Histology Assessment of Chitosan–Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of CaO NPs
Size and Morphology of the CaO NPs
2.2. FTIR Analysis of CS/PVA/CaO NP Membranes
2.3. XRD of the CS/PVA/CaO NP Membranes
2.4. Thermal Analysis of CS/PVA/CaO NP Membranes
2.5. Scanning Electron Microscopy (SEM) of CS/PVA/CaO NP Membranes
2.6. In Vivo Biocompatibility Tests of the CS/PVA/CaO NP Membranes
3. Materials and Methods
3.1. Materials
3.1.1. Synthesis of CaO NPs
3.1.2. Characterization of the CaO NPs
3.2. Preparation of the CS/PVA/CaO NP Membranes
3.3. Characterization of the CS/PVA/CaO NP Membranes
3.3.1. Fourier Transform Infrared Spectroscopy and XRD Patterns
3.3.2. TGA and DSC Analysis
3.3.3. Microstructure Studies
3.3.4. In Vivo Biocompatibility Studies of the CS/PVA/CaO NPs
Surgical Preparation of Biomodels
Histological Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beheshtizadeh, N.; Asgari, Y.; Nasiri, N.; Farzin, A.; Ghorbani, M.; Lotfibakhshaiesh, N.; Azami, M. A Network Analysis of Angiogenesis/Osteogenesis-Related Growth Factors in Bone Tissue Engineering Based on in-Vitro and in-Vivo Data: A Systems Biology Approach. Tissue Cell 2021, 72, 101553. [Google Scholar] [CrossRef]
- Salehi, A.O.M.; Keshel, S.H.; Sefat, F.; Tayebi, L. Use of Polycaprolactone in Corneal Tissue Engineering: A Review. Mater. Today Commun. 2021, 27, 102402. [Google Scholar] [CrossRef]
- Su, X.; Wang, T.; Guo, S. Applications of 3D Printed Bone Tissue Engineering Scaffolds in the Stem Cell Field. Regen. Ther. 2021, 16, 63–72. [Google Scholar] [CrossRef]
- Snyder, Y.; Jana, S. Anisotropicity and Flexibility in Trilayered Microfibrous Substrates Promote Heart Valve Leaflet Tissue Engineering. Biomed. Mater. 2022, 17, 65013. [Google Scholar] [CrossRef] [PubMed]
- Martin, I.; Wendt, D.; Heberer, M. The Role of Bioreactors in Tissue Engineering. Trends Biotechnol. 2004, 22, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Deb, P.; Deoghare, A.B.; Borah, A.; Barua, E.; Das Lala, S. Scaffold Development Using Biomaterials: A Review. Mater. Today Proc. 2018, 5, 12909–12919. [Google Scholar] [CrossRef]
- Levengood, S.K.L.; Zhang, M. Chitosan-Based Scaffolds for Bone Tissue Engineering. J. Mater. Chem. B 2014, 2, 3161–3184. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaz, A.; Jayasuriya, A.C. Recent Trends in the Application of Widely Used Natural and Synthetic Polymer Nanocomposites in Bone Tissue Regeneration. Mater. Sci. Eng. C 2020, 110, 110698. [Google Scholar] [CrossRef]
- Sanchez-Alvarado, D.I.; Guzmán-Pantoja, J.; Páramo-García, U.; Maciel-Cerda, A.; Martínez-Orozco, R.D.; Vera-Graziano, R. Morphological Study of Chitosan/Poly (Vinyl Alcohol) Nanofibers Prepared by Electrospinning, Collected on Reticulated Vitreous Carbon. Int. J. Mol. Sci. 2018, 19, 1718. [Google Scholar] [CrossRef] [PubMed]
- Yamane, S.; Iwasaki, N.; Majima, T.; Funakoshi, T.; Masuko, T.; Harada, K.; Minami, A.; Monde, K.; Nishimura, S. Feasibility of Chitosan-Based Hyaluronic Acid Hybrid Biomaterial for a Novel Scaffold in Cartilage Tissue Engineering. Biomaterials 2005, 26, 611–619. [Google Scholar] [CrossRef]
- Han, X.; Zheng, Z.; Yu, C.; Deng, Y.; Ye, Q.; Niu, F.; Chen, Q.; Pan, W.; Wang, Y. Preparation, Characterization and Antibacterial Activity of New Ionized Chitosan. Carbohydr. Polym. 2022, 290, 119490. [Google Scholar] [CrossRef] [PubMed]
- Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011, 2011, 290602. [Google Scholar] [CrossRef]
- Lewandowska, K. Characterization of Chitosan Composites with Synthetic Polymers and Inorganic Additives. Int. J. Biol. Macromol. 2015, 81, 159–164. [Google Scholar] [CrossRef]
- Sawadkar, P.; Mohanakrishnan, J.; Rajasekar, P.; Rahmani, B.; Kohli, N.; Bozec, L.; García-Gareta, E. A Synergistic Relationship between Polycaprolactone and Natural Polymers Enhances the Physical Properties and Biological Activity of Scaffolds. ACS Appl. Mater. Interfaces 2020, 12, 13587–13597. [Google Scholar] [CrossRef] [PubMed]
- Hassan, C.M.; Peppas, N.A. Structure and Applications of Poly (Vinyl Alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods. In Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2000; pp. 37–65. [Google Scholar]
- Teixeira, M.A.; Amorim, M.T.P.; Felgueiras, H.P. Poly (Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers 2020, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Niebles Navas, A.F.; Araujo-Rodríguez, D.G.; Valencia-Llano, C.-H.; Insuasty, D.; Delgado-Ospina, J.; Navia-Porras, D.P.; Zapata, P.A.; Albis, A.; Grande-Tovar, C.D. Lyophilized Polyvinyl Alcohol and Chitosan Scaffolds Pre-Loaded with Silicon Dioxide Nanoparticles for Tissue Regeneration. Molecules 2024, 29, 3850. [Google Scholar] [CrossRef]
- Kim, G.-M.; Asran, A.S.; Michler, G.H.; Simon, P.; Kim, J.-S. Electrospun PVA/HAp Nanocomposite Nanofibers: Biomimetics of Mineralized Hard Tissues at a Lower Level of Complexity. Bioinspiration Biomim. 2008, 3, 46003. [Google Scholar] [CrossRef]
- Islam, M.M.; Shahruzzaman, M.; Biswas, S.; Sakib, M.N.; Rashid, T.U. Chitosan Based Bioactive Materials in Tissue Engineering Applications—A Review. Bioact. Mater. 2020, 5, 164–183. [Google Scholar] [CrossRef]
- Nathan, K.G.; Genasan, K.; Kamarul, T. Polyvinyl Alcohol-Chitosan Scaffold for Tissue Engineering and Regenerative Medicine Application: A Review. Mar. Drugs 2023, 21, 304. [Google Scholar] [CrossRef]
- Zhang, W.; Khan, A.; Ezati, P.; Priyadarshi, R.; Sani, M.A.; Rathod, N.B.; Goksen, G.; Rhim, J.-W. Advances in Sustainable Food Packaging Applications of Chitosan/Polyvinyl Alcohol Blend Films. Food Chem. 2024, 443, 138506. [Google Scholar] [CrossRef] [PubMed]
- Dashtdar, H.; Murali, M.R.; Abbas, A.A.; Suhaeb, A.M.; Selvaratnam, L.; Tay, L.X.; Kamarul, T. PVA-Chitosan Composite Hydrogel versus Alginate Beads as a Potential Mesenchymal Stem Cell Carrier for the Treatment of Focal Cartilage Defects. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhou, Y.; Lu, W.; Zhu, W.; Li, Y.; Chen, K.; Zhang, G.; Xu, J.; Deng, Z.; Wang, D. Characterization of a Novel Polyvinyl Alcohol/Chitosan Porous Hydrogel Combined with Bone Marrow Mesenchymal Stem Cells and Its Application in Articular Cartilage Repair. BMC Musculoskelet. Disord. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Srinath, P.; Abdul Azeem, P.; Venugopal Reddy, K. Review on Calcium Silicate-based Bioceramics in Bone Tissue Engineering. Int. J. Appl. Ceram. Technol. 2020, 17, 2450–2464. [Google Scholar] [CrossRef]
- Khalifehzadeh, R.; Arami, H. Biodegradable Calcium Phosphate Nanoparticles for Cancer Therapy. Adv. Colloid Interface Sci. 2020, 279, 102157. [Google Scholar] [CrossRef]
- Lishchynskyi, O.; Stetsyshyn, Y.; Raczkowska, J.; Awsiuk, K.; Orzechowska, B.; Abalymov, A.; Skirtach, A.G.; Bernasik, A.; Nastyshyn, S.; Budkowski, A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines. Materials 2021, 14, 1417. [Google Scholar] [CrossRef] [PubMed]
- Mirghiasi, Z.; Bakhtiari, F.; Darezereshki, E.; Esmaeilzadeh, E. Preparation and Characterization of CaO Nanoparticles from Ca (OH) 2 by Direct Thermal Decomposition Method. J. Ind. Eng. Chem. 2014, 20, 113–117. [Google Scholar] [CrossRef]
- Habte, L.; Shiferaw, N.; Mulatu, D.; Thenepalli, T.; Chilakala, R.; Ahn, J.W. Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method. Sustainability 2019, 11, 3196. [Google Scholar] [CrossRef]
- Ormazábal, E.; Moreno-Serna, V.; Sepúlveda, F.A.; Loyo, C.; Ortiz, J.A.; Melo, F.; Ulloa, M.T.; Rivas, L.; Corrales, T.; Matiacevich, S.; et al. Antimicrobial Nanocomposites Based on Biowaste Eggshell Derived CaO Nanoparticles for Potential Food Packaging Application. Food Bioprod. Process. 2024, 148, 123–135. [Google Scholar] [CrossRef]
- Manurung, R.; Parinduri, S.; Hasibuan, R.; Tarigan, B.H.; Siregar, A.G.A. Synthesis of Nano-CaO Catalyst with SiO2 Matrix Based on Palm Shell Ash as Catalyst Support for One Cycle Developed in the Palm Biodiesel Process. Case Stud. Chem. Environ. Eng. 2023, 7, 100345. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, D.; Ji, T.; Sameen, D.E.; Ahmed, S.; Li, S.; Liu, Y. Long-Term Antibacterial Effect of Electrospun Polyvinyl Alcohol/Polyacrylate Sodium Nanofiber Containing Nisin-Loaded Nanoparticles. Nanomaterials 2020, 10, 1803. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, S.; Aadil, M.; Williams, J.; Awan, M.S.; Iqbal, J.; Zulfiqar, S.; Nazar, N. Synthesis of In2O3/GNPs Nanocomposites with Integrated Approaches to Tune Overall Performance of Electrochemical Devices. Ceram. Int. 2021, 47, 22345–22355. [Google Scholar] [CrossRef]
- Gilman, J.W.; VanderHart, D.L.; Kashiwagi, T. Thermal Decomposition Chemistry of Poly (Vinyl Alcohol) Char Characterization and Reactions with Bismaleimides. In Fire and Polymers II; ACS Publications: Washington, DC, USA, 1995; ISBN 1947-5918. [Google Scholar]
- Liu, R.; Li, W. High-Thermal-Stability and High-Thermal-Conductivity Ti3C2T x MXene/Poly (Vinyl Alcohol)(PVA) Composites. ACS Omega 2018, 3, 2609–2617. [Google Scholar] [CrossRef]
- Fan, Y.; Nishida, H.; Shirai, Y.; Endo, T. Racemization on Thermal Degradation of Poly (L-Lactide) with Calcium Salt End Structure. Polym. Degrad. Stab. 2003, 80, 503–511. [Google Scholar] [CrossRef]
- Fan, Y.; Nishida, H.; Mori, T.; Shirai, Y.; Endo, T. Thermal Degradation of Poly (L-Lactide): Effect of Alkali Earth Metal Oxides for Selective L, L-Lactide Formation. Polymer 2004, 45, 1197–1205. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Oprea, O.; Ficai, A.; Trusca, R.-D.; Andronescu, E.; Holban, A.M. Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil—A Novel Antimicrobial Structure. Pharmaceutics 2021, 13, 1020. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.R.; Chakraborty, N.; Jeong, J.-H. Easy Fabrication of PVA-CaO-CuO Composite Films for Efficient Photocatalyst: Towards Distinct Luminescence Property, Morphology and Thermal Stability. Inorg. Chem. Commun. 2024, 170, 113287. [Google Scholar] [CrossRef]
- Rahman Khan, M.M.; Pal, S.; Hoque, M.M.; Alam, M.R.; Younus, M.; Kobayashi, H. Simple Fabrication of PVA–ZnS Composite Films with Superior Photocatalytic Performance: Enhanced Luminescence Property, Morphology, and Thermal Stability. ACS Omega 2019, 4, 6144–6153. [Google Scholar] [CrossRef]
- Akter, M.; Amin, M.K.; Younus, M.; Chakraborty, N. Synthesis, Luminescence and Thermal Properties of PVA–ZnO–Al2O3 Composite Films: Towards Fabrication of Sunlight-Induced Catalyst for Organic Dye Removal. J. Polym. Environ. 2018, 26, 3371–3381. [Google Scholar]
- Peng, Z.; Kong, L.X.; Li, S.-D. Non-Isothermal Crystallisation Kinetics of Self-Assembled Polyvinylalcohol/Silica Nano-Composite. Polymer 2005, 46, 1949–1955. [Google Scholar] [CrossRef]
- Salavagione, H.J.; Martínez, G.; Gómez, M.A. Synthesis of Poly (Vinyl Alcohol)/Reduced Graphite Oxide Nanocomposites with Improved Thermal and Electrical Properties. J. Mater. Chem. 2009, 19, 5027–5032. [Google Scholar] [CrossRef]
- Kong, Y.; Hay, J.N. The Enthalpy of Fusion and Degree of Crystallinity of Polymers as Measured by DSC. Eur. Polym. J. 2003, 39, 1721–1727. [Google Scholar] [CrossRef]
- De Oliveira, A.A.R.; De Souza, D.A.; Dias, L.L.S.; De Carvalho, S.M.; Mansur, H.S.; de Magalhães Pereira, M. Synthesis, Characterization and Cytocompatibility of Spherical Bioactive Glass Nanoparticles for Potential Hard Tissue Engineering Applications. Biomed. Mater. 2013, 8, 25011. [Google Scholar] [CrossRef] [PubMed]
- García, G.; Moreno-Serna, V.; Saavedra, M.; Cordoba, A.; Canales, D.; Alfaro, A.; Guzmán-Soria, A.; Orihuela, P.; Zapata, S.; Grande-Tovar, C.D.; et al. Electrospun Scaffolds Based on a PCL/Starch Blend Reinforced with CaO Nanoparticles for Bone Tissue Engineering. Int. J. Biol. Macromol. 2024, 273, 132891. [Google Scholar] [CrossRef]
- Jennings, J.A. Controlling Chitosan Degradation Properties in Vitro and in Vivo. In Chitosan Based Biomaterials; Memphis, U., Ed.; Elsevier: Memphis, TN, USA, 2017; pp. 159–182. Volume 1, ISBN 9780081002575. [Google Scholar]
- Moura, M.J.; Brochado, J.; Gil, M.H.; Figueiredo, M.M. In Situ Forming Chitosan Hydrogels: Preliminary Evaluation of the in Vivo Inflammatory Response. Mater. Sci. Eng. C 2017, 75, 279–285. [Google Scholar] [CrossRef]
- Kanimozhi, K.; Basha, S.K.; Kumari, V.S. Processing and Characterization of Chitosan/PVA and Methylcellulose Porous Scaffolds for Tissue Engineering. Mater. Sci. Eng. C 2016, 61, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Scarritt, M.E.; Londono, R.; Badylak, S.F. Host Response to Implanted Materials and Devices: An Overview; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783319454337. [Google Scholar]
- Babensee, J.E. Inflammation, Wound Healing, the Foreign-Body Response, and Alternative Tissue Responses, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128161371. [Google Scholar]
- Klopfleisch, R.; Jung, F. The Pathology of the Foreign Body Reaction against Biomaterials. J. Biomed. Mater. Res. A 2017, 105, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Weng, Y.X.; Huang, Z.G.; Jin, Y.J.; Hu, J.; Chou, D.; Shao, S.X. Manufacture of a Hydrophobic CaO/Polylactic Acid Composite. Mater. Manuf. Process. 2019, 34, 303–311. [Google Scholar] [CrossRef]
- Zhou, G.; Groth, T. Host Responses to Biomaterials and Anti-Inflammatory Design—A Brief Review. Macromol. Biosci. 2018, 18, e1800112. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M. Biocompatibility and Bioresponse to Biomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128098806. [Google Scholar]
- Kasaai, M.R. Calculation of Mark–Houwink–Sakurada (MHS) Equation Viscometric Constants for Chitosan in Any Solvent–Temperature System Using Experimental Reported Viscometric Constants Data. Carbohydr. Polym. 2007, 68, 477–488. [Google Scholar] [CrossRef]
- Canales, D.; Moyano, D.; Alvarez, F.; Grande-Tovar, C.D.; Valencia-Llano, C.H.; Peponi, L.; Boccaccini, A.R.; Zapata, P.A. Preparation and Characterization of Novel Poly (Lactic Acid)/Calcium Oxide Nanocomposites by Electrospinning as a Potential Bone Tissue Scaffold. Biomater. Adv. 2023, 153, 213578. [Google Scholar] [CrossRef]
- Du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The Arrive Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
F1 | F2 | F3 | F4 | |
---|---|---|---|---|
60–100 °C | 66 | - | - | - |
100–200 °C | - | - | - | 172 |
200–400 °C | 297 | 297 | 297 | 253 |
400–900 °C | 477 | 477 | 477 | 477 |
Tg (°C) | Tm1 (°C) | Tm2 (°C) | Tm3 (°C) | (J/g) | Xc PVA (%) | |
---|---|---|---|---|---|---|
F1 | 41 | 81 | 161 | 315 | 80.4 | 17.4 |
F2 | 39 | 77 | 154 | 312 | 85.7 | 18.5 |
F3 | 37 | 80 | 150 | 297 | 199.7 | 43.2 |
F4 | 35 | 77 | 150 | 293 | 102.8 | 22.3 |
Components | F1 | F2 | F3 | F4 |
---|---|---|---|---|
CS (%) | 30 | 28 | 26 | 24 |
PVA (%) | 70 | 70 | 70 | 70 |
CaO NPs (%) | 0 | 2 | 4 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grande-Tovar, C.D.; Castro Castro, J.I.; Barba-Rosado, L.V.; Zapata, P.A.; Insuasty, D.; Valencia-Llano, C.-H. Histology Assessment of Chitosan–Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles. Molecules 2025, 30, 276. https://doi.org/10.3390/molecules30020276
Grande-Tovar CD, Castro Castro JI, Barba-Rosado LV, Zapata PA, Insuasty D, Valencia-Llano C-H. Histology Assessment of Chitosan–Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles. Molecules. 2025; 30(2):276. https://doi.org/10.3390/molecules30020276
Chicago/Turabian StyleGrande-Tovar, Carlos David, Jorge Ivan Castro Castro, Lemy Vanessa Barba-Rosado, Paula A. Zapata, Daniel Insuasty, and Carlos-Humberto Valencia-Llano. 2025. "Histology Assessment of Chitosan–Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles" Molecules 30, no. 2: 276. https://doi.org/10.3390/molecules30020276
APA StyleGrande-Tovar, C. D., Castro Castro, J. I., Barba-Rosado, L. V., Zapata, P. A., Insuasty, D., & Valencia-Llano, C.-H. (2025). Histology Assessment of Chitosan–Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles. Molecules, 30(2), 276. https://doi.org/10.3390/molecules30020276