Comparative (Bio)monitoring of Airborne PAHs Using Mosses and Filters
Abstract
1. Introduction
2. Results and Discussion
2.1. Filters and Mosses
2.2. Meteorological Influences on PAH Accumulation
2.3. Source Identification and Toxicity of PAHs
3. Materials and Methods
3.1. Study Area
3.2. Materials
3.3. Methodology
3.4. Calculations and Statistics
- Ci: concentration of a given PAH
- TEFi: equivalent toxicity coefficient for a given compound [75]
4. Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macedo-Miranda, G.; Avila-Pérez, P.; Gil-Vargas, P.; Zarazúa, G.; Sánchez-Meza, J.C.; Zepeda-Gómez, C.; Tejeda, S. Accumulation of Heavy Metals in Mosses: A Biomonitoring Study. Springerplus 2016, 5, 715. [Google Scholar] [CrossRef]
- Paoli, L.; Grassi, A.; Vannini, A.; Maslaňáková, I.; Bil’ová, I.; Bačkor, M.; Corsini, A.; Loppi, S. Epiphytic Lichens as Indicators of Environmental Quality around a Municipal Solid Waste Landfill (C Italy). Waste Manag. 2015, 42, 67–73. [Google Scholar] [CrossRef]
- Sfetsas, T.; Ghoghoberidze, S.; Karnoutsos, P.; Tziakas, V.; Karagiovanidis, M.; Katsantonis, D. Spatial and Temporal Patterns of Trace Element Deposition in Urban Thessaloniki: A Syntrichia Moss Biomonitoring Study. Atmosphere 2024, 15, 1378. [Google Scholar] [CrossRef]
- Jiang, Y.; Fan, M.; Hu, R.; Zhao, J.; Wu, Y. Mosses Are Better than Leaves of Vascular Plants in Monitoring Atmospheric Heavy Metal Pollution in Urban Areas. Int. J. Environ. Res. Public Health 2018, 15, 1105. [Google Scholar] [CrossRef]
- Burstyn, I.; Donovan, G.H.; Michael, Y.L.; Jovan, S. Association of Polycyclic Aromatic Hydrocarbons in Moss with Blood Biomarker among Nearby Residents in Portland, Oregon. PLoS ONE 2022, 17, e0279207. [Google Scholar] [CrossRef]
- Stanojković, J.N.; Ćosić, M.V.; Božović, D.P.; Sabovljević, A.D.; Sabovljević, M.S.; Čučulović, A.A.; Vujičić, M.M. Effects of Cesium on Physiological Traits of the Catherine’s Moss Atrichum Undulatum Hedw. Plants 2024, 13, 54. [Google Scholar] [CrossRef]
- Takano, A.P.C.; Rybak, J.; Veras, M.M. Bioindicators and Human Biomarkers as Alternative Approaches for Cost-Effective Assessment of Air Pollution Exposure. Front. Environ. Eng. 2024, 3, 1346863. [Google Scholar] [CrossRef]
- Pongpiachan, S.; Tipmanee, D.; Khumsup, C.; Hirunyatrakul, P.; Hashmi, M.Z.; Poshyachinda, S. Size-Segregated Analysis of PAHs in Urban Air: Source Apportionment and Health Risk Assessment in an Urban Canal-Adjacent Environment. PLoS ONE 2025, 20, e0320405. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, P.; Yang, B.; Wang, Y.; Shu, J. Kinetic Studies of Heterogeneous Reactions of Polycyclic Aromatic Hydrocarbon Aerosols with NO3 Radicals. Environ. Sci. Technol. 2012, 46, 7575–7580. [Google Scholar] [CrossRef]
- Zhou, B.; Feng, Q.; Li, C.; Jiao, L.; Cheng, K.; Ho, S.S.H.; Wen, Z.; Li, J. Molecular Composition, Seasonal Variation, and Size Distribution of n-Alkanes, PAHs, and Saccharides in a Medium-Sized City of Guanzhong Plain, Northwest China: Evaluation of Control Measures Executed in the Past Decade. Toxics 2023, 11, 164. [Google Scholar] [CrossRef]
- Kistaubayeva, A.; Saral, A.; Summak, G.; Coltu, H.; Levent, S. Polycyclic Aromatic Hydrocarbons PAHs on Size Segregated Particle Phase in Urban Atmosphere Istanbul. In Proceedings of the Third International Conference on Advances in Bio-Informatics and Environmental Engineering—ICABEE 2015, Granada, Spain, 15–17 April 2015; pp. 5–11. [Google Scholar]
- Khan, A.M.; Imran, M.; Hashmi, A.S.; Shehzad, W.; Abbas, M. Adsorbent Filters for Removing Polycyclic Aromatic Hydrocarbons From the Atmosphere. Environ. Prot. Eng. 2023, 49, 19–27. [Google Scholar] [CrossRef]
- Kennedy, K.; Macova, M.; Bartkow, M.E.; Hawker, D.W.; Zhao, B.; Denison, M.S.; Mueller, J.F. Effect Based Monitoring of Seasonal Ambient Air Exposures in Australia Sampled by PUF Passive Air Samplers. Atmos. Pollut. Res. 2010, 1, 50–58. [Google Scholar] [CrossRef]
- Gereslassie, T.; Workineh, A.; Liu, X.; Yan, X.; Wang, J. Occurrence and Ecological and Human Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Soils from Wuhan, Central China. Int. J. Environ. Res. Public Health 2018, 15, 2751. [Google Scholar] [CrossRef]
- Watabe, Y.; Kubo, T.; Tanigawa, T.; Hayakawa, Y.; Otsuka, K.; Hosoya, K. Trace Level Determination of Polycyclic Aromatic Hydrocarbons in River Water with Automated Pretreatment HPLC. J. Sep. Sci. 2013, 36, 1128–1134. [Google Scholar] [CrossRef]
- Byambaa, B.; Yang, L.; Matsuki, A.; Nagato, E.G.; Gankhuyag, K.; Chuluunpurev, B.; Banzragch, L.; Chonokhuu, S.; Tang, N.; Hayakawa, K. Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City, Mongolia. Int. J. Environ. Res. Public Health 2019, 16, 442. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Yang, L.; Zhou, Q.; Xing, W.; Toriba, A.; Hayakawa, K.; Wei, Y.; Tang, N. Characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) and Common Air Pollutants at Wajima, a Remote Background Site in Japan. Int. J. Environ. Res. Public Health 2020, 17, 957. [Google Scholar] [CrossRef]
- Amiri, A.; Baghayeri, M.; Shahabizadeh, M. Polypyrrole/Carbon Nanotube Coated Stainless Steel Mesh as a Novel Sorbent. New J. Chem. 2023, 47, 4402–4408. [Google Scholar] [CrossRef]
- Adannou, H.A.; Kamane, N.K.; Prosper, S.K.; Ngarbaroum, D.; Constant, A.N.; Ali, A.-H.M.; Ngos, S., III. The Environmental Impact of Polycyclic Aromatic Hydrocarbons: Mechanism of Extraction by Bio-Surfactant in a Microwave. Nat. Resour. 2020, 11, 576–589. [Google Scholar] [CrossRef]
- Barretto, R.; Siliveru, K.; Casada, M. Shape Characteristics and Particle Size Distribution: Effects on Flowability and Floodability of Select Grain Dust Types. Biosyst. Eng. 2023, 225, 13–24. [Google Scholar] [CrossRef]
- Islam, M.S.; Saha, S.C.; Gemci, T.; Yang, I.A.; Sauret, E.; Gu, Y.T. Polydisperse Microparticle Transport and Deposition to the Terminal Bronchioles in a Heterogeneous Vasculature Tree. Sci. Rep. 2018, 8, 16387. [Google Scholar] [CrossRef]
- Islam, M.S.; Saha, S.C.; Gemci, T.; Yang, I.A.; Sauret, E.; Ristovski, Z.; Gu, Y.T. Euler-Lagrange Prediction of Diesel-Exhaust Polydisperse Particle Transport and Deposition in Lung: Anatomy and Turbulence Effects. Sci. Rep. 2019, 9, 12423. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, S.; Chen, T.; Ren, J. Effects of Ambient Temperature and Humidity on Natural Deposition Characteristics of Airborne Biomass Particles. Int. J. Environ. Res. Public Health 2023, 20, 1890. [Google Scholar] [CrossRef]
- Dong, Y.; Price, O.; Asgharian, B.; Bai, H. In Silico Dosimetric Profiling of Human Nasal Inhaled Nanoparticles. Int. J. Green Nanotechnol. Mater. Sci. Eng. 2010, 1, M89–M93. [Google Scholar] [CrossRef]
- Ai, W.; Kuhlman, J.M. Simulation of Coal Ash Particle Deposition Experiments. Energy Fuels 2011, 25, 708–718. [Google Scholar] [CrossRef]
- Bortey-Sam, N.; Ikenaka, Y.; Akoto, O.; Nakayama, S.M.M.; Yohannes, Y.B.; Baidoo, E.; Mizukawa, H.; Ishizuka, M. Levels, Potential Sources and Human Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in Particulate Matter (PM10) in Kumasi, Ghana. Environ. Sci. Pollut. Res. 2015, 22, 9658–9667. [Google Scholar] [CrossRef]
- Geldenhuys, G.; Orasche, J.; Jakobi, G.; Zimmermann, R.; Forbes, P.B.C. Characterization of Gaseous and Particulate Phase Polycyclic Aromatic Hydrocarbons Emitted During Preharvest Burning of Sugar Cane in Different Regions of Kwa-Zulu Natal, South Africa. Environ. Toxicol. Chem. 2023, 42, 778–792. [Google Scholar] [CrossRef]
- Caliskan, B.; Celik, S.; Sakin, A.E.; Tasdemir, Y. Atmospheric Polycyclic Aromatic Hydrocarbon Concentrations in a Semi-Urban Site: Temporal Variation, Risk Assessment, Source Identification, and Estimation of Levels in Diverse Environments. Environ. Toxicol. Chem. 2025, 44, 683–697. [Google Scholar] [CrossRef]
- Foan, L.; Domercq, M.; Bermejo, R.; Santamaría, J.M.; Simon, V. Mosses as an Integrating Tool for Monitoring PAH Atmospheric Deposition: Comparison with Total Deposition and Evaluation of Bioconcentration Factors. A Year-Long Case-Study. Chemosphere 2015, 119, 452–458. [Google Scholar] [CrossRef]
- Rajfur, M.; Stoica, A.I.; Świsłowski, P.; Stach, W.; Ziegenbalg, F.; Mattausch, E.M. Assessment of Atmospheric Pollution by Selected Elements and PAHs during 12-Month Active Biomonitoring of Terrestrial Mosses. Atmosphere 2024, 15, 102. [Google Scholar] [CrossRef]
- Carrieri, V.; Fernández, J.Á.; Aboal, J.R.; Picariello, E.; De Nicola, F. Accumulation of Polycyclic Aromatic Hydrocarbons in the Devitalized Aquatic Moss Fontinalis Antipyretica: From Laboratory to Field Conditions. J. Environ. Qual. 2021, 50, 1196–1206. [Google Scholar] [CrossRef]
- Gao, G.; Zeng, H.; Zhou, Q. Biomonitoring Atmospheric Pollution of Polycyclic Aromatic Hydrocarbons Using Mosses. Atmosphere 2023, 14, 26. [Google Scholar] [CrossRef]
- Świsłowski, P.; Hrabák, P.; Wacławek, S.; Liskova, K.; Antos, V.; Rajfur, M.; Ząbkowska-Wacławek, M. The Application of Active Biomonitoring with the Use of Mosses to Identify Polycyclic Aromatic Hydrocarbons in an Atmospheric Aerosol. Molecules 2021, 26, 7258. [Google Scholar] [CrossRef]
- Hamard, S.; Robroek, B.J.M.; Allard, P.M.; Signarbieux, C.; Zhou, S.; Saesong, T.; de Baaker, F.; Buttler, A.; Chiapusio, G.; Wolfender, J.L.; et al. Effects of Sphagnum Leachate on Competitive Sphagnum Microbiome Depend on Species and Time. Front. Microbiol. 2019, 10, 2042. [Google Scholar] [CrossRef]
- Srogi, K. Monitoring of Environmental Exposure to Polycyclic Aromatic Hydrocarbons: A Review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, H.; Chen, H.; Liu, Y.; Wang, A.; Hu, Q. Quantification of 16 Polycyclic Aromatic Hydrocarbons in Cigarette Smoke Condensate Using Stable Isotope Dilution Liquid Chromatography with Atmospheric-Pressure Photoionization Tandem Mass Spectrometry. J. Sep. Sci. 2015, 38, 3862–3869. [Google Scholar] [CrossRef]
- Dembiński, C.; Potok, Z.; Kučerka, M.; Kminiak, R.; Očkajová, A.; Rogoziński, T. The Dust Separation Efficiency of Filter Bags Used in the Wood-Based Panels Furniture Factory. Materials 2022, 15, 3232. [Google Scholar] [CrossRef]
- Peters, T.M.; Sawvel, R.A.; Park, J.H.; Anthony, T.R. Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System. J. Occup. Environ. Hyg. 2015, 12, D201–D210. [Google Scholar] [CrossRef]
- Vingiani, S.; De Nicola, F.; Purvis, W.O.; Concha-Graña, E.; Muniategui-Lorenzo, S.; López-Mahía, P.; Giordano, S.; Adamo, P. Active Biomonitoring of Heavy Metals and PAHs with Mosses and Lichens: A Case Study in the Cities of Naples and London. Water. Air. Soil Pollut. 2015, 226, 240. [Google Scholar] [CrossRef]
- Cozzolino, A.; Adamo, P.; Bonanomi, G.; Motti, R. The Role of Lichens, Mosses, and Vascular Plants in the Biodeterioration of Historic Buildings: A Review. Plants 2022, 11, 3429. [Google Scholar] [CrossRef]
- Balabanova, B.; Lazarova, M.; Boev, B.; Barbu-Tudoran, L.; Suciu, M. Proposing Chemometric Tool for Efficacy Surface Dust Deposition Tracking in Moss Tissue Cross Bioindication Process of Metals in Environment. In Contaminant Levels and Ecological Effects; Springer: Cham, Switzerland, 2021; pp. 131–169. [Google Scholar]
- Oishi, Y. Comparison of Pine Needles and Mosses as Bio-Indicators for Polycyclic Aromatic Hydrocarbons. J. Environ. Prot. 2013, 4, 106–113. [Google Scholar] [CrossRef]
- Vuković, G.; Aničić Uroševic, M.; Razumenić, I.; Kuzmanoski, M.; Pergal, M.; Škrivanj, S.; Popović, A. Air Quality in Urban Parking Garages (PM10, Major and Trace Elements, PAHs): Instrumental Measurements vs. Active Moss Biomonitoring. Atmos. Environ. 2014, 85, 31–40. [Google Scholar] [CrossRef]
- Ray, D.; Ghosh, A.; Chatterjee, A.; Ghosh, S.K.; Raha, S. Size-Specific Pahs and Associated Health Risks over a Tropical Urban Metropolis: Role of Long-Range Transport and Meteorology. Aerosol Air Qual. Res. 2019, 19, 2446–2463. [Google Scholar] [CrossRef]
- Tala, W.; Kraisitnitikul, P.; Chantara, S. Impact of Atmospheric Conditions and Source Identification of Gaseous Polycyclic Aromatic Hydrocarbons (PAHs) during a Smoke Haze Period in Upper Southeast Asia. Toxics 2023, 11, 990. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Yang, L.; Li, Z.; Satake, K.; Tsunoda, K.I. Alternative Normalization Method of Atmospheric Polycyclic Aromatic Hydrocarbons Pollution Level Recorded by Tree Bark. Environ. Sci. Technol. 2006, 40, 5853–5859. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, H.; Fang, B.; Wang, H.; Yang, Z.; Yang, W.; Hao, Y.; Wang, X.; Wang, Q.; Wang, M. Source Identification and Health Risk Assessment of Polycyclic Aromatic Hydrocarbon-Enriched PM2.5 in Tangshan, China. Environ. Toxicol. Chem. 2020, 39, 458–467. [Google Scholar] [CrossRef]
- Amarillo, A.C.; Mateos, A.C.; Carreras, H. Source Apportionment of PM10-Bound Polycyclic Aromatic Hydrocarbons by Positive Matrix Factorization in Córdoba City, Argentina. Arch. Environ. Contam. Toxicol. 2017, 72, 380–390. [Google Scholar] [CrossRef]
- Amarillo, A.C.; Carreras, H. Quantifying the Influence of Meteorological Variables on Particle-Bound PAHs in Urban Environments. Atmos. Pollut. Res. 2016, 7, 597–602. [Google Scholar] [CrossRef]
- Shimada, K.; Nohchi, M.; Maeshima, K.; Uchino, T.; Kobayashi, Y.; Ono, K.; Ogata, H.; Katsumi, N.; Inazu, K.; Okochi, H. Effects of Changes in Polycyclic Aromatic Hydrocarbons (PAHs) Emissions and Degradation on Their Concentrations in Tokyo from 2007 and 2016. Sci. Rep. 2022, 12, 4249. [Google Scholar] [CrossRef]
- Sleight, T.W.; Khanna, V.; Gilbertson, L.M.; Ng, C.A. Network Analysis for Prioritizing Biodegradation Metabolites of Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 2020, 54, 10735–10744. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, H.; Zhang, X.; Wu, B.; Cai, X.; Song, Y.; Zhu, T. Quantitative Verification of the Turbulence Barrier Effect during Heavy Haze Pollution Events. Environ. Res. Commun. 2022, 4, 045005. [Google Scholar] [CrossRef]
- Dimashki, M.; Lim, L.H.; Harrison, R.M.; Harrad, S. Temporal Trends, Temperature Dependence, and Relative Reactivity of Atmospheric Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 2001, 35, 2264–2267. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, W.; Wang, K.; Shen, Y.; Hu, L.; Wang, X. Concentration, Distribution and Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons in the Southeast Suburb of Beijing, China. Environ. Monit. Assess. 2009, 151, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Deng, O.; Chen, Y.; Zhao, J.; Li, X.; Zhou, W.; Lan, T.; Ou, D.; Zhang, Y.; Liu, J.; Luo, L.; et al. Response Patterns of Moss to Atmospheric Nitrogen Deposition and Nitrogen Saturation in an Urban-Agro-Forest Transition. Atmos. Chem. Phys. 2024, 24, 5303–5314. [Google Scholar] [CrossRef]
- Zhao, Z.; He, W.; Wu, R.; Xu, F. Distribution and Relationships of Polycyclic Aromatic Hydrocarbons (PAHs) in Soils and Plants near Major Lakes in Eastern China. Toxics 2022, 10, 577. [Google Scholar] [CrossRef]
- Montuori, P.; De Rosa, E.; Cerino, P.; Pizzolante, A.; Nicodemo, F.; Gallo, A.; Rofrano, G.; De Vita, S.; Limone, A.; Triassi, M. Estimation of Polycyclic Aromatic Hydrocarbons in Groundwater from Campania Plain: Spatial Distribution, Source Attribution and Health Cancer Risk Evaluation. Toxics 2023, 11, 435. [Google Scholar] [CrossRef]
- Wu, Y.; Salamova, A.; Venier, M. Using Diagnostic Ratios to Characterize Sources of Polycyclic Aromatic Hydrocarbons in the Great Lakes Atmosphere. Sci. Total Environ. 2021, 761, 143240. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, C.; Cai, G.; Li, S.; Nie, X.; Zhou, S. Assessing the Effects of Heavy Metals and Polycyclic Aromatic Hydrocarbons on Benthic Foraminifera: The Case of Houshui and Yangpu Bays, Hainan Island, China. Front. Mar. Sci. 2023, 10, 1123453. [Google Scholar] [CrossRef]
- Li, Y.; Zhen, X.; Liu, L.; Tian, C.; Pan, X.; Tang, J. From Headwaters to Estuary: Distribution, Sources, and Ecological Risk of Polycyclic Aromatic Hydrocarbons in an Intensively Human-Impacted River, China. Environ. Sci. Pollut. Res. 2018, 25, 36604–36614. [Google Scholar] [CrossRef]
- Yao, K.; Xie, Z.; Zhi, L.; Wang, Z.; Qu, C. Polycyclic Aromatic Hydrocarbons in the Water Bodies of Dong Lake and Tangxun Lake, China: Spatial Distribution, Potential Sources and Risk Assessment. Water 2023, 15, 2416. [Google Scholar] [CrossRef]
- Dreyer, A.; Nickel, S.; Schröder, W. (Persistent) Organic Pollutants in Germany: Results from a Pilot Study within the 2015 Moss Survey. Environ. Sci. Eur. 2018, 30, 43. [Google Scholar] [CrossRef]
- Etesin, U.M.; Uwanta, E.I.; Ogbonna, I.J.; Ukpong, O.; Thompson, V. Source Identification and Health Risk Assessments of Polyaromatic Hydrocarbons (Pahs) in Mollusc From Ibeno, Southeastern, Nigeria. Environ. Contam. Rev. 2023, 6, 58–65. [Google Scholar] [CrossRef]
- Błaś, M.; Ojrzyńska, H. The Climate of Poland. In Landscapes and Landforms of Poland; Migoń, P., Jancewicz, K., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 33–51. ISBN 978-3-031-45762-3. [Google Scholar]
- Saldarriaga-Noreña, H.; López-Márquez, R.; Alfonso Murillo-Tovar, M.; Ivonne Arias-Montoya, M.; Antonio Guerrero-Álvarez, J.; Vergara-Sánchez, J. Recent Advances for Polycyclic Aromatic Analysis in Airborne Particulate Matter. Hydrocarb. Pollut. Eff. Environ. 2019, 1–18. [Google Scholar] [CrossRef]
- Veli, A.; Mustafa, Z.; Naydenova, S.; Gonsalvesh, L. Mini-Review on PAHs in Airborne Particulate Matter: Characteristics, Sources, and Current Analytical Methods. Rev. Bulg. Geol. Soc. 2024, 85, 93–99. [Google Scholar] [CrossRef]
- Świsłowski, P.; Wacławek, S.; Antos, V.; Zinicovscaia, I.; Rajfur, M.; Wacławek, M. One Year of Active Moss Biomonitoring in the Identification of PAHs in an Urbanized Area—Prospects and Implications. Environ. Sci. Pollut. Res. 2024, 31, 38416–38427. [Google Scholar] [CrossRef]
- Conlon, C.; Rice, D.; Bullen, M.; Smith, L.; Cowan, J.; Hancock, K.; Mills, D.; Patrick, J.; Hopkins, D.; Kemp, G. Air Sampling Apparatus. 2014. Available online: https://patents.google.com/patent/GB2529189A/en (accessed on 4 October 2025).
- ICP Vegetation. Heavy Metals, Nitrogen and POPs in European Mosses: 2020 Survey. 2020. Available online: https://icpvegetation.ceh.ac.uk/sites/default/files/ICP%20Vegetation%20moss%20monitoring%20manual%202020.pdf (accessed on 22 August 2025).
- Tobiszewski, M.; Namieśnik, J. PAH Diagnostic Ratios for the Identification of Pollution Emission Sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Concha-Graña, E.; Piñeiro-Iglesias, M.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Proposal of a Procedure for the Analysis of Atmospheric Polycyclic Aromatic Hydrocarbons in Mosses. Talanta 2015, 134, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Turgut, E.T.; Gaga, E.O.; Jovanović, G.; Odabasi, M.; Artun, G.; Ari, A.; Urošević, M.A. Elemental Characterization of General Aviation Aircraft Emissions Using Moss Bags. Environ. Sci. Pollut. Res. 2019, 26, 26925–26938. [Google Scholar] [CrossRef] [PubMed]
- Ihunwo, O.C.; Shahabinia, A.R.; Udo, K.S.; Bonnail, E.; Onyema, M.O.; Dibofori-Orji, A.N.; Mmom, P.C. Distribution of Polycyclic Aromatic Hydrocarbons in Woji Creek, in the Niger Delta. Environ. Res. Commun. 2019, 1, 125001. [Google Scholar] [CrossRef]
- Panalytical, M. User Guide for Morphologi 4. Available online: https://www.malvernpanalytical.com/en/learn/knowledge-center/user-manuals/man0595en (accessed on 4 October 2025).
- Agency for Toxic Substances and Disease Registry. Guidance for Calculating Benzo(a)Pyrene Equivalents for Cancer Evaluations of Polycyclic Aromatic Hydrocarbons; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2022. [Google Scholar]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive Statistics and Normality Tests for Statistical Data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Zhong, N.; Zhang, W.; Sadik, A.; Li, H. Ternary Diagram of Fluorenes, Dibenzothiophenes and Dibenzofurans: Indicating Depositional Environment of Crude Oil Source Rocks. Energy Explor. Exploit. 2013, 31, 569–588. [Google Scholar] [CrossRef]
Filter ID | # Particles | CE Diameter Mean (µm) | HS Circularity Mean | Aspect Ratio Mean | Elongation Mean | Solidity Mean | Convexity Mean |
---|---|---|---|---|---|---|---|
Filter No. 1 | 166,480 | 0.83 | 0.504 | 0.701 | 0.299 | 0.864 | 0.877 |
Filter No. 4 | 76,473 | 0.59 | 0.443 | 0.685 | 0.315 | 0.840 | 0.861 |
Filter No. 7 | 93,646 | 0.54 | 0.407 | 0.670 | 0.330 | 0.823 | 0.849 |
Filter No. 10 | 123,955 | 0.75 | 0.461 | 0.690 | 0.310 | 0.847 | 0.864 |
Filter No. 16 | 171,365 | 0.42 | 0.326 | 0.651 | 0.349 | 0.789 | 0.834 |
Filter No. 19 | 80,527 | 0.83 | 0.483 | 0.657 | 0.343 | 0.848 | 0.882 |
Filter No. 22 | 70,715 | 0.90 | 0.570 | 0.698 | 0.302 | 0.887 | 0.903 |
Filter No. 25 | 105,059 | 0.72 | 0.458 | 0.692 | 0.308 | 0.849 | 0.857 |
Filter No. 28 | 57,855 | 0.51 | 0.460 | 0.660 | 0.340 | 0.834 | 0.889 |
Filter No. 31 | 127,364 | 0.56 | 0.474 | 0.678 | 0.322 | 0.843 | 0.877 |
Filter No. 34 | 174,523 | 0.44 | 0.387 | 0.670 | 0.330 | 0.814 | 0.850 |
Filter No. 37 | 130,610 | 0.51 | 0.531 | 0.711 | 0.289 | 0.897 | 0.904 |
Filter No. 40 | 142,715 | 0.83 | 0.549 | 0.713 | 0.287 | 0.900 | 0.909 |
Filter No. 43 | 46,827 | 0.86 | 0.534 | 0.662 | 0.338 | 0.883 | 0.932 |
Filter No. 52 | 132,574 | 0.71 | 0.537 | 0.628 | 0.372 | 0.873 | 0.953 |
Method/PAH | NAP | ACY | ACE | FLU | PHE | ANT | FLT | PYR | BaA | CHR | BbF | BkF | BaP | IP | DBA | BghiP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Filters | 33.8 | 11.1 | 5.18 | 8.59 | 124 | 34.3 | 1244 | 1139 | 908 | 1099 | 1267 | 1293 | 846 | 1061 | 197 | 853 |
S. fallax | 36.4 | 6.00 | 13.9 | 15.04 | 334 | 23.0 | 550 | 292 | 28.6 | 91.2 | 60.3 | 37.0 | 21.4 | 31.9 | 10.6 | 33.8 |
D. polysetum | 348 | 37.8 | 19.9 | 38.87 | 753 | 33.6 | 1067 | 646 | 77.4 | 213 | 141 | 92.1 | 35.6 | 64.9 | 12.6 | 79.3 |
P. schreberi | 25.8 | 11.6 | 14.96 | 26.0 | 612 | 35.9 | 1174 | 743 | 74.6 | 292 | 138 | 99.4 | 40.8 | 64.4 | 14.3 | 61.1 |
Month | ΣLMW/ΣHMW | FL/(FL + PYR) | ANT/(ANT + PHE) | FLT/(FLT + PYR) | BaA/(BaA + CHR) | IP/(IP + BghiP) | BaP/BghiP | |
---|---|---|---|---|---|---|---|---|
Sep | 0.05 | 0.55 | 0.11 | 0.55 | 0.28 | 0.54 | 0.80 | |
Oct | 0.04 | 0.53 | 0.12 | 0.53 | 0.39 | 0.53 | 0.91 | |
Filter | Nov | 0.01 | 0.50 | 0.15 | 0.50 | 0.40 | 0.54 | 0.82 |
Dec | 0.02 | 0.52 | 0.36 | 0.52 | 0.49 | 0.55 | 1.11 | |
Jan | 0.03 | 0.53 | 0.15 | 0.53 | 0.46 | 0.56 | 1.02 | |
Feb | 0.02 | 0.52 | 0.23 | 0.52 | 0.45 | 0.57 | 0.95 | |
Average | 0.03 | 0.52 | 0.19 | 0.52 | 0.41 | 0.55 | 0.94 | |
Sep | 0.35 | 0.00 | 1.00 | 0.00 | 0.00 | 0.62 | 0.01 | |
Oct | 0.54 | 0.63 | 0.07 | 0.63 | 0.21 | 0.49 | 0.58 | |
S. fallax | Nov | 0.41 | 0.62 | 0.07 | 0.62 | 0.25 | 0.49 | 0.65 |
Dec | 0.27 | 0.62 | 0.07 | 0.62 | 0.29 | 0.53 | 0.70 | |
Jan | 0.29 | 0.63 | 0.06 | 0.63 | 0.25 | 0.46 | 0.54 | |
Feb | 0.37 | 0.65 | 0.06 | 0.65 | 0.24 | 0.49 | 0.63 | |
Average | 0.37 | 0.53 | 0.22 | 0.53 | 0.21 | 0.51 | 0.52 | |
Sep | 13.48 | 0.00 | 1.00 | 0.00 | 0.00 | 0.67 | 0.74 | |
Oct | 1.79 | 0.57 | 0.05 | 0.57 | 0.26 | 0.49 | 0.59 | |
D. polysetum | Nov | 1.28 | 0.57 | 0.03 | 0.57 | 0.30 | 0.45 | 0.50 |
Dec | 0.65 | 0.60 | 0.05 | 0.60 | 0.32 | 0.49 | 0.69 | |
Jan | 0.63 | 0.61 | 0.05 | 0.61 | 0.32 | 0.44 | 0.57 | |
Feb | 0.51 | 0.62 | 0.04 | 0.62 | 0.27 | 0.45 | 0.45 | |
Average | 3.06 | 0.50 | 0.21 | 0.50 | 0.24 | 0.50 | 0.59 | |
Sep | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Oct | 0.48 | 0.63 | 0.04 | 0.63 | 0.21 | 0.53 | 0.64 | |
P. schreberi | Nov | 0.33 | 0.62 | 0.04 | 0.62 | 0.22 | 0.55 | 0.66 |
Dec | 0.25 | 0.60 | 0.06 | 0.60 | 0.29 | 0.53 | 0.75 | |
Jan | 0.25 | 0.60 | 0.06 | 0.60 | 0.28 | 0.54 | 0.77 | |
Feb | 0.27 | 0.61 | 0.06 | 0.61 | 0.20 | 0.51 | 0.67 | |
Average | 0.26 | 0.51 | 0.04 | 0.51 | 0.20 | 0.44 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajfur, M.; Świsłowski, P.; Turlej, T.; Isinkaralar, O.; Isinkaralar, K.; Almasi, S.; Callegari, A.; Stoica, A.-I. Comparative (Bio)monitoring of Airborne PAHs Using Mosses and Filters. Molecules 2025, 30, 4009. https://doi.org/10.3390/molecules30194009
Rajfur M, Świsłowski P, Turlej T, Isinkaralar O, Isinkaralar K, Almasi S, Callegari A, Stoica A-I. Comparative (Bio)monitoring of Airborne PAHs Using Mosses and Filters. Molecules. 2025; 30(19):4009. https://doi.org/10.3390/molecules30194009
Chicago/Turabian StyleRajfur, Małgorzata, Paweł Świsłowski, Tymoteusz Turlej, Oznur Isinkaralar, Kaan Isinkaralar, Sara Almasi, Arianna Callegari, and Anca-Iulia Stoica. 2025. "Comparative (Bio)monitoring of Airborne PAHs Using Mosses and Filters" Molecules 30, no. 19: 4009. https://doi.org/10.3390/molecules30194009
APA StyleRajfur, M., Świsłowski, P., Turlej, T., Isinkaralar, O., Isinkaralar, K., Almasi, S., Callegari, A., & Stoica, A.-I. (2025). Comparative (Bio)monitoring of Airborne PAHs Using Mosses and Filters. Molecules, 30(19), 4009. https://doi.org/10.3390/molecules30194009