A Novel Electrochemical Sensor Based on Ti3C2Tx MXene/Mesoporous Hollow Carbon Sphere Hybrid to Detect Bisphenol A
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Electrochemical Characterization of BPA on Different Electrodes
2.3. Optimization of Material Ratio
2.4. Optimum Determination Conditions
2.5. Electrochemical Behavior of Ti3C2Tx MXene/MHCs/GCE at Different Scan Rates
2.6. Determination of BPA on Ti3C2Tx MXene/MHCs/GCE
2.7. Stability, Reproducibility, and Anti-Interference
2.8. Analytical Principle of the MXene/MHCs Composite
2.9. Actual Sample Detection of BPA
3. Experiment
3.1. Materials and Reagents
3.2. Apparatus
3.3. Preparation of Ti3C2Tx MXene
3.4. Preparation of MHCs
3.5. Preparation of MXene/MHCs
3.6. Preparation of Modified Electrodes
3.7. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jalalvand, A.R.; Haseli, A.; Farzadfar, F.; Goicoechea, H.C. Fabrication of a novel biosensor for biosensing of bisphenol A and detection of its damage to DNA. Talanta 2019, 201, 350–357. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, T.; Khan, A.; Chen, Z.; Liu, P.; Li, X. A novel electrochemical biosensor for bisphenol A detection based on engineered Escherichia coli cells with a surface-display of tyrosinase. Sens. Actuators B Chem. 2022, 353, 131063. [Google Scholar] [CrossRef]
- Gupta, V.; Chopra, A.; Arora, K.; Kumar, P.; Srivastava, A.; Jain, R.; Sharma, I.; Dhoke, N.; Cheema, A.; Vashishth, S.; et al. Highly efficient polyaniline based flexible electrochemical sensor for bisphenol a detection. Microchem. J. 2024, 197, 109914. [Google Scholar] [CrossRef]
- Pan, D.; Gu, Y.; Lan, H.; Sun, Y.; Gao, H. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A. Anal. Chim. Acta 2015, 853, 297–302. [Google Scholar] [CrossRef]
- Ahn, C.; Jeung, E.B. Endocrine-disrupting chemicals and disease endpoints. Int. J. Mol. Sci. 2023, 24, 5342. [Google Scholar] [CrossRef]
- Kawa, I.A.; Fatima, Q.; Mir, S.A.; Jeelani, H.; Manzoor, S.; Rashid, F. Endocrine disrupting chemical Bisphenol A and its potential effects on female health. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 803–811. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.; et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575. [Google Scholar] [CrossRef]
- Conti, L.; Mummolo, L.; Romano, G.M.; Giorgi, C.; Giacomazzo, G.E.; Prodi, L.; Bencini, A. Exploring the ability of luminescent metal assemblies to bind and sense anionic or ionizable analytes a Ru (phen) 2bipy-based dizinc complex for bisphenol A (BPA) recognition. Molecules 2021, 26, 527. [Google Scholar] [CrossRef]
- Facina, C.H.; Campos, S.G.P.; Ruiz, T.F.R.; Góes, R.M.; Vilamaior, P.S.L.; Taboga, S.R. Protective effect of the association of curcumin with piperine on prostatic lesions: New perspectives on BPA-induced carcinogenesis. Food Chem. Toxicol. 2021, 158, 112700. [Google Scholar] [CrossRef]
- Gan, L.; Wang, L.; Xu, L.; Fang, X.; Pei, C.; Wu, Y.; Lu, H.; Han, S.; Cui, J.; Shi, J.; et al. Fe3C-porous carbon derived from Fe2O3 loaded MOF-74 (Zn) for the removal of high concentration BPA: The integrations of adsorptive/catalytic synergies and radical/non-radical mechanisms. J. Hazard. Mater. 2021, 413, 125305. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Z.; Wang, F.; Bai, M.; Deng, X.; Wang, L. Activation of persulfate by mesoporous silica spheres-doping CuO for bisphenol A removal. Environ. Res. 2022, 205, 112529. [Google Scholar]
- Jayakumar, K.; Zhong, Y.; Camarada, M.B.; Lu, X.; Chen, T.; Zhang, W.; Wen, Y. One-step electrochemical preparation of platinum nanoparticle decorated self-healing reduced graphene oxide three-dimensional nanoarray for portable detection of bisphenol A. J. Environ. Chem. Eng. 2024, 12, 113518. [Google Scholar] [CrossRef]
- Yuan, Z.; Nag, R.; Cummins, E. Human health concerns regarding microplastics in the aquatic environment-From marine to food systems. Sci. Total Environ. 2022, 823, 153730. [Google Scholar] [CrossRef]
- Liu, Y.; Hua, X.; Wang, M.; Yang, R. Purification of the mother liquor sugar from industrial stevia production through one-step adsorption by non-polar macroporous resin. Food Chem. 2019, 274, 337–344. [Google Scholar] [CrossRef]
- Hou, C.; Zhao, L.; Geng, F.; Wang, D.; Guo, L. Donor/acceptor nanoparticle pair-based singlet oxygen channeling homogenous chemiluminescence immunoassay for quantitative determination of bisphenol A. Anal. Bioanal. Chem. 2016, 408, 8795–8804. [Google Scholar] [CrossRef]
- Jia, M.; Chen, S.; Shi, T.; Li, C.; Wang, Y.; Zhang, H. Competitive plasmonic biomimetic enzyme-linked immunosorbent assay for sensitive detection of bisphenol A. Food Chem. 2021, 344, 128602. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Du, D.; Ni, L.; Pan, J.; Niu, X. Emerging applications of nanozymes in environmental analysis: Opportunities and trends. TrAC Trends Anal. Chem. 2019, 120, 115653. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, R.; Dong, S.; Miao, X.; Zhang, Z.; Wang, C.; Yin, L.W. Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 2019, 12, 2422–2432. [Google Scholar] [CrossRef]
- Navarro-Suárez, A.M.; Van Aken, K.L.; Mathis, T.; Makaryan, T.; Yan, J.; Carretero-González, J.; Rojo, T.; Gogotsi, Y. Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochim. Acta 2018, 259, 752–761. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Z.; Zhang, J.; Yu, J.G.; Jiang, X.Y. Decoration of alkalization-intercalated Ti3C2 with ZIF-8@ ZIF-67-derived N-doped carbon nanocage for detecting 4-nitrophenol. Microchim. Acta 2023, 190, 133. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.J.; Zhou, J.P.; Sun, D.Q.; Li, H.M. The multiple synthesis of 2D layered Ti3C2Tx/Ag/MWCNTs/Ag composites with enhanced electrochemical properties. Ceram. Int. 2023, 49, 2081–2090. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, B.; Mackinder, M.; Baule, N.; Qiao, H.; Jin, H.; Schuelke, T.; Fan, Q.H. Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Storage Mater. 2019, 20, 299–306. [Google Scholar] [CrossRef]
- Kwak, S.; Eom, H.; Kang, J.; Jang, S.; Choi, S.; Kwon, O.; Kim, T.Y.; Nam, I. Mesoporous carbon hollow sphere with dandelion-like radial-hierarchy for high-performance supercapacitors. Int. J. Energy Res. 2022, 46, 4935–4946. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y.; Wu, H.; Hou, S.; Chen, A. N-doped hollow mesoporous carbon spheres by improved dissolution-capture for supercapacitors. Carbon 2020, 156, 523–528. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, X.; Yu, B.; Zhao, N.; Zhang, C.; Xu, F.J. Rough carbon–iron oxide nanohybrids for near-infrared-II light-responsive synergistic antibacterial therapy. ACS Nano 2021, 15, 7482–7490. [Google Scholar] [CrossRef]
- Huo, K.; An, W.; Fu, J.; Gao, B.; Wang, L.; Peng, X.; Cheng, G.J.; Chu, P.K. Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries. J. Power Sources 2016, 324, 233–238. [Google Scholar] [CrossRef]
- Du, J.; Chen, A.; Liu, L.; Li, B.; Zhang, Y. N-doped hollow mesoporous carbon spheres prepared by polybenzoxazines precursor for energy storage. Carbon 2020, 160, 265–272. [Google Scholar] [CrossRef]
- Chen, M.; Chen, J.; Tan, X.; Yang, W.; Zou, H.; Chen, S. Facile self-assembly of sandwich-like MXene/graphene oxide/nickel–manganese layered double hydroxide nanocomposite for high performance supercapacitor. J. Energy Storage 2021, 44, 103456. [Google Scholar] [CrossRef]
- Tang, L.; Yang, H.; Wang, H.; Yang, Y.; Wang, X.; Tang, G.; Zeng, D. Molten salt-modified Ti3C2Tx MXene with tunable oxygen-functionalized surfaces for effective detection of NO2 at room temperature. Ceram. Int. 2024, 50, 21619–21629. [Google Scholar]
- Zhang, L.; Li, J.; Zhou, R.; Hu, S.; Wang, C.; Wang, Y.; Zhao, P.; Xie, Y.; Fei, J. Ultrasensitive rutin electrochemical sensor based on in-situ salt template growth two-bimetallic ZIF-derived zinc/cobalt@ nitrogen doped ultra-thin carbon nanosheets (Zn/Co@ NCNSs). Electrochim. Acta 2023, 470, 143304. [Google Scholar] [CrossRef]
- Laviron, E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 1974, 52, 355–393. [Google Scholar] [CrossRef]
- Liu, W.; Li, M.; Zhang, P.; Jiang, H.; Liu, W.; Guan, J.; Sun, Y.; Liu, X.; Zeng, Q. One-step growth of Cu-doped carbon dots in amino-modified carbon nanotube–modified electrodes for sensitive electrochemical detection of BPA. Microchim. Acta 2024, 191, 309. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Xiao, Q.; Tang, J.; Zhuang, Q.; Wang, Y. Ratiometric electrochemical sensor for bisphenol A detection using a glassy carbon electrode modified with a poly (toluidine blue)/gold nanoparticle composite. Anal. Methods 2021, 13, 5085–5092. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Yan, B.; Zhang, H. An electrochemical sensor for the determination of bisphenol A using glassy carbon electrode modified with reduced graphene oxide-silver/poly-L-lysine nanocomposites. J. Electroanal. Chem. 2017, 805, 39–46. [Google Scholar] [CrossRef]
- Tsekeli, T.R.; Sebokolodi, T.I.; Karimi-Maleh, H.; Arotiba, O.A. A silver-loaded exfoliated graphite nanocomposite anti-fouling electrochemical sensor for bisphenol A in thermal paper samples. ACS Omega 2021, 6, 9401–9409. [Google Scholar] [CrossRef]
- Kanagavalli, P.; Senthil Kumar, S. Stable and sensitive amperometric determination of endocrine disruptor bisphenol A at residual metal impurities within SWCNT. Electroanalysis 2018, 30, 445–452. [Google Scholar] [CrossRef]
- Mazzotta, E.; Malitesta, C.; Margapoti, E. Direct electrochemical detection of bisphenol A at PEDOT-modified glassy carbon electrodes. Anal. Bioanal. Chem. 2013, 405, 3587–3592. [Google Scholar] [CrossRef]
- Fatma, Y.; Nemah, A.S.; Süleyman, A.; Havva, Ç.; Ercüment, Y.; Aşkın, K.; Ilgım, G.; Adil, D.; Deniz, T. Gold nanoparticle-modified molecularly imprinted polymer-coated pencil graphite electrodes for electrochemical detection of bisphenol A. ACS Omega 2025, 10, 740–753. [Google Scholar]
- Shoukat, N.; Mun, C.W.; Jung, H.S.; Lee, M.Y.; Lee, S.H.; Park, S.G. Development of electrochemical sensors based on plasma-treated polymeric nanostructures for sensitive and reproducible detection of bisphenol A. Int. J. Electrochem. Sci. 2025, 20, 101121. [Google Scholar] [CrossRef]





| Electrode | Method | Linear Range (μM) | LOD (μM) | Ref. |
|---|---|---|---|---|
| Cu-CDs/NH2-CNTs/GCE | DPV | 0.5–160 | 0.13 | [32] |
| PTB/AuNP/GCE | DPV | 0.2–5.0 | 0.13 | [33] |
| RGO-Ag/PLL/GCE | DPV | 1–80 | 0.54 | [34] |
| AgNPs-EG | DPV | 5–100 | 0.23 | [35] |
| SWCNT/GCE | Amperometry | 10–100 | 7.3 | [36] |
| PEDOT/GCE | CV | 40–410 | 22 | [37] |
| MIP PGE Sensor | DPV | 1.5–7.5 | 0.1610 | [38] |
| AuNP Platforms | DPV | 0.002–1 | 0.0035 | [39] |
| Ti3C2Tx MXene/MHCs/GCE | DPV | 10–200 | 2.6 | This work |
| Added (μM) | Founded (μM) | Recovery (%) | RSD (%) | UV-Vis (μM) | |
|---|---|---|---|---|---|
| tap water | 0 | 0 | -- | -- | |
| 20 | 18.92 ± 0.05 | 94.6 | 0.79 | 19.81 ± 0.23 | |
| 50 | 49.54 ± 0.10 | 99.1 | 3.5 | 52.36 ± 0.19 | |
| 100 | 105.19 ± 0.08 | 105.2 | 1.02 | 98.74 ± 0.07 | |
| laboratory wastewater | 0 | 0 | -- | -- | |
| 20 | 21.28 ± 0.09 | 106.4 | 0.36 | 20.57 ± 0.12 | |
| 50 | 50.96 ± 0.07 | 101.9 | 1.82 | 50.13 ± 0.25 | |
| 100 | 99.35 ± 0.05 | 99.4 | 2.1 | 101.62 ± 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, F.; Zhou, Q.; Zhou, Y.; Yang, Y.; Zhang, L.; Xie, Y. A Novel Electrochemical Sensor Based on Ti3C2Tx MXene/Mesoporous Hollow Carbon Sphere Hybrid to Detect Bisphenol A. Molecules 2025, 30, 3992. https://doi.org/10.3390/molecules30193992
Cao F, Zhou Q, Zhou Y, Yang Y, Zhang L, Xie Y. A Novel Electrochemical Sensor Based on Ti3C2Tx MXene/Mesoporous Hollow Carbon Sphere Hybrid to Detect Bisphenol A. Molecules. 2025; 30(19):3992. https://doi.org/10.3390/molecules30193992
Chicago/Turabian StyleCao, Fei, Qirong Zhou, Yanting Zhou, Yaqi Yang, Li Zhang, and Yixi Xie. 2025. "A Novel Electrochemical Sensor Based on Ti3C2Tx MXene/Mesoporous Hollow Carbon Sphere Hybrid to Detect Bisphenol A" Molecules 30, no. 19: 3992. https://doi.org/10.3390/molecules30193992
APA StyleCao, F., Zhou, Q., Zhou, Y., Yang, Y., Zhang, L., & Xie, Y. (2025). A Novel Electrochemical Sensor Based on Ti3C2Tx MXene/Mesoporous Hollow Carbon Sphere Hybrid to Detect Bisphenol A. Molecules, 30(19), 3992. https://doi.org/10.3390/molecules30193992

