones with hydrosilanes. Synthetic and mechanistic aspects and an application to the threo-directed reduction of .alpha.-substituted alkanones. J. Org. Chem. 1988, 53, 5405–5415. [Google Scholar] [CrossRef]
- Gu, D.-Y.; Li, B.-J.; Shi, Z.-J. Exploration of New C–O Electrophiles in Cross-Coupling Reactions. Acc. Chem. Res. 2010, 43, 1486–1495. [Google Scholar]
- Oliveira, J.A.; Dhawa, U.; Ackermann, L. Insights into the Mechanism of Low-Valent Cobalt-Catalyzed C–H Activation. ACS Catal. 2021, 11, 1505–1515. [Google Scholar] [CrossRef]
- Cattani, S.; Pandit, N.K.; Buccio, M.; Balestri, D.; Ackermann, L.; Cera, G. Iron-Catalyzed C–H Alkylation/Ring Opening with Vinylbenzofurans Enabled by Triazoles. Angew. Chem. Int. Ed. 2024, 63, e202404319. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Bore, S.L.; Eisestein, O. The fellowship of the Grignard: 21st century computational tools for hundred-year-old chemistry. Chem. Sci. 2025, 16, 8196–8216. [Google Scholar] [CrossRef] [PubMed]
- Kharasch, M.S.; Field, E.K. Factors Determining the Course and Mechanisms of Grignard Reactions. IV. The Effect of Metallic Halides on the Reaction of Aryl Grignard Reagents and Organic Halides. J. Am. Chem. Soc. 1941, 63, 2316–2320. [Google Scholar] [CrossRef]
- Dai, W.; Xiao, J.; Jin, G.; Xu, J.; Cao, S. Palladium- and Nickel-Catalyzed Kumada Cross-Coupling Reactions of gem-Difluoroalkenes and Monofluoroalkenes with Grignard Reagents. J. Org. Chem. 2014, 79, 10537–10546. [Google Scholar] [CrossRef]
- Gärtner, D.; Stein, A.L.; Grupe, S.; Arp, J.; Wangelin, A.J. Iron-Catalyzed Cross-Coupling of Alkenyl Acetates. Angew. Chem. Int. Ed. 2015, 54, 10545–10549. [Google Scholar] [CrossRef]
- Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: Emphasis on synthetic organoselenium compounds. Arch. Toxicol. 2011, 85, 1313–1359. [Google Scholar] [CrossRef]
- Vendruscolo, S.J.; de Oliveira, A.J.; de Sousa, J.R.; Targanski, S.; Stein, A.L.; de Vasconcelos, L.G.; Ferreira, P.A.; Soares, M.A. Nematicidal and ovicidal activity of environmentally-friendly selenol ester derivatives against Meloidogyne incognita. J. Pest Sci. 2024, 97, 2257–2272. [Google Scholar] [CrossRef]
- Braga, A.L.; Rafique, J. Synthesis of biologically relevant small molecules containing selenium. Part B. Anti-infective and anticancer Compounds. In The Chemistry of Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013; Volume 4, pp. 1053–1117. [Google Scholar]
- Organoselenium Chemistry. In Topics in Current Chemistry 208; Wirth, T., Ed.; Springer: Heidelberg, Germany, 2000. [Google Scholar]
- Krief, A. Comprehensive Organometallic Chemistry II; Abel, E.V., Stone, F.G.A., Wilkinson, G., Eds.; Pergamon Press: New York, NY, USA, 1995; Volume 11, Chapter 13. [Google Scholar]
- Chuai, H.; Zhang, S.-Q.; Bai, H.; Li, J.; Wang, Y.; Sun, J.; Wen, E.; Zhang, J.; Xin, M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur. J. Med. Chem. 2021, 223, 113621. [Google Scholar] [CrossRef]
- Ma, Y.-T.; Miao-Chang Liu, M.-C.; Zhou, Y.-B.; Wua, H.-Y. Synthesis of Organoselenium Compounds with Elemental Selenium. Adv. Synth. Catal. 2021, 363, 5386–5406. [Google Scholar] [CrossRef]
- Doerner, C.V.; Neto, J.; Cabreira, C.; Saba, S.; Sandjo, L.P.; Rafique, J.; Braga, A.L.; de Assis, F.F. Synthesis of 3-selanyl-isoflavones from 2-hydroxyphenyl enaminones using trichloroisocyanuric acid (TCCA): A sustainable approach. New J. Chem. 2023, 47, 5598–5602. [Google Scholar] [CrossRef]
- Moraes, C.A.O.; Santos, R.B.C.; Cavalcante, M.F.O.; Guilhermi, J.S.; Ali, M.A.; Botteselle, G.V.; Frizon, T.E.A.; Shah, M.I.A.; Liao, L.M.; Beatriz, A.; et al. Urea Hydrogen Peroxide and Ethyl Lactate, an Eco-Friendly Combo System in the Direct C(sp2)–H Bond Selenylation of Imidazo[2,1-b]thiazole and Related Structures. ACS Omega 2023, 8, 39535–39545. [Google Scholar] [CrossRef] [PubMed]
- Zeni, G.; Godoi, B.; Jurinic, C.K.; Belladona, A.L.; Schumacher, R.F. Transition Metal-Free Synthesis of Carbo- and Heterocycles via Reaction of Alkynes with Organylchalcogenides. Chem. Rec. 2021, 21, 2880–2895. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.; Arsenyan, P. Rise of diselenides: Recent advances in the synthesis of heteroarylselenides. Coord. Chem. Rev. 2018, 370, 55–68. [Google Scholar] [CrossRef]
- Ehhalt, L.E.; Beleh, O.M.; Prest, I.C.; Mouat, J.M.; Olszewski, A.K.; Ahern, B.N.; Cruz, A.R.; Chi, B.K.; Castro, A.J.; Kang, K.; et al. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem. Rev. 2024, 124, 13397–13569. [Google Scholar] [CrossRef]
- Jana, R.; Pathak, T.P.; Sigman, M.S. Advances in Transition Metal (Pd, Ni, Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-organometallics as Reaction Partners. Chem. Rev. 2011, 111, 1417–1492. [Google Scholar] [CrossRef]
- Stein, A.L.; Bilheri, F.N.; Zeni, G. Application of organoselenides in the Suzuki, Negishi, Sonogashira and Kumada cross-coupling reactions. Chem. Commun. 2015, 51, 15522–15525. [Google Scholar] [CrossRef]
- Silveira, C.C.; Mendes, S.R.; Wolf, L. Iron-catalyzed coupling reactions of vinylic chalcogenides with Grignard reagents. J. Braz. Chem. Soc. 2010, 11, 2138–2145. [Google Scholar] [CrossRef]
- Kumar, S.; Sapra, S.; Singh, B. Nickel-Catalyzed Cross-Coupling of Aryl Alkyl Selenides with Aryl Bromides: Cross-Coupling Between Two Electrophiles. Adv. Synth. Catal. 2024, 366, 4528–4534. [Google Scholar] [CrossRef]
- de Oliveira, A.J.; de Oliveira, S.A.; Vasconcelos, L.G.; Dall’oglio, E.L.; Vieira, L.C.C.; Stein, A.L. Synthesis of selenol esters via the reaction of acyl chlorides with diselenides in the presence of Zn dust catalyzed by CoCl2·6H2O. Tetrahedron Lett. 2021, 80, 153317. [Google Scholar] [CrossRef]
- Duarte, J.S.; de Oliveira, S.A.; da Silva, E.C.O.; de Jesus, A.P.V.; Vasconcelos, L.G.; de Sousa Júnior, P.T.; Rafique, J.; Saba, S.; Stein, A.l. Transition-Metal Free, One Pot Synthesis of Selenoesters via Reaction of Alkyl Selenides and Acyl Chlorides. Asian J. Org. Chem. 2023, 12, e202300474. [Google Scholar] [CrossRef]
- Botteselle, G.V.; Elias, W.C.; Bettanin, L.; Canto, R.F.S.; Salin, D.N.O.; Barbosa, F.A.R.; Saba, S.; Gallardo, H.; Ciancaleoni, G.; Domingo, J.B.; et al. Catalytic Antioxidant Activity of Bis-Aniline-Derived Diselenides as GPx Mimics. Molecules 2021, 26, 4446. [Google Scholar] [CrossRef] [PubMed]
- Rafique, J.; Farias, G.; Saba, S.; Zapp, E.; Bellettini, I.C.; Salla, C.A.M.; Bechtold, I.H.; Scheide, M.R.; Neto, J.S.S.; de Souza Junior, D.M. Selenylated-oxadiazoles as promising DNA intercalators: Synthesis, electronic structure, DNA interaction and cleavage. Dyes Pigm. 2020, 180, 108519. [Google Scholar] [CrossRef] [PubMed]
- Doerner, C.V.; Scheide, M.R.; Nicoleti, C.R.; Durigon, D.C.; Idiarte, V.D.; Sousa, M.J.A.; Mendes, S.R.; Saba, S.; Neto, J.S.S.; Martins, G.M.; et al. Versatile Electrochemical Synthesis of Selenylbenzo[b]Furan Derivatives Through the Cyclization of 2-Alkynylphenols. Front. Chem. 2022, 10, 880099. [Google Scholar] [CrossRef]
- Rocha, M.S.T.; Rafique, J.; Saba, S.; Azerdo, J.B.; Back, D.; Godoi, M.; Braga, A.L. Regioselective hydrothiolation of terminal acetylene catalyzed by magnetite (Fe3O4) nanoparticles. Synth. Commun. 2017, 47, 291–298. [Google Scholar] [CrossRef]
- Tornquist, B.L.; Bueno, G.P.; Willing, J.C.M.; Oliveira, I.M.; Stefani, H.A.; Rafique, J.; Saba, S.; Iglesis, B.I.; Botteselle, G.V.; Manrin, F. Ytterbium (III) triflate/Sodium Dodecyl Sulfate: A Versatile Recyclable and Water-Tolerant Catalyst for the Synthesis of Bis(indolyl)methanes (BIMs). ChemistrySelect 2018, 3, 6358–6363. [Google Scholar] [CrossRef]
- Godoi, M.; Botteselle, G.V.; Rafique, J.; Rocha, M.S.T.; Pena, J.P.; Braga, A.L. Solvent-Free Fmoc Protection of Amines Under Microwave Irradiation. Asian J. Org. Chem. 2013, 2, 746–749. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Yorimitsu, H.; Oshima, K. Cobalt-Catalyzed Tandem Radical Cyclization and Cross-Coupling Reaction: Its Application to Benzyl-Substituted Heterocycles. J. Am. Chem. Soc. 2001, 123, 5374–5375. [Google Scholar] [CrossRef]
- Ohmiya, H.; Wakabayashi, K.; Yorimitsu, H.; Oshima, K. Reductive cyclization caused by cobaloxime. I. A new method for the synthesis of .beta.-methylene-.gamma.-butyrolactones. Tetrahedron 2006, 62, 2207–2213. [Google Scholar] [CrossRef]
- Shirakawa, E.; Sato, T.; Imazaki, Y.; Kimura, T.; Hayashi, T. Cobalt-catalyzed cross-coupling of alkynyl Grignard reagents with alkenyl triflates. Chem. Commun. 2007, 4513–4515. [Google Scholar] [CrossRef]
- Chen, C.; Huang, Y.; Zhang, Z.; Xiu-Qin Dong, X.-Q.; Zhang, X. Cobalt-catalyzed (Z)-selective semihydrogenation of alkynes with molecular hydrogen. Chem. Commun. 2017, 53, 4612–4615. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhou, Y.; Li, Y. PVC-NHC-Pd(0): An efficient and reusable heterogeneous catalyst for highly cis-selective semihydrogenation of alkynes using formic acid as hydrogen source. Inorg. Chem. Commun. 2021, 134, 109014. [Google Scholar] [CrossRef]
- Wu, J.; Li, D.; Zhang, D. Aqueous Wittig reactions of aldehydes with in situ formed semistabilized phosphorus ylides. Synth. Commun. 2005, 35, 2543–2551. [Google Scholar] [CrossRef]
- Goraia, M.; Franzenb, J.H.; Rotering, P.; Rüffera, T.; Dielmann, F.; Teichert, J.F. Broadly Applicable Copper(I)-Catalyzed Alkyne Semihydrogenation and Hydrogenation of α,β-Unsaturated Amides Enabled by Bifunctional Iminopyridine Ligands. J. Am. Chem. Soc. 2025, 147, 14481–14490. [Google Scholar] [CrossRef]
- Yu, X.; Tang, J.; Jin, X.; Yamamoto, Y.; Bao, M. Manganese-Catalyzed C–H Cyanation of Arenes with N-Cyano-N-(4-methoxy)phenyl-p-toluenesulfonamide. Asian J. Org. Chem. 2018, 7, 550–553. [Google Scholar] [CrossRef]



![]() | ||||
| Entry | CoCl2 (mol%) | Solvent | Temp. (°C) | Yield 3a (%) [b] |
|---|---|---|---|---|
| 1 | 10 | THF | 0 | 50 |
| 2 | 10 | THF/NMP (2:1) | 0 | 28 |
| 3 | 10 | THF/Et3N (2:1) | 0 | 40 |
| 4 | 10 | THF | 25 | 44 |
| 5 | 5 | THF | 25 | 46 |
| 6 | 5 | THF | 0 | 65 |
| 7 | 2 | THF | 0 | 62 |
| 8 | - | THF | 0 | 0 |
| 9 | 2 | THF | 0 | 73 [c] |
| 10 | 5 | THF | 0 | 83 [c] |
| 11 | 5 | THF | 25 | 58 [c] |
| 12 | 5 | THF | 0 | 81 [c,d] |
![]() | |||
| Entry | 1RSeBu 1 | R2MgBr 2 | Yield 3 (%) [b] |
|---|---|---|---|
| 1 | ![]() | ![]() | ![]() |
| 2 | ![]() | ![]() | ![]() |
| 3 | ![]() | ![]() | ![]() |
| 4 | ![]() | ![]() | ![]() |
| 5 [c] | ![]() | ![]() | ![]() |
| 6 | ![]() | ![]() | ![]() |
| 7 | ![]() | ![]() | ![]() |
| 8 | ![]() | ![]() | ![]() |
| 9 | ![]() | ![]() | ![]() |
| 10 [d] | ![]() | ![]() | ![]() |
| 11 | ![]() | ![]() | ![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza Pinto, T.V.; Sobrinho, K.D.V.P.; da Silva, M.E.C.; de Oliveira, S.A.; de Jesus, A.P.V.; Ribeiro, T.A.N.; de Vasconcelos, L.G.; de Sousa Júnior, P.T.; Saba, S.; Rafique, J.; et al. Cobalt-Catalyzed C–Se Bond Activation: Cross-Coupling of Organoselenides with Grignard Reagents. Molecules 2025, 30, 4232. https://doi.org/10.3390/molecules30214232
de Souza Pinto TV, Sobrinho KDVP, da Silva MEC, de Oliveira SA, de Jesus APV, Ribeiro TAN, de Vasconcelos LG, de Sousa Júnior PT, Saba S, Rafique J, et al. Cobalt-Catalyzed C–Se Bond Activation: Cross-Coupling of Organoselenides with Grignard Reagents. Molecules. 2025; 30(21):4232. https://doi.org/10.3390/molecules30214232
Chicago/Turabian Stylede Souza Pinto, Tais V., Kamilly D. V. P. Sobrinho, Maria E. C. da Silva, Sandynara A. de Oliveira, Andreia P. V. de Jesus, Tereza A. N. Ribeiro, Leonardo G. de Vasconcelos, Paulo T. de Sousa Júnior, Sumbal Saba, Jamal Rafique, and et al. 2025. "Cobalt-Catalyzed C–Se Bond Activation: Cross-Coupling of Organoselenides with Grignard Reagents" Molecules 30, no. 21: 4232. https://doi.org/10.3390/molecules30214232
APA Stylede Souza Pinto, T. V., Sobrinho, K. D. V. P., da Silva, M. E. C., de Oliveira, S. A., de Jesus, A. P. V., Ribeiro, T. A. N., de Vasconcelos, L. G., de Sousa Júnior, P. T., Saba, S., Rafique, J., & Stein, A. L. (2025). Cobalt-Catalyzed C–Se Bond Activation: Cross-Coupling of Organoselenides with Grignard Reagents. Molecules, 30(21), 4232. https://doi.org/10.3390/molecules30214232




































