Biological and Health-Promoting Potential of Fruits from Three Cold-Hardy Actinidia Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolics Content (TPC), Antioxidant Activities and Phytochemical Profiles
2.2. Cell Viability Assays
3. Materials and Methods
3.1. Chemicals
3.2. Fruit Samples
3.3. Ultrasound-Assisted Extraction (UAE)
3.4. Total Phenolic Content (TPC)
3.5. Identification and Quantification of Phytochemical Compounds
3.6. Determination of In-Vitro Antioxidant/Antiradical Activities
3.6.1. Ferric Reducing Antioxidant Power (FRAP)
3.6.2. DPPH Radical Scavenging Assay
3.7. Reactive Oxygen Species Scavenging Capacity
3.7.1. Superoxide Radical Scavenging Assay
3.7.2. Hypochlorous Acid Scavenging Assay
3.8. Cell Viability Assay
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Bilawal, A.; Ishfaq, M.; Gantumur, M.-A.; Qayum, A.; Shi, R.; Fazilani, S.A.; Anwar, A.; Jiang, A.; Hou, J. A review of the bioactive ingredients of berries and their applications in curing diseases. Food Biosci. 2021, 44, 101407. [Google Scholar] [CrossRef]
- Drzewiecki, J.; Latocha, P.; Leontowicz, H.; Leontowicz, M.; Park, Y.S.; Najman, K.; Weisz, M.; Ezra, A.; Gorinstein, S. Analytical Methods Applied to Characterization of Actinidia arguta, Actinidia deliciosa, and Actinidia eriantha Kiwi Fruit Cultivars. Food Anal. Meth. 2016, 9, 1353–1366. [Google Scholar] [CrossRef]
- Wang, S.; Qiu, Y.; Zhu, F. Kiwifruit (Actinidia spp.): A review of chemical diversity and biological activities. Food Chem. 2021, 350, 128569. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.P.; Ansell, J.; Drummond, L.N. The nutritional and health attributes of kiwifruit: A review. Eur. J. Nutr. 2018, 57, 2659–2676. [Google Scholar] [CrossRef]
- Česonienė, L. Content of biochemical components of Kolomikta Kiwi (Actinidia kolomikta). Acta Hortic. Regiotect. Nitra Slovak Univ. Agric. Nitra 2007, 10, 24–27. [Google Scholar]
- Latocha, P.; Łata, B.; Jankowski, P. Variation of Chemical Composition and Antioxidant Properties of Kiwiberry (Actinidia arguta) in a Three-Year Study. Molecules 2023, 28, 455. [Google Scholar] [CrossRef]
- Waswa, Z.E.N.; Ding, S.-X.; Wambua, F.M.; Mkala, E.M.; Mutinda, E.S.; Odago, W.O.; Amenu, S.G.; Muthui, S.W.; Linda, E.L.; Katumo, D.M.; et al. The genus Actinidia Lindl. (Actinidiaceae): A comprehensive review on its ethnobotany, phytochemistry, and pharmacological properties. J. Ethnopharmacol. 2024, 319, 117222. [Google Scholar] [CrossRef]
- Sawicki, T.; Błaszczak, W.; Latocha, P. In vitro anticholinergic and antiglycaemic properties of frost-hardy Actinidia fruit extracts and their polyphenol profile, L-ascorbic acid content and antioxidant capacity. Food Res. Int. 2023, 173, 113324. [Google Scholar] [CrossRef]
- Leontowicz, M.; Leontowicz, H.; Jesion, I.; Bielecki, W.; Najman, K.; Latocha, P.; Park, Y.-S.; Gorinstein, S. Actinidia arguta supplementation protects aorta and liver in rats with induced hypercholesterolemia. Nutr. Res. 2016, 36, 1231–1242. [Google Scholar] [CrossRef]
- Takata, J.; Miyake, N.; Saiki, Y.; Tada, M.; Sasaki, K.; Kubo, T.; Kiura, K.; Arimoto-Kobayashi, S. Chemopreventive effects and anti-tumorigenic mechanisms of Actinidia arguta, known as sarunashi in Japan toward 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in a/J mouse. Genes Environ. 2022, 44, 26. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Okimasu, Y.; Miyake, N.; Tada, M.; Hida, R.; Negishi, T.; Arimoto-Kobayashi, S. Inhibitory effect of Actinidia arguta on mutagenesis, inflammation and two-stage mouse skin tumorigenesis. Genes Environ. 2016, 38, 25. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, Y.; Sakanashi, M.; Ozawa, A.; Saeki, Y.; Nakamura, A.; Hara, Y.; Saeki, K.-I.; Arimoto-Kobayashi, S. Protective effect of Actinidia arguta in MPTP-induced Parkinson’s disease model mice. Biochem. Biophys. Res. Commun. 2021, 555, 154–159. [Google Scholar] [CrossRef]
- Česonienė, L.; Štreimikytė, P.; Liaudanskas, M.; Žvikas, V.; Viškelis, P.; Viškelis, J.; Daubaras, R. Berries and Leaves of Actinidia kolomikta (Rupr. & Maxim.) Maxim.: A Source of Phenolic Compounds. Plants 2022, 11, 147. [Google Scholar] [CrossRef]
- Ren, J.; Han, E.J.; Chung, S.H. In Vivo and In Vitro Anti-inflammatory Activities of α-linolenic Acid Isolated from Actinidia Polygama Fruits. Arch. Pharm. Res. 2007, 30, 708–714. [Google Scholar] [CrossRef]
- Hwang, H.; Lee, D.; Son, J.D.; Baek, J.G.; Lee, H.-S.; Park, I.W.; Kim, D.H.; Lee, S.K.; Kim, W.K.; Kwon, H.C.; et al. Chemical constituents isolated from Actinidia polygama and their α-glucosidase inhibitory activity and insulin secretion effect. Bioorg. Chem. 2023, 134, 106466. [Google Scholar] [CrossRef]
- Silva, A.M.; Pinto, D.; Moreira, M.M.; Costa, P.C.; Delerue-Matos, C.; Rodrigues, F. Valorization of Kiwiberry Leaves Recovered by Ultrasound-Assisted Extraction for Skin Application: A Response Surface Methodology Approach. Antioxidants 2022, 11, 763. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Szwajgier, D. Characteristics and pro-health properties of mini kiwi (Actinidia arguta). Hortic. Environ. Biotechnol. 2019, 60, 217–225. [Google Scholar] [CrossRef]
- Macedo, C.; Silva, A.M.; Ferreira, A.S.; de la Luz Cádiz-Gurrea, M.; Fernández-Ochoa, A.; Segura-Carretero, A.; Delerue-Matos, C.; Costa, P.; Rodrigues, F. Insights into the polyphenols extraction from Actinidia arguta fruit (kiwiberry): A source of pro-healthy compounds. Sci. Hortic. 2023, 313, 111910. [Google Scholar] [CrossRef]
- Zuo, L.-L.; Wang, Z.-Y.; Fan, Z.-L.; Tian, S.-Q.; Liu, J.-R. Evaluation of Antioxidant and Antiproliferative Properties of Three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) Extracts in Vitro. Int. J. Mol. Sci. 2012, 13, 5506–5518. [Google Scholar] [CrossRef]
- Panishcheva, D.; Motyleva, S.; Kozak, N. The comparison of biochemical composition of Actinidia kolomikta and Actinidia polygama fruits. Slovak J. Food Sci. 2021, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Khromykh, N.O.; Lykholat, Y.V.; Didur, O.O.; Sklyar, T.V.; Davydov, V.R.; Lavrentieva, K.V.; Lykholat, T.Y. Phytochemical profiles, antioxidant and antimicrobial activity of Actinidia polygama and A. arguta fruits and leaves. Biosyst. Divers. 2022, 30, 39–45. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Kim, S.-H.; Seo, Y.-B.; Roh, S.-S.; Lee, J.-C. Inhibitory effects of Actinidia polygama extract and cyclosporine A on OVA-induced eosinophilia and bronchial hyperresponsiveness in a murine model of asthma. Int. Immunopharmacol. 2006, 6, 703–713. [Google Scholar] [CrossRef]
- Česonienė, L.; Januškevičė, V.; Saunoriūtė, S.; Liaudanskas, M.; Žvikas, V.; Krikštolaitis, R.; Viškelis, P.; Urbonavičienė, D.; Martusevičė, P.; Zych, M.; et al. Phenolic Compounds in Berries of Winter-Resistant Actinidia arguta Miq. and Actinidia kolomikta Maxim.: Evidence of Antioxidative Activity. Antioxidants 2004, 13, 372. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.H.; Park, E.-J.; Kang, C.-Y.; Cho, S.-H.; Kim, S. Anti-allergic effects of PG102, a water-soluble extract prepared from Actinidia arguta, in a murine ovalbumin-induced asthma model. Clin. Exp. Allergy 2009, 39, 280–289. [Google Scholar] [CrossRef]
- Yu, X.; Liu, C.H.; Liu, Y.; Tan Ch Liu, Y. Actinidia arguta Polysaccharide Induces Apoptosis in Hep G2 Cells. Adv. J. Food Sci. Technol. 2015, 11, 857–863. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, N.; Shu, C.; Cheng, S.; Sun, X.; Liu, C.; Xin, G.; Li, B.; Tian, J. Phenolics Profile and Antioxidant Activity Analysis of Kiwi Berry (Actinidia arguta) Flesh and Peel Extracts From Four Regions in China. Front. Plant Sci. 2021, 12, 689038. [Google Scholar] [CrossRef]
- Wong, S.P.; Leong, L.P.; Koh, J.H.W. 2006. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006, 99, 775–783. [Google Scholar] [CrossRef]
- Hoffmann, P.; Burmester, M.; Langeheine, M.; Brehm, R.; Empl, M.T.; Seeger, B.; Breves, G. Caco-2/HT29-MTX co-cultured cells as a model for studying physiological properties and toxin-induced effects on intestinal cells. PLoS ONE 2001, 16, e0257824. [Google Scholar] [CrossRef]
- Silva, A.M.; Pinto, D.; Fernandes, I.; Albuquerque, T.G.; Costa, H.S.; Freitas, V.; Rodrigues, F.; Oliveira, M.B.P.P. Infusions and decoctions of dehydrated fruits of Actinidia arguta and Actinidia deliciosa: Bioactivity, radical scavenging activity and effects on cells viability. Food Chem. 2019, 289, 625–634. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Pinto, D.; Braga, N.; Rodrigues, F.; Oliveira, M.B.P.P. Castanea sativa Bur: An Undervalued By-Product but a Promising Cosmetic Ingredient. Cosmetics 2017, 4, 50. [Google Scholar] [CrossRef]
- Moreira, M.M.; Rodrigues, F.; Dorosh, O.; Pinto, D.; Costa, P.C.; Švarc-Gajić, J.; Delerue-Matos, C. Vine-Canes as a Source of Value-Added Compounds for Cosmetic Formulations. Molecules 2020, 25, 2969. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Barros, L.; Baptista, P.; Ferreira, I.C.F.R. Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem. Toxicol. 2007, 45, 1731–1737. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Silva, A.M.S.; Santos, C.M.M.; Pinto, D.C.G.A.; Cavaleiro, J.A.S.; Lima, J.L.F.C. 2-Styrylchromones: Novel strong scavengers of reactive oxygen and nitrogen species. Bioorg. Med. Chem. 2007, 15, 6027–6036. [Google Scholar] [CrossRef]
- Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 2021, 334, 127521. [Google Scholar] [CrossRef]
Fruit Sample | TPC (mg GAE/g extract dw) | FRAP (μmol FSE/g extract dw) | DPPH (IC50 (µg/mL) | ROS | |
---|---|---|---|---|---|
O2•− | HOCl | ||||
IC50 (μg/mL) | |||||
A. arguta ‘Geneva’ | 11.70 ± 1.38 c | 144.53 ± 15.06 c | NA 1 | NA | 51.81 ± 2.42 e |
A. polygama ‘Pomarancheva’ | 8.31 ± 0.77 c | 134.21 ± 7.08 c | NA | NA | 45.61 ± 1.31 d |
A. kolomikta ‘Tallinn’ | 75.59 ± 5.87 b | 576.24 ± 6.41 b | 393.33 ± 23.63 b | 103.73 ± 7.43 c | 6.37 ± 0.57 a,b,c |
A. kolomikta ‘Vitakola’ | 110.05 ± 8.83 a | 1049.30 ± 117.30 a | 260.22 ± 9.18 a | 47.37 ± 2.27 b | 11.04 ± 0.12 c |
A. kolomikta ‘Pozdni’ | 74.35 ± 6.20 b | 517.96 ± 16.56 b | 415.96 ± 10.16 b | 136.61 ± 13.51 c | 9.35 ± 0.83 b,c |
Positive Controls | |||||
Gallic acid | 6.34 ± 0.21 a | 2.60 ± 0.05 a,b | |||
Catechin | 18.01 ± 0.34 a,b | 0.20 ± 0.01 a |
Compound | Retention time (min) | A. arguta ‘Geneva’ (mg/100g dw) | A. polygama ‘Pomarancheva’ (mg/100g dw) | A. kolomikta ‘Tallinn’ (mg/100g dw) | A. kolomikta ‘Vitakola’ (mg/100g dw) | A. kolomikta ‘Pozdni’ (mg/100g dw) |
---|---|---|---|---|---|---|
Phenolic acids | ||||||
Gallic acid | 5.6 | 49.4 ± 2.5 | 16.2 ± 0.8 | 222.9 ± 11.1 | 166.2 ± 8.3 | 78.2 ± 3.9 |
Protocatechuic acid | 9.9 | 177.8 ± 8.9 | 12.2 ± 0.6 | 114.4 ± 5.7 | 63.8 ± 3.2 | 64.9 ± 3.2 |
Neochlorogenic acid | 10.2 | 164.1 ± 8.2 | 45.5 ± 2.3 | 109.2 ± 5.5 | 88.2 ± 4.4 | 40.8 ± 2.0 |
Vanillic acid | 20.7 | 4.6 ± 0.2 | 53.7 ± 2.7 | 13.2 ± 0.7 | 9.0 ± 0.5 | 9.4 ± 0.5 |
Caffeic acid | 21.2 | ND | 12.7 ± 0.6 | 17.3 ± 0.9 | 15.4 ± 0.8 | 8.5 ± 0.4 |
Syringic acid | 22.3 | ND | ND | 0.5 ± 0.0 | 0.3 ± 0.0 | ND |
Caftaric acid | 15.4 | 137.5 ± 6.9 | 38.9 ± 1.9 | 696.9 ± 34.8 | 385.9 ± 19.3 | 406.6 ± 20.3 |
Chlorogenic acid | 17.9 | 9.5 ± 0.5 | 79.1 ± 4.0 | 65.3 ± 3.3 | 41.1 ± 2.1 | 47.0 ± 2.4 |
4-O-caffeyolquinic acid | 19.9 | 17.7 ± 0.9 | 81.0 ± 4.0 | 143.8 ± 7.2 | 252.4 ± 12.6 | 171.2 ± 8.6 |
p-Coumaric acid | 33.8 | 1.2 ± 0.1 | 6.6 ± 0.3 | 1.7 ± 0.1 | 0.5 ± 0.0 | 0.7 ± 0.0 |
Ferulic acid | 37.3 | <LOQ | 13.3 ± 0.7 | 1.8 ± 0.1 | 3.5 ± 0.2 | 3.9 ± 0.2 |
Sinapic acid | 37.7 | ND | 50.5 ± 2.5 | 2.0 ± 0.1 | 6.9 ± 0.3 | 6.5 ± 0.3 |
3.5-di-O-caffeoylquinic acid | 50.1 | 8.9 ± 0.4 | 2.1 ± 0.1 | ND | 3.0 ± 0.2 | 1.0 ± 0.1 |
Ellagic acid | 55.3 | 8.4 ± 0.4 | 42.8 ± 2.1 | 4.5 ± 0.2 | 3.6 ± 0.2 | 4.0 ± 0.2 |
4.5-di-O-caffeoylquinic acid | 56.8 | 13.5 ± 0.7 | 66.0 ± 3.3 | 5.1 ± 0.3 | 3.5 ± 0.2 | 3.8 ± 0.2 |
Cinnamic acid | 58.5 | ND | ND | 0.8 ± 0.0 | 0.2 ± 0.0 | 0.4 ± 0.0 |
∑Phenolic acids | 592.7 ± 29.6 | 520.5 ± 26.0 | 1399.3 ± 70.0 | 1043.5 ± 52.2 | 846.9 ± 42.3 | |
Flavanols | ||||||
Catechin | 14.1 | 236.7 ± 11.8 | 15.3 ± 0.8 | 5040.5 ± 252.0 | 7001.2 ± 350.1 | 5049.8 ± 252.5 |
Epicatechin | 23.3 | ND | 2.2 ± 0.1 | 36.9 ± 1.8 | 39.3 ± 2.0 | 33.3 ± 1.7 |
∑Flavanols | 236.7 ± 11.8 | 17.6 ± 0.9 | 5077.4 ± 253.9 | 7040.5 ± 352.0 | 5083.1 ± 254.2 | |
Flavanones | ||||||
Naringin | 49.8 | 1.9 ± 0.1 | 10.1 ± 0.5 | 7.7 ± 0.4 | 4.4 ± 0.2 | 3.9 ± 0.2 |
Naringenin | 68.1 | ND | ND | ND | ND | ND |
∑Flavanones | 1.9 ± 0.1 | 10.1 ± 0.5 | 7.7 ± 0.4 | 4.4 ± 0.2 | 3.9 ± 0.2 | |
Flavonols | ||||||
Quercetin-3-O-galactoside | 52.2 | 3.1 ± 0.2 | 62.4 ± 3.1 | <LOD | 1.0 ± 0.0 | 0.8 ± 0.0 |
Rutin | 53.3 | ND | ND | ND | ND | ND |
Myricetin | 57.9 | ND | 22.1 ± 1.1 | 38.1 ± 1.9 | 4.8 ± 0.2 | 18.7 ± 0.9 |
Kaempferol-3-O-glucoside | 59.5 | ND | ND | ND | ND | ND |
Kaempferol-3-O-rutinoside | 60.3 | ND | 5.0 ± 0.2 | ND | ND | ND |
Quercetin | 71.0 | ND | ND | 2.0 ± 0.1 | 2.6 ± 0.1 | 2.4 ± 0.1 |
Tiliroside | 76.2 | ND | ND | 1.4 ± 0.1 | 2.2 ± 0.1 | 1.7 ± 0.1 |
Kaempferol | 79.9 | ND | ND | 4.9 ± 0.2 | 1.8 ± 0.1 | 0.8 ± 0.0 |
Quercetin-3-O-glucopyranoside | 52.7 | ND | ND | <LOQ | ND | ND |
Isorhamnetin-3-O-glucoside | 60.0 | ND | ND | ND | ND | ND |
Isorhamnetin-3-O-rutinoside | 60.3 | ND | <LOQ | 26.2 ± 1.3 | 35.8 ± 1.8 | 32.4 ± 1.6 |
∑Flavonols | 3.1 ± 0.2 | 89.4 ± 4.5 | 72.6 ± 3.6 | 48.2 ± 2.4 | 56.8 ± 2.8 | |
Flavones | ||||||
Apigenin | 81.4 | ND | ND | 2.4 ± 0.1 | 1.2 ± 0.1 | 4.4 ± 0.2 |
Chrysin | 90.8 | ND | ND | ND | ND | 0.3 ± 0.0 |
Quercitrin | 59.1 | ND | ND | ND | ND | ND |
∑Flavones | 0.0 | 0.0 | 2.4 ± 0.1 | 1.2 ± 0.1 | 4.7 ± 0.2 | |
Others | ||||||
Phloridzin | 54.4 | 6.0 ± 0.3 | 27.8 ± 1.4 | ND | ND | ND |
Phloretin | 72.3 | ND | ND | 0.9 ± 0.0 | 1.2 ± 0.1 | 1.1 ± 0.1 |
Resveratrol | 52.5 | ND | 5.3 ± 0.3 | ND | ND | ND |
trans-ε viniferin | 69.2 | ND | ND | ND | ND | 2.2 ± 0.1 |
Caffeine | 16.2 | 28.5 ± 1.4 | 14.7 ± 0.7 | 50.6 ± 2.5 | 63.3 ± 3.2 | 46.3 ± 2.3 |
trans-polydatin | 39.2 | 2.9 ± 0.1 | 2.3 ± 0.1 | <LOQ | <LOQ | <LOD |
∑Others | 37.3 ± 1.9 | 50.2 ± 2.5 | 51.5 ± 2.6 | 64.6 ± 3.2 | 49.7 ± 2.5 | |
∑ All compounds | 869.82 | 687.80 | 6610.90 | 8202.40 | 6045.10 |
FRAP | DPPH | HOCl | O2•− | TPC | |
---|---|---|---|---|---|
FRAP | X | ||||
DPPH | 0.41 | X | |||
HOCl | 0.64 | 0.93 ** | X | ||
O2•− | 0.19 | 0.93 ** | 0.75 | X | |
TPC | 0.94 ** | 0.66 | 0.84 * | 0.42 | X |
Phenolic acids | 0.45 | 0.64 | 0.72 | 0.42 | 0.58 |
Flavanols | 0.90 * | 0.73 | 0.89 * | 0.50 | 0.99 *** |
Flavanones | 0.03 | 0.01 | 0.00 | 0.01 | 0.03 |
Flavonols | 0.00 | 0.07 | 0.11 | 0.06 | 0.01 |
Flavones | 0.13 | 0.80 * | 0.60 | 0.94 ** | 0.32 |
Other compounds | 0.75 | 0.20 | 0.44 | 0.07 | 0.63 |
Sum of phenolics | 0.88 * | 0.75 | 0.91 * | 0.51 | 0.99 *** |
Sample | Concentration (μg/mL) | ||||
---|---|---|---|---|---|
62.5 | 125 | 250 | 500 | 1000 | |
A. arguta ‘Geneva’ | 86.06 ± 16.05 a | 72.52 ± 8.50 a | 73.61 ± 6.91 a | 72.20 ± 9.34 a | 83.34 ± 18.16 a |
A. polygama ‘Pomarancheva’ | 98.40 ± 13.23 a | 102.67 ± 4.83 a | 92.26± 16.64 a | 94.43± 12.74 a | 91.15 ± 14.94 a |
A. kolomikta ‘Tallinn’ | 100.69 ± 11.78 a | 58.28 ± 5.07 b | 54.17 ± 7.77 b | 54.70 ± 10.47 b | 22.87 ± 3.28 c |
A. kolomikta ‘Vitakola’ | 95.51 ± 10.22 a | 67.91 ± 12.64 b | 51.15 ± 11.28 c | 51.36 ± 7.64 c | 41.24 ± 8.71 c |
A. kolomikta ‘Pozdni’ | 80.89 ± 7.44 a | 79.20 ± 6.17 a | 81.76 ± 11.62 a | 66.23 ± 5.89 a | 82.48 ± 19.65 a |
Sample | Concentration (μg/mL) | ||||
---|---|---|---|---|---|
62.5 | 125 | 250 | 500 | 1000 | |
A. arguta ‘Geneva’ | 70.07 ± 7.34 a | 63.54 ± 10.65 a,b | 61.73 ± 9.62 a,b | 65.53 ± 8.92 a,b | 51.24 ± 6.10 b |
A. polygama ‘Pomarancheva’ | 100.74 ± 11.85 a | 78.55 ± 6.21 b | 81.70 ± 9.83 b | 75.83 ± 10.88 b | 58.55 ± 6.71 c |
A. kolomikta ‘Tallinn’ | 75.33 ± 10.30 a | 72.27 ± 28.44 a | 69.90 ± 9.38 a | 56.56 ± 14.27 a | 14.34 ± 2.46 b |
A. kolomikta ‘Vitakola’ | 81.13 ± 11.72 a | 50.01 ± 10.32 b | 55.47 ± 4.41 b | 45.94 ± 7.90 b | 41.66 ± 4.71 b |
A. kolomikta ‘Pozdni’ | 107.45 ± 6.48 a | 77.94 ± 14.06 b | 79.92 ± 11.35 b | 67.81 ± 10.03 b | 60.60 ± 13.05 b |
Fruit Sample | Weight (g) | Soluble Solid Content (SSC, %) | Harvest Date |
---|---|---|---|
A. arguta ‘Geneva’ | 8.4 ± 2.3 | 17.4 ± 1.6 | 10 September 2021 |
A. polygama ‘Pomarancheva’ | 6.3 ± 1.5 | 14.2 ± 0.9 | 15 September 2021 |
A. kolomikta ‘Tallinn’ | 4.5 ± 0.6 | 12.3 ± 1.1 | 5 August 2021 |
A. kolomikta ‘Vitakola’ | 5.6 ± 0.4 | 13.5 ± 1.3 | 5 August 2021 |
A. kolomikta ‘Pozdni’ | 3.7 ± 0.2 | 11.0 ± 0.9 | 5 August 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latocha, P.; Silva, A.M.; Moreira, M.M.; Delerue-Matos, C.; Rodrigues, F. Biological and Health-Promoting Potential of Fruits from Three Cold-Hardy Actinidia Species. Molecules 2025, 30, 246. https://doi.org/10.3390/molecules30020246
Latocha P, Silva AM, Moreira MM, Delerue-Matos C, Rodrigues F. Biological and Health-Promoting Potential of Fruits from Three Cold-Hardy Actinidia Species. Molecules. 2025; 30(2):246. https://doi.org/10.3390/molecules30020246
Chicago/Turabian StyleLatocha, Piotr, Ana Margarida Silva, Manuela M. Moreira, Cristina Delerue-Matos, and Francisca Rodrigues. 2025. "Biological and Health-Promoting Potential of Fruits from Three Cold-Hardy Actinidia Species" Molecules 30, no. 2: 246. https://doi.org/10.3390/molecules30020246
APA StyleLatocha, P., Silva, A. M., Moreira, M. M., Delerue-Matos, C., & Rodrigues, F. (2025). Biological and Health-Promoting Potential of Fruits from Three Cold-Hardy Actinidia Species. Molecules, 30(2), 246. https://doi.org/10.3390/molecules30020246