Entire Encapsulation of Thymopentin by Extended Biphen[3]arene Carboxylate for Improving Plasma Stability
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Camilli, A.; Bassler, B.L. Bacterial small-molecule signaling pathways. Science 2006, 311, 1113–1116. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, S.; Ohashi, Y.; Onoue, N.; Tajima, Y.; Lmamichi, T.; Yonezawa, S.; Morimoto, K.; Onouchi, H.; Yamashita, Y. Reverse genetics-based biochemical studies of the ribosomal exit tunnel constriction region in eukaryotic ribosome stalling: Spatial allocation of the regulatory nascent peptide at the constriction. Nucleic Acids Res. 2020, 48, 1985–1999. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.-T.; Lin, B.; Xu, T.-Y.; Jiang, J.; Luo, S.-L.; Chen, W.-N.; Chen, X.-W.; Wang, Y.-Q.; Liao, G.-R.; Wang, J.-P.; et al. The neurotransmitter calcitonin gene-related peptide shapes an immunosuppressive microenvironment in medullary thyroid cancer. Nat. Commun. 2024, 15, 5555. [Google Scholar] [CrossRef] [PubMed]
- Date, Y.; Ueta, Y.; Yamashita, H.; Matsukura, S.; Kangawa, K.; Sakurai, T.; Yanagisawa, M.; Nakazato, M. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl. Acad. Sci. USA 1999, 96, 748–753. [Google Scholar] [CrossRef]
- Gao, S.; Ghoshal, S.; Zhang, L.-Y.; Stevens, J.R.; McCommis, K.S.; Finck, B.N.; Lopaschuk, G.D.; Butler, A.A. The peptide hormone adropin regulates signal transduction pathways controlling hepatic glucose metabolism in a mouse model of diet-induced obesity. J. Biol. Chem. 2019, 294, 13366–13377. [Google Scholar] [CrossRef]
- Hirakawa, Y.; Sawa, S. Diverse function of plant peptide hormones in local signaling and development. Curr. Opin. Plant. Biol. 2019, 51, 81–87. [Google Scholar] [CrossRef]
- Aggarwal, S.; Huang, E.; Do, H.; Makthal, N.; Li, Y.; Bapteste, E.; Lopez, P.; Bernard, C.; Kumaraswami, M. The leaderless communication peptide (LCP) class of quorum-sensing peptides is broadly distributed among Firmicutes. Nat. Commun. 2023, 14, 5947. [Google Scholar] [CrossRef]
- Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today 2013, 18, 807–817. [Google Scholar] [CrossRef]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef]
- Drucker, D.J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 2020, 19, 277–289. [Google Scholar] [CrossRef]
- Matthews, T.; Miklos, S.; Michael, G.; Jain, C.; Ralph, D.M.; Dani, B. Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat. Rev. Drug Discov. 2004, 3, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Fani, M.; Maecke, H.R.; Okarvi, S.M. Radiolabeled peptides: Valuable tools for the detection and treatment of cancer. Theranostics 2012, 2, 481–501. [Google Scholar] [CrossRef] [PubMed]
- Schellenberger, V.; Wang, C.-W.; Geething, N.C.; Spink, B.J.; Campbell, A.; To, W.; Schoole, M.D.; Ying, Y.; Yao, Y.; Bogin, O.; et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotechnol. 2009, 27, 1186–1190. [Google Scholar] [CrossRef]
- Puente, X.S.; Sánchez, L.M.; Overall, C.M.; López-Otín, C. Human and mouse proteases: A comparative genomic approach. Nat. Rev. Genet. 2003, 4, 544–558. [Google Scholar] [CrossRef]
- Chorev, M.; Shavitz, R.; Goodman, M.; Minick, S.; Guillemin, R. Partially modified retro-inverso-enkephalinamides: Topochemical long-acting analogs in vitro and in vivo. Science 1979, 204, 1210–1212. [Google Scholar] [CrossRef]
- Salveson, P.J.; Moyer, A.P.; Said, M.Y.; Gökçe, G.; Li, X.-T.; Kang, A.; Nguyen, H.; Bera, A.K.; Levine, P.M.; Bhardwaj, G.; et al. Expansive discovery of chemically diverse structured macrocyclic oligoamides. Science 2024, 384, 420–428. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.-P.; Xu, L.; Tu, J.-H.; Su, S.; Li, Q.; Zhang, T.; Zheng, L.; Wang, H.; Zhuang, X.-M.; et al. Discovery of a Double-Stapled Short Peptide as a Long-Acting HIV-1 Inactivator with Potential for Oral Bioavailability. J. Med. Chem. 2024, 67, 9991–10004. [Google Scholar] [CrossRef]
- Langer, R.; Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 1976, 263, 797–800. [Google Scholar] [CrossRef]
- Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 2012, 336, 1124–1128. [Google Scholar] [CrossRef]
- Bom, A.; Bradley, M.; Gameron, K.; Clark, J.K.; Egmond, J.V.; Feilden, H.; Maclean, E.J.; Muir, A.W.; Palin, R.; Rees, D.C.; et al. A novel concept of reversing neuromuscular block: Chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew. Chem. Int. Ed. 2002, 41, 265–270. [Google Scholar] [CrossRef]
- Deng, C.-L.; Murkli, S.L.; Isaacs, L.D. Supramolecular hosts as in vivo sequestration agents for pharmaceuticals and toxins. Chem. Soc. Rev. 2020, 49, 7516–7532. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.-J.; Liang, L.-L.; Chen, K.; Ji, N.-N.; Xiao, X.; Zhang, J.-X.; Zhang, Y.-Q.; Xue, S.-F.; Zhu, Q.-J.; Ni, X.-L.; et al. Twisted cucurbit[14]uril. Angew. Chem. Int. Ed. 2013, 52, 7252–7255. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, A.; Shinkai, S. Novel cavity design using calix[n]arene skeletons: Toward molecular recognition and metal binding. Chem. Rev. 1997, 97, 1713–1734. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-B.; Chen, Z.-X.; Chen, L.; Zhang, L.; Hou, J.-L.; Li, Z.-T. Pillar[n]arenes (n = 8-10) with two cavities: Synthesis, structures and complexing properties. Chem. Commun. 2012, 48, 10999–11001. [Google Scholar] [CrossRef]
- Lee, J.W.; Shin, M.H.; Mobley, W.; Urbach, A.R.; Kim, H.I. Supramolecular enhancement of protein analysis via the recognition of phenylalanine with cucurbit[7]uril. J. Am. Chem. Soc. 2015, 137, 15322–15329. [Google Scholar] [CrossRef]
- Li, C.-J.; Ma, J.-W.; Zhao, L.; Zhang, Y.-Y.; Xu, Y.-H.; Shu, X.-Y.; Li, J.; Jia, X.-S. Molecular selective binding of basic amino acids by a water-soluble pillar[5]arene. Chem. Commun. 2013, 49, 1924–1926. [Google Scholar] [CrossRef]
- Chen, L.-M.; Meng, Z.; Tian, L.; Zhang, Y.-H.; Zhao, L.; Du, X.-B.; Ma, M.-K.; Zhang, H.; Chen, J.-Y.; Meng, Q.-B. Complexation of specific residues by carboxylatopillar[6]arene for improving the zymolytic stability of arginine-containing peptides. Org. Biomol. Chem. 2022, 20, 2222–2226. [Google Scholar] [CrossRef]
- Xu, Z.; Jia, S.-R.; Wang, W.; Yuan, Z.; Ravoo, B.J.; Guo, D.-S. Heteromultivalent peptide recognition by co-assembly of cyclodextrin and calixarene amphiphiles enables inhibition of amy-loid fibrillation. Nat. Chem. 2019, 11, 86–93. [Google Scholar] [CrossRef]
- Pan, Y.-C.; Yue, Y.-X.; Hu, X.-Y.; Li, H.-B.; Guo, D.-S. A supramolecular antidote to macromolecular toxins prepared through coassembly of macrocyclic amphiphiles. Adv. Mater. 2021, 33, 2104310. [Google Scholar] [CrossRef]
- Kontos, S.; Hubbell, J.A. Drug development: Longer-lived proteins. Chem. Soc. Rev. 2012, 41, 2686–2695. [Google Scholar] [CrossRef]
- Mitragotri, S.; Burke, P.A.; Langer, R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov. 2014, 13, 655–672. [Google Scholar] [CrossRef] [PubMed]
- Malaise, M.G.; Hauwaert, C.; Franchimont, P.; Danneskiold-Samsoe, B.; Bach-Andsersen, R.; Gross, D.; Gerber, H.; Gerschpacher, H.; Stocker, H.; Bolla, K. Treatment of active rheumatoid arthritis with slow intravenous injections of thymopentin. A double-blind placebo-controlled randomised study. Lancet 1985, 11, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Kantharia, B.K.; Goulding, N.J.; Hall, N.D.; Davies, J.; Maddison, P.J.; Bacon, P.A.; Farr, M.; Wojtulewski, J.A.; Englehart, K.M.; Liyanage, S.P.; et al. Thymopentin (TP-5) in the treatment of rheumatoid arthritis. Br. J. Rheumatol. 1989, 28, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.-H.; Zhang, Z.-L.; Wang, R.-T.; Li, S.-H.; Lin, S.-J.; Zhou, Y.-R.; Chen, J.-Y.; Li, C.-J.; Meng, Q.-B. Efficient reversal of neuromuscular blocking agent-induced biological functions and side effects by an extended biphen[3]arene carboxylate. J. Med. Chem. 2024, 67, 21568–21576. [Google Scholar] [CrossRef]
- Tischio, J.P.; Patrick, J.E.; Weintraub, H.S.; Chasin, M.; Goldstrin, G. Short in vitro half-life of thymopoietin32-36 pentapeptide in human plasma. Int. J. Peptide Protein Res. 1979, 14, 479–484. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Meng, Q.-B.; Zhang, Y.-D.; Dong, M.; Zhao, L.; Zhang, Y.-H.; Chen, L.-M.; Chai, Y.; Meng, Z.; Wang, C.-H.; et al. Complexation of an antimicrobial peptide by large-sized macrocycles for decreasing hemolysis and improving stability. Angew. Chem. Int. Ed. 2021, 60, 11288–11293. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Zhang, Y.-M.; Yu, H.-J.; Liu, Y. Cucurbituril-based biomacromolecular assemblies. Angew. Chem. Int. Ed. 2021, 60, 3870–3880. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, K.; Chen, J.; Li, C. Entire Encapsulation of Thymopentin by Extended Biphen[3]arene Carboxylate for Improving Plasma Stability. Molecules 2025, 30, 314. https://doi.org/10.3390/molecules30020314
Ren K, Chen J, Li C. Entire Encapsulation of Thymopentin by Extended Biphen[3]arene Carboxylate for Improving Plasma Stability. Molecules. 2025; 30(2):314. https://doi.org/10.3390/molecules30020314
Chicago/Turabian StyleRen, Keming, Junyi Chen, and Chunju Li. 2025. "Entire Encapsulation of Thymopentin by Extended Biphen[3]arene Carboxylate for Improving Plasma Stability" Molecules 30, no. 2: 314. https://doi.org/10.3390/molecules30020314
APA StyleRen, K., Chen, J., & Li, C. (2025). Entire Encapsulation of Thymopentin by Extended Biphen[3]arene Carboxylate for Improving Plasma Stability. Molecules, 30(2), 314. https://doi.org/10.3390/molecules30020314