Chemical Composition and Insecticidal Activity of Essential Oils from Origanum floribundum and Eucalyptus citriodora Against the Louse Bovicola limbatus
Abstract
1. Introduction
2. Results
2.1. Yield and Chemical Composition
2.2. Morphological Identification
2.3. Contact Toxicity
2.4. Toxicity Parameters of the Essential Oils of O. floribundum and E. citriodora
3. Discussion
3.1. Yield and Chemical Composition
3.2. Chromatographic Analysis by GC/FID and GC/SM
3.3. Morphological Identification
3.4. Contact Toxicity
4. Materials and Methods
4.1. Plant Material
4.2. Essential Oil Extraction
4.3. Chromatographic Analysis by GC/FID and GC-SM
4.4. Identification of Components
4.5. Lice Collection and Identification
4.6. Contact Toxicity
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kadi, S.; Hassini, F.; Lounas, N.; Mouhous, A. Caractérisation de l’élevage caprin dans la région montagneuse de Kabylie en Algérie. In Proceedings of the 8th International Seminar FAO-CIHEAM Network on Sheep and Goats “Technology Creation and Transfer in Small Ruminants: Roles of Research, Development Services and Farmer Associations”, Tangier, Morocco, 11–13 June 2013; Chentouf, M., Lopez-Francos, A., Bengoumi, M., Gabina, D., Eds.; Options Méditerranéennes A: Tangier, Morocco, 2014; Volume 108, pp. 451–456. [Google Scholar]
- Moustari, A. Identification des races caprines des zones arides en Algérie. Rev. Des Régions Arid. 2008, 3, 1378–1382. [Google Scholar]
- Kadi, S.; Mouhous, A.; Gani, F.; Fiouane, R.; Djellal, F. Caractérisation de l’élevage caprin dans la région désertique de Béchar en Algérie. In Seminar of the Sub-Network on Production Systems & Sub-Network on Nutrition. Innovation for Sustainability in Sheep and Goats. Vitoria-Gasteiz, Spain; CIHEAM: Vitoria-Gasteiz, Spain, 2017; pp. 3–5. [Google Scholar]
- Nizamov, N. Effects of age, sex, and body condition on ectoparasitic insect infestation in domestic goats. Trakia J. Sci. 2025, 23, 7. [Google Scholar] [CrossRef]
- Mouhous, A.; Kadi, S.A.; Berchiche, M.; Djellal, F.; Huguenin, J.; Alary, V. Performances de production et commercialisation de lait dans les exploitations caprines en zone montagneuse de Tizi-Ouzou (Algérie). In The Value Chains of Mediterranean Sheep and Goat Products. Organisation of the Industry, Marketing Strategies, Feeding and Production Systems; Ben Salem, H., Boutonnet, J.P., López-Francos, A., Gabiña, D., Eds.; CIHEAM (Options Méditerranéennes: Série, A.): Zaragoza, Spain, 2016; Volume 115, pp. 469–473. [Google Scholar]
- Brown, L. Aspects of the Bio-Ecology of the Biting Louse, Damalinia Limbata. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2000. [Google Scholar]
- Fourie, L.; Kok, D.; Allan, M.; Oberem, P. The efficacy of diflubenzuron against the body louse (Damalinia limbata) of Angora goats. Vet. Parasitol. 1995, 59, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, F.; De Chaneet, G.; Beetson, B. Growth of populations of lice, Damalinia ovis, on sheep and their effects on production and processing performance of wool. Vet. Parasitol. 1982, 9, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Maurizio, A.; Frangipane di Regalbono, A.; Cassini, R. Quantitative monitoring of selected groups of parasites in domestic ruminants: A comparative review. Pathogens 2021, 10, 1173. [Google Scholar] [CrossRef] [PubMed]
- Boltaev, D. Goat ectoparasitosis. West. Eur. J. Mod. Exp. Sci. Methods 2024, 2, 74–79. [Google Scholar]
- Disasa, D.D. Lice infestations in sheep and goats in Kombolcha district, east Hararghe zone, Oromia regional state, Ethiopia. Vet. Med. Int. 2020, 2020, 8889755. [Google Scholar] [CrossRef]
- Kumar, S.; Mahapatro, G.K.; Yadav, D.K.; Tripathi, K.; Koli, P.; Kaushik, P.; Sharma, K.; Nebapure, S. Essential oils as green pesticides: An overview. Indian J. Agric. Sci. 2022, 92, 1298–1305. [Google Scholar] [CrossRef]
- Eltalawy, H.M.; El-Fayoumi, H.; Aboelhadid, S.M.; Al-Quraishy, S.; El-Mallah, A.M.; Tunali, F.; Sokmen, A.; Daferera, D.; Abdel-Baki, A.-A.S. Repellency, fumigant toxicity, antifeedent and residual activities of Coridothymus capitatus and its main component carvacrol against red flour beetle. Molecules 2024, 29, 4255. [Google Scholar] [CrossRef]
- Feroz, A. Efficacy and cytotoxic potential of deltamethrin, essential oils of Cymbopogon citratus and Cinnamonum camphora and their synergistic combinations against stored product pest, Trogoderma granarium (Everts). J. Stored Prod. Res. 2020, 87, 101614. [Google Scholar] [CrossRef]
- Mossa, A.-T.H. Green pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 2016, 9, 354. [Google Scholar] [CrossRef]
- Barbosa, L.C.A.; Filomeno, C.A.; Teixeira, R.R. Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules 2016, 21, 1671. [Google Scholar] [CrossRef] [PubMed]
- Daoudi-Merbah, F.; Hazzit, M.; Dahmani-Megrerouche, M. Influence of morphological variability and habitat on the chemical composition of essential oils of an Algerian endemic Origanum species (Origanum floribundum Munby). Chem. Biodivers. 2016, 13, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, M.D.; Blázquez, M.A. Phytotoxic effects of commercial Eucalyptus citriodora, Lavandula angustifolia, and Pinus sylvestris essential oils on weeds, crops, and invasive species. Molecules 2019, 24, 2847. [Google Scholar] [CrossRef] [PubMed]
- Kerbouche, L.; Hazzit, M.; Ferhat, M.-A.; Baaliouamer, A.; Miguel, M.G. Biological activities of essential oils and ethanol extracts of Teucrium polium subsp. capitatum (L.) Briq. and Origanum floribundum Munby. J. Essent. Oil Bear. Plants 2015, 18, 1197–1208. [Google Scholar] [CrossRef]
- Mir, S.; Bouchenak, O.; Aït Kaci, K.; Rouane, A.; Alliliche, M.; Arab, K. Chemical composition and insecticidal activity of Origanum floribundum Munby essential oil endemic plant from Algeria. Trop. Biomed. 2022, 39, 215–220. [Google Scholar] [CrossRef]
- Et-Tazy, L.; Lamiri, A.; Satia, L.; Essahli, M.; Krimi Bencheqroun, S. In vitro antioxidant and antifungal activities of four essential oils and their major compounds against post-harvest fungi associated with chickpea in storage. Plants 2023, 12, 3587. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Zanuncio, J.C.; Serrão, J.E.; Martínez, L.C. Origanum vulgare essential oil against Tenebrio molitor (Coleoptera: Tenebrionidae): Composition, insecticidal activity, and behavioral response. Plants 2021, 10, 2513. [Google Scholar] [CrossRef]
- Quezel, P.; Santa, S. Nouvelle Flore de l’Algérie et des Régions Désertiques Méridionales; Centre National de la Recherche Scientifique (CNRS): Paris, France, 1963. [Google Scholar]
- Hadjadj, N.; Hazzit, M. Analysis and antioxidant activity of essential oils and methanol extracts of Origanum floribundum Munby. J. Essent. Oil Bear. Plants 2020, 23, 85–96. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4.1 ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2017. [Google Scholar]
- Benchaa, S.; Hazzit, M.; Abdelkrim, H. Allelopathic effect of Eucalyptus citriodora essential oil and its potential use as bioherbicide. Chem. Biodivers. 2018, 15, e1800202. [Google Scholar] [CrossRef]
- Hazzit, M.; Baaliouamer, A. Composition of the essential oils of the leaves and flowers of Thymus pallescens de Noé and Origanum floribundum Munby from Algeria. J. Essent. Oil Res. 2009, 21, 267–270. [Google Scholar] [CrossRef]
- Ootani, M.A.; dos Reis, M.R.; Cangussu, A.S.R.; Capone, A.; Fidelis, R.R.; Oliveira, W.; Barros, H.B.; Portella, A.C.F.; de Souza Aguiar, R.; dos Santos, W.F. Phytotoxic effects of essential oils in controlling weed species Digitaria horizontalis and Cenchrus echinatus. Biocatal. Agric. Biotechnol. 2017, 12, 59–65. [Google Scholar] [CrossRef]
- Tolba, H.; Moghrani, H.; Benelmouffok, A.; Kellou, D.; Maachi, R. Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity. J. Mycol. Medicale 2015, 25, e128–e133. [Google Scholar] [CrossRef] [PubMed]
- Wall, R.; Shearer, D. Veterinary Ectoparasites: Biology, Pathology and Control; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Prelezov, P.; Nizamov, N. A case of multiple mixed invasion with ectoparasites in goats. Tradit. Mod. Vet. Med. 2020, 5, 73–78. [Google Scholar]
- Basma, O.; Souad, R.; Mamadou Lamine, T.; Mohamed Nadir, M.; Khaoula, O.; Philippe, P.; Ahmed, B. Survey of ruminant infestation by lice in north-east Algeria. Rev. Algérienne Des Sci. A 2020, 5, 13–18. [Google Scholar]
- Iqbal, A.; Siddique, F.; Mahmood, M.S.; Shamim, A.; Zafar, T.; Rasheed, I.; Saleem, I.; Ahmad, W. Prevalence and impacts of ectoparasitic fauna infesting goats (Capra hircus) of district Toba Tek Singh, Punjab, Pakistan. Cell 2014, 92, 300–6560477. [Google Scholar]
- Maris, P.; Utami, D.S.; Marwoto, O.; Tarigan, N. Why Eucalyptus Citriodora Potential as Biopesticide? J. Ilm. Agrineca 2022, 22, 16–25. [Google Scholar] [CrossRef]
- Ataide, J.O.; Holtz, F.G.; Deolindo, F.D.; Huver, A.; Zago, H.B.; Menini, L. Insecticidal activity and sublethal effects of essential oils on Sitophilus zeamais (Coleoptera: Curculionidae) and on Acanthoscelides obtectus (Coleoptera: Chrysomelidae). Acta Biol. Parana 2022, 51, e83118. [Google Scholar] [CrossRef]
- Costa, A.V.; Pinheiro, P.F.; de Queiroz, V.T.; Rondelli, V.M.; Marins, A.K.; Valbon, W.R.; Pratissoli, D. Chemical composition of essential oil from Eucalyptus citriodora leaves and insecticidal activity against Myzus persicae and Frankliniella schultzei. J. Essent. Oil Bear. Plants 2015, 18, 374–381. [Google Scholar] [CrossRef]
- Manh, H.; Hue, D.; Hieu, N.; Tuyen, D.; Tuyet, O. The Mosquito larvicidal activity of essential oils from Cymbopogon and Eucalyptus Species in Vietnam. Insects 2020, 11, 128. [Google Scholar] [CrossRef]
- Santos, R.C.; Paes, J.S.; Ribeiro, A.V.; Santos, A.A.; Picanço, M.C. Toxicity of Corymbia citriodora essential oil compounds against Ascia monuste (Linnaeus, 1764) (Lepidoptera: Pieridae) and Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Entomol. Commun. 2020, 2, ec02013. [Google Scholar] [CrossRef]
- Tamgno, B.; Ngamo-Tinkeu, L.; Djieto-Lordon, C.; Ngassoum, M. Powdery formulation of essential oils for the control of rice weevil sitophilus oryzae l.(Coleoptera: Curculionidae). Int. J. Agric. Environ. Biores. 2019, 4, 24–36. [Google Scholar] [CrossRef]
- Bossou, A.D.; Mangelinckx, S.; Yedomonhan, H.; Boko, P.M.; Akogbeto, M.C.; De Kimpe, N.; Avlessi, F.; Sohounhloue, D.C. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles). Parasites Vectors 2013, 6, 337. [Google Scholar] [CrossRef] [PubMed]
- Clemente, M.A.; de Oliveira Monteiro, C.M.; Scoralik, M.G.; Gomes, F.T.; de Azevedo Prata, M.C.; Daemon, E. Acaricidal activity of the essential oils from Eucalyptus citriodora and Cymbopogon nardus on larvae of Amblyomma cajennense (Acari: Ixodidae) and Anocentor nitens (Acari: Ixodidae). Parasitol. Res. 2010, 107, 987–992. [Google Scholar] [CrossRef]
- Idris, H.; Lawal, S.; Balarabe, B. Larvicidal potentials of leaf and bark extracts of Eucalyptus camaldulensis (Schlect) and Eucalyptus citriodora (Hook) on Culex quinquefasciatus (Say) larvae. Entomol. Res. 2008, 38, 243–249. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Ouknin, M.; Alahyane, H.; Costa, J.; Majidi, L. Chemical composition, antioxidant and anti-enzymatic activities, and in vitro insecticidal potential of Origanum compactum (Benth.) essential oils. Plants 2024, 13, 2424. [Google Scholar] [CrossRef]
- Moutassem, D.; Boubellouta, T.; Bellik, Y.; Rouis, Z.; Kucher, D.E.; Utkina, A.O.; Kucher, O.D.; Mironova, O.A.; Kavhiza, N.J.; Rebouh, N.Y. Insecticidal activity of Thymus pallescens de Noë and Cymbogon citratus essential oils against Sitophilus zeamais and Tribolium castaneum. Sci. Rep. 2024, 14, 13951. [Google Scholar] [CrossRef]
- Park, J.-H.; Jeon, Y.-J.; Lee, C.-H.; Chung, N.; Lee, H.-S. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci. Rep. 2017, 7, 40902. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Lee, S.H.; Clark, J.M.; Ahn, Y.-J. Ovicidal and adulticidal activities of Origanum majorana essential oil constituents against insecticide-susceptible and pyrethroid/malathion-resistant Pediculus humanus capitis (Anoplura: Pediculidae). J. Agric. Food Chem. 2009, 57, 2282–2287. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Lee, H.-S.; Clark, J.; Ahn, Y.-J. Insecticidal activity of plant essential oils against Pediculus humanus capitis (Anoplura: Pediculidae). J. Med. Entomol. 2004, 41, 699–704. [Google Scholar] [CrossRef]
- Alahyane, H.; Ouknin, M.; Aboussaid, H.; El Messoussi, S.; Costa, J.; Majidi, L. Biological activities of essential oils from Moroccan plants against the honey bee ectoparasitic mite, Varroa destructor. Int. J. Acarol. 2022, 48, 50–56. [Google Scholar] [CrossRef]
- Kouache, B.; Brada, M.; Saadi, A.; Fauconnier, M.L.; Lognay, G.; Heuskin, S. Chemical composition and acaricidal activity of Thymus algeriensis essential oil against Varroa destructor. Nat. Prod. Commun. 2017, 12, 135–138. [Google Scholar] [CrossRef]
- Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crops Prod. 2014, 60, 247–258. [Google Scholar] [CrossRef]
- Wu, L.; Huo, X.; Zhou, X.; Zhao, D.; He, W.; Liu, S.; Liu, H.; Feng, T.; Wang, C. Acaricidal activity and synergistic effect of thyme oil constituents against carmine spider mite (Tetranychus Cinnabarinus (Boisduval)). Molecules 2017, 22, 1873. [Google Scholar] [CrossRef]
- Tak, J.-H.; Isman, M.B. Enhanced cuticular penetration as the mechanism of synergy for the major constituents of thyme essential oil in the cabbage looper, Trichoplusia ni. Ind. Crops Prod. 2017, 101, 29–35. [Google Scholar] [CrossRef]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules 2017, 23, 34. [Google Scholar] [CrossRef]
- Popescu, I.E.; Gostin, I.N.; Blidar, C.F. An overview of the mechanisms of action and administration technologies of the essential oils used as green insecticides. AgriEngineering 2024, 6, 1195–1217. [Google Scholar] [CrossRef]
- Ashenafi, H.; Tolossa, Y.; Yebegaeshet, M. Impact of sheep and goats ectoparasites on the tanning industry in Tigray Region, Ethiopia. Ethiop. Vet. J. 2013, 17, 63–76. [Google Scholar] [CrossRef]
- Ellse, L.; Wall, R. The use of essential oils in veterinary ectoparasite control: A review. Med. Vet. Entomol. 2014, 28, 233–243. [Google Scholar] [CrossRef]
- Candy, K.; Akhoundi, M.; Andriantsoanirina, V.; Durand, R.; Bruel, C.; Izri, A. Essential oils as a potential treatment option for pediculosis. Planta Medica 2020, 86, 619–630. [Google Scholar] [CrossRef]
- Vigad, N.; Tarachai, P.; Chansakaow, S.; Punyapornwithaya, V.; Chukiatsiri, K. Efficacy of citronella and ginger essential oil combinations against chicken lice (Menopon gallinae) and mites (Ornithonyssus bursa): Chemical characterization, contact toxicity, and in vivo validation. Vet. World 2025, 18, 1694. [Google Scholar] [CrossRef]
- Bilal, D. Türkiye’deki Evcil ve Yabani Memelilerde Görülen Bit (Phthiraptera) Türleri; Türkiye Parazitoloji Derneği (Société Turque de Parasitologie) : Konya, Turkey, 2020. [Google Scholar]
- Benítez-Rodríguez, R.; Soler-Cruz, M.; Munoz-Parra, S.; Florido-Navío, A. In vitro culture of Bovicola limbata Gervais, 1844 (mallophaga), study of its survival and life cycle. Culture 1986, 37, 17–18. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. A statistical Treatment of the sigmoid response curve. In Probit Analysis; Cambridge University Press: London, UK, 1971; p. 633. [Google Scholar]




| N° | Components | Retention Indices | Essential Oil | ||
|---|---|---|---|---|---|
| ERI | LRI | Origanum floribundum | Eucalyptus citriodora | ||
| 1 | α-Thujene | 924 | 924 | 1.47 | - |
| 2 | α-Pinene | 934 | 932 | 0.63 | 0.13 |
| 3 | Camphene | 945 | 946 | 0.07 | - |
| 4 | Sabinene | 969 | 969 | 0.07 | 0.03 |
| 5 | β-Pinene | 974 | 974 | 0.15 | 0.72 |
| 6 | 1-Octen-3-ol | 975 | 974 | 0.59 | - |
| 7 | β-Myrcene | 987 | 988 | 2.11 | 0.05 |
| 8 | α-Phellandrene | 1002 | 1002 | 0.20 | - |
| 9 | δ-3-Carene | 1008 | 1008 | 0.09 | - |
| 10 | α-Terpinene | 1016 | 1014 | 2.46 | - |
| 11 | p-Cymene | 1021 | 1020 | 10.78 | 0.03 |
| 12 | Limonene | 1024 | 1024 | 0.40 | 0.10 |
| 13 | β-Phellandrene | 1025 | 1025 | 0.30 | 0.01 |
| 14 | Eucalyptol | 1026 | 1026 | 0.02 | 0.41 |
| 15 | cis-β-Ocimene | 1030 | 1032 | 0.10 | - |
| 16 | trans-β-Ocimene | 1045 | 1044 | 0.04 | - |
| 17 | γ-Terpinene | 1054 | 1054 | 18.91 | 0.07 |
| 18 | Melonal | 1056 | 1056 | - | 0.48 |
| 19 | cis-Sabinene hydrate | 1063 | 1065 | 0.25 | - |
| 20 | Terpinolene | 1085 | 1086 | 0.04 | - |
| 21 | Linalool | 1095 | 1095 | 0.97 | - |
| 22 | trans-Sabinene hydrate | 1098 | 1098 | 0.15 | - |
| 23 | cis-Rose oxide | 1104 | 1106 | - | 1.19 |
| 24 | trans-Rose oxide | 1122 | 1122 | - | 0.09 |
| 25 | Neo-isopulegol | 1142 | 1144 | - | 0.54 |
| 26 | Isopulegol | 1144 | 1145 | - | 18.59 |
| 27 | Citronellal | 1148 | 1148 | - | 58.01 |
| 28 | Borneol | 1165 | 1165 | 0.06 | - |
| 29 | 4-Terpineol | 1173 | 1174 | 0.20 | 0.08 |
| 30 | α-Terpineol | 1184 | 1186 | 0.26 | 0.04 |
| 31 | cis-Dihydrocarvone | 1192 | 1191 | 0.04 | - |
| 32 | trans-Dihydrocarvone | 1200 | 1200 | 0.02 | - |
| 33 | Citronellol | 1223 | 1223 | - | 10.94 |
| 34 | Carvacrol methyl ether | 1241 | 1241 | 1.61 | - |
| 35 | Citronellyl formate | 1270 | 1271 | - | 0.02 |
| 36 | Thymol | 1289 | 1289 | 2.16 | - |
| 37 | Carvacrol | 1301 | 1298 | 54.63 | - |
| 38 | Citronellic acid | 1312 | 1312 | - | 1.10 |
| 39 | Citronellyl acetate | 1352 | 1350 | - | 1.75 |
| 40 | Phenylethyl isobutanoate | 1351 | 1351 | - | 0.04 |
| 41 | cis-Jasmone | 1392 | 1392 | - | 0.14 |
| 42 | β-Caryophyllene | 1420 | 1417 | 0.59 | 0.16 |
| 43 | α-Humulene | 1451 | 1452 | 0.03 | - |
| 44 | Germacrene D | 1484 | 1484 | 0.01 | - |
| 45 | Bicyclogermacrene | 1500 | 1500 | 0.02 | - |
| 46 | β-Bisabolene | 1502 | 1505 | 0.06 | - |
| 47 | δ-Cadinene | 1521 | 1522 | 0.01 | - |
| 48 | β-Sesquiphellandrene | 1522 | 1522 | 0.14 | - |
| 49 | Spathulenol | 1577 | 1577 | 0.02 | 0.29 |
| 50 | Caryophyllene oxide | 1581 | 1582 | 0.06 | 0.69 |
| 51 | γ-Eudesmol | 1630 | 1630 | - | 0.02 |
| Total identification (%) | 99.72 | 95.72 | |||
| Monoterpene hydrocarbons | 37.82 | 1.14 | |||
| Oxygenated monoterpenes | 60.37 | 93.38 | |||
| Sesquiterpene hydrocarbons | 0.86 | 0.16 | |||
| Oxygenated sesquiterpenes | 0.08 | 1.00 | |||
| Others | 0.59 | 0.04 | |||
| Oil yield % (v/w) | 2.86 | 3.45 | |||
| Tested EO | C * (μL/mL) | Mean Mortality Rates (%, ±SD) at Different Treatment Times | ||||
|---|---|---|---|---|---|---|
| 15 min | 30 min | 1 h | 2 h | 4 h | ||
| Origanum floribundum | C1: 0.05 | 0% ± 0% | 0% ± 0% | 10% ± 3% | 26% ± 2% | 100% ± 0% |
| C2: 0.1 | 0% ± 0% | 0% ± 0% | 22% ± 2% | 44% ± 5% | 100% ± 0% | |
| C3: 0.2 | 0% ± 0% | 8% ± 2% | 32% ± 4% | 55% ± 6% | 100% ± 0% | |
| C4: 0.4 | 0% ± 0% | 18% ± 2% | 49% ± 2% | 87% ± 4% | 100% ± 0% | |
| C5: 0.8 | 0% ± 0% | 33% ± 2% | 66% ± 2% | 100% ± 0% | 100% ± 0% | |
| Control | 0% ± 0% | 0% ± 0% | 0% ± 0% | 0% ± 0% | 0% ± 0% | |
| Eucalyptus citriodora | 0.05 | 0% ± 0% | 0% ± 0% | 12% ± 4% | 23% ± 2% | 100% ± 0% |
| 0.1 | 0% ± 0% | 0% ± 0% | 23% ± 0% | 48% ± 2% | 100% ± 0% | |
| 0.2 | 0% ± 0% | 9% ± 2% | 40% ± 0% | 68% ± 2% | 100% ± 0% | |
| 0.4 | 0% ± 0% | 20% ± 0% | 56% ± 0% | 99% ± 2% | 100% ± 0% | |
| 0.8 | 0% ± 0% | 28% ± 2% | 71% ± 0% | 100% ± 0% | 100% ± 0% | |
| Control | 0% ± 0% | 0% ± 0% | 0% ± 0% | 0% ± 0% | 0% ± 0% | |
| Source | ddl | Somme Squared | Mean Squared | F Value | Pr > F |
|---|---|---|---|---|---|
| Extract | 1.000 | 0.004 | 0.004 | 0.266 | 0.609 |
| Time | 4.000 | 6.592 | 1.648 | 99.315 | <0.0001 |
| Concentration | 4.000 | 0.723 | 0.181 | 10.889 | <0.0001 |
| Essential Oil | Exposure Time (h) | Regression Equation | R2 | LC50(95%CI) (μL/mL) | LC90(95%CI) (μL/mL) | χ2 | ddl | p-Value |
|---|---|---|---|---|---|---|---|---|
| Origanum floribundum | 1 | y = 5.529 + 1.369x | 0.995 | 0.410 [0.284–0.596] | 3.54 [2.828–4.438] | 0.0018 | 3 | >0.05 |
| Origanum floribundum | 2 | y = 7.741 + 2.903x | 0.874 | 0.112 [0.095–0.136] | 0.31 [0.282–0.349] | 0.1834 | 3 | >0.05 |
| Eucalyptus citriodora | 1 | y = 5.716 + 1.445x | 0.998 | 0.319 [0.225–0.452] | 2.46 [1.81–3.30] | 0.0009 | 3 | >0.05 |
| Eucalyptus citriodora | 2 | y = 8.351 + 3.335x | 0.956 | 0.1 [0.081–0.119] | 0.24 [0.218–0.262] | 0.0808 | 3 | >0.05 |
| Concentration EO of Origanum floribundum (μL/mL) | LT50 * | r | LT90 * | r |
| 0.05 | 106.038 | −0.928 | 159.150 | −0.996 |
| 0.1 | 92.549 | 146.561 | ||
| 0.2 | 71.970 | 135.029 | ||
| 0.4 | 55.221 | 108.202 | ||
| 0.8 | 39.934 | 66.017 | ||
| Concentration EO of Eucalyptus citriodora (μL/mL) | LT50 | r | LT90 | r |
| 0.05 | 105.729 | −0.873 | 160.204 | −0.955 |
| 0.1 | 90.920 | 144.500 | ||
| 0.2 | 66.506 | 125.284 | ||
| 0.4 | 47.192 | 89.060 | ||
| 0.8 | 40.815 | 66.443 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chikhi-Chorfi, N.; Haddadj, F.; Djellout, B.; Zenia, S.; Hazzit, M.; Marniche, F.; Milla, A.; Smai, A. Chemical Composition and Insecticidal Activity of Essential Oils from Origanum floribundum and Eucalyptus citriodora Against the Louse Bovicola limbatus. Molecules 2025, 30, 4001. https://doi.org/10.3390/molecules30194001
Chikhi-Chorfi N, Haddadj F, Djellout B, Zenia S, Hazzit M, Marniche F, Milla A, Smai A. Chemical Composition and Insecticidal Activity of Essential Oils from Origanum floribundum and Eucalyptus citriodora Against the Louse Bovicola limbatus. Molecules. 2025; 30(19):4001. https://doi.org/10.3390/molecules30194001
Chicago/Turabian StyleChikhi-Chorfi, Nassima, Fairouz Haddadj, Baya Djellout, Safia Zenia, Mohamed Hazzit, Faiza Marniche, Amel Milla, and Amina Smai. 2025. "Chemical Composition and Insecticidal Activity of Essential Oils from Origanum floribundum and Eucalyptus citriodora Against the Louse Bovicola limbatus" Molecules 30, no. 19: 4001. https://doi.org/10.3390/molecules30194001
APA StyleChikhi-Chorfi, N., Haddadj, F., Djellout, B., Zenia, S., Hazzit, M., Marniche, F., Milla, A., & Smai, A. (2025). Chemical Composition and Insecticidal Activity of Essential Oils from Origanum floribundum and Eucalyptus citriodora Against the Louse Bovicola limbatus. Molecules, 30(19), 4001. https://doi.org/10.3390/molecules30194001

