Inhibitory Effects of Bisphenol Z on 11β-Hydroxysteroid Dehydrogenase 1 and In Silico Molecular Docking Analysis
Abstract
1. Introduction
2. Results
2.1. Determination of Corticosterone by HPLC-DAD
2.2. Kinetic Study—Inhibitory Effects of Bisphenol Z on 11β-Hydroxysteroid Dehydrogenase 1
3. Discussion
- -
- Intersection on the Y-axis and forming a bunch, which indicates competitive inhibition, meaning the inhibitor competes with the appropriate substrate for the enzyme’s active site;
- -
- Intersection on the X-axis, meaning the inhibitor binds to the enzyme at a site other than the active site, altering the properties of the enzyme molecule so that it cannot catalyze a specific enzymatic reaction;
- -
- No intersection on any axis, neither the y-axis nor the x-axis, only between them, meaning mixed inhibition, in which the inhibitor can bind both to the active site of the enzyme and to another site on the enzyme molecule, in both cases “blocking” its activity.
3.1. Kinetic Analysis of 11β-Hydroxysteroid Dehydrogenase 1 (11β-HSD1) Inhibition by Bisphenol Z (BPZ)
3.2. Comparison of Lineweaver-Burk, Eadie-Hofstee, and Hanes-Woolf Plots
- -
- Most [S] values are too small, with a substrate that is not soluble enough or too expensive to use concentrations above Km. In this case, V/Km cannot be estimated satisfactorily.
- -
- Most [S] values are too large, and a value concentrated above Km. In this case, V cannot be estimated satisfactorily.
3.3. Molecular Docking Results
4. Materials and Methods
4.1. Chemicals and Instruments
4.2. Enzyme Activity Assay
4.3. Apparatus and HPLC-DAD Conditions
4.4. Linearity and the Standard Solutions for the Calibration Curve of Corticosterone
4.5. Limit of Detection (LOD) and Limit of Quantitation (LOQ) of Corticosterone
4.6. Kinetic Analysis of Inhibitory Effects of Bisphenol Z on 11β-Hydroxysteroid Dehydrogenase 1 (11β-HSD1)
4.7. Molecular Docking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCBPA | 3-chlorobisphenol A |
BPZ | Bisphenol Z |
TrCBPA | 3,3′,5-trichlorobisphenol A |
TCBPA | Tetrachlorobisphenol A |
TBBPA | Tetrabromobisphenol A |
References
- Hiroi, H.; Tsutsumi, O.; Momoeda, M.; Takai, Y.; Osuga, Y.; Taketani, Y. Differential Interactions of Bisphenol A and17β-estradiol with Estrogen Receptor α (ERα) and Erβ. Endocr. J. 1999, 46, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Wetherill, Y.B.; Akingbemi, B.T.; Kanno, J.; McLachlan, J.A.; Nadal, A.; Sonnenschein, C.; Watson, C.S.; Zoeller, R.T.; Belcher, S.M. In vitro molecular mechanisms of bisphenol A action. Reprod. Toxicol. 2007, 24, 178–198. [Google Scholar] [CrossRef] [PubMed]
- Giguère, V.; Yang, N.; Segui, P.; Evans, R.M. Identification of a new class of steroid hormone receptors. Nature 1988, 331, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Tezuka, Y.; Ushiyama, A.; Kawashima, C.; Kitagawara, Y.; Takahashi, K.; Ohta, S.; Mashino, T. Ipso substitution of bisphenol A catalyzed by microsomal cytochrome P450 and enhancement of estrogenic activity. Toxicol. Lett. 2011, 203, 92–95. [Google Scholar] [CrossRef]
- Schmidt, J.; Kotnik, P.; Trontelj, J.; Knez, Ž.; Mašič, L.P. Bioactivation of bisphenol A and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes. Toxicol. In Vitro 2013, 27, 1267–1276. [Google Scholar] [CrossRef]
- Wang, J.; Sun, B.; Hou, M.; Pan, X.; Li, X. The environmental obesogen bisphenol A promotes adipogenesis by increasing the amount of 11β-hydroxysteroid dehydrogenase type 1 in the adipose tissue of children. Int. J. Obes. 2013, 37, 999–1005. [Google Scholar] [CrossRef]
- Lu, H.; Wang, S.; Zheng, J.; Zhu, Y.; Wang, Y.; Li, H.; Ge, R.-S. Distinct inhibitory strength of bisphenol A analogues on human and rat 11β-hydroxysteroid dehydrogenase 1: 3D quantitative structure-activity relationship and in silico molecular docking analysis. Ecotoxicol. Environ. Saf. 2023, 267, 115638. [Google Scholar] [CrossRef]
- Maniradhan, M.; Calivarathan, L. Bisphenol A-Induced Endocrine Dysfunction and its Associated Metabolic Disorders, Endocrine. Metab. Immune Disord.—Drug Targets 2023, 23, 515–529. [Google Scholar] [CrossRef]
- Li, X.; Wen, Z.; Wang, Y.; Mo, J.; Zhong, Y.; Ge, R.-S. Bisphenols and leyding cell development and function. Front. Endocrinol. 2020, 11, 447. [Google Scholar] [CrossRef]
- Alharbi, H.F.; Algonaiman, R.; Alduwayghiri, R.; Aljutaily, T.; Algheshairy, R.M.; Almutairi, A.S.; Alharbi, R.M.; Alfurayh, L.A.; Alshahwan, A.A.; Alsadun, A.F.; et al. Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, and Its Association with Developing Obesity and Diabetes Mellitus: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 15918. [Google Scholar] [CrossRef]
- Robin, T.; Reuveni, S.; Urbakh, M. Single-molecule theory of enzymatic inhibition. Nat. Commun. 2018, 9, 779. [Google Scholar] [CrossRef]
- Rodriguez, J.-M.G.; Hux, N.P.; Philips, S.J.; Towns, M.H. Michaelis-Menten Graphs, Lineweaver-Burk Plots, and Reaction Schemes: Investigating Introductory Biochemistry Students’ Conceptions of Representations in Enzyme Kinetics. J. Chem. Edu. 2019, 96, 1833–1845. [Google Scholar] [CrossRef]
- Halkides, C.J. Introducing Michaelis-Menten Kinetics through Simulation. J. Chem. Edu. 2007, 84, 434–437. [Google Scholar]
- Big Chemical Encyclopedia, 2024 chempedia.info. Available online: https://chempedia.info/page/036151202225193002187065110074227129111082003000/ (accessed on 8 August 2025).
- Antuch, M.; Ramos, Y.; Álvarez, R. Simulated Analysis of Linear Reversible Enzyme Inhibition with SCILAB. J. Chem. Edu. 2014, 91, 1203–1206. [Google Scholar] [CrossRef]
- Chapman, K.; Holmes, M.; Seckl, J. 11β-Hydroxysteroid Dehydrogenases: Intracellular Gate-Keepers of Tissue Glucocorticoid Action. Physiol. Rev. 2013, 93, 1139–1206. [Google Scholar] [CrossRef] [PubMed]
- Hench, P.S.; Kendall, E.C.; Slocumb, C.H.; Polley, H.F. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone-compound-E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis–preliminary report. Proc. Staff Meet. Mayo Clin. 1949, 24, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Hench, P.S.; Slocumb, C.H.; Barnes, A.R.; Smith, H.L.; Polley, H.F.; Kendall, E.C. The effects of the adrenal cortical hormone 17-hydroxy-11-dehydrocorticosterone (compound-E) on the acute phase of rheumatic fever–preliminary report. Proc. Staff Meet. Mayo Clin. 1949, 24, 277–297. [Google Scholar]
- Hench, P.S.; Kendall, E.C.; Slocumb, C.H.; Polley, H.F. Effects of cortisone acetate and pituitary ACTH on rheumatoid arthritis, rheumatic fever and certain other conditions: A study in clinical physiology. Arch. Internal. Med. 1950, 85, 545–666. [Google Scholar] [CrossRef]
- Kosicka, K.; Siemiątkowska, A.; Szpera-Goździewicz, A.; Krzyścin, M.; Bręborowicz, G.H.; Główka, F.K. Increased cortisol metabolism in women with pregnancy-related hypertension. Endocrine 2018, 61, 125–133. [Google Scholar] [CrossRef]
- Campino, C.; Carvajal, C.A.; Cornejo, J.; San Martín, B.; Olivieri, O.; Guidi, G.; Faccini, G.; Pasini, F.; Sateler, J.; Baudrand, R.; et al. 11β-Hydroxysteroid dehydrogenase type-2 and type-1 (11β-HSD2 and 11β-HSD1) and 5β-reductase activities in the pathogenia of essential hypertension. Endocrine 2010, 37, 106–114. [Google Scholar] [CrossRef]
- Finken, M.J.J.; Andrews, R.C.; Andrew, R.; Walker, B.R. Cortisol metabolism in healthy young adults: Sexual dimorphism in activities of A-ring reductases, but not 11β-hydroxysteroid dehydrogenases. J. Clin. Endocrinol. Metab. 1999, 84, 3316–3321. [Google Scholar] [CrossRef] [PubMed]
- Kosicka, K.; Siemiątkowska, A.; Pałka, D.; Szpera-Goździewicz, A.; Bręborowicz, G.H.; Główka, F.K. Detailed analysis of cortisol, cortisone and their tetrahydro- and allo-tetrahydrometabolites in human urine by LC–MS/MS. J. Pharm. Biomed. Anal. 2017, 140, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Sandeep, T.C.; Yau, J.L.; MacLullich, A.M.; Noble, J.; Deary, I.J.; Walker, B.R.; Seckl, J.R. 11β-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics. Proc. Natl. Acad. Sci. USA 2004, 101, 6734–6739. [Google Scholar] [CrossRef] [PubMed]
- MacLullich, A.M.; Ferguson, K.J.; Reid, L.M.; Deary, I.J.; Starr, J.M.; Wardlaw, J.M.; Walker, B.R.; Andrew, R.; Seckl, J.R. 11β-hydroxysteroid dehydrogenase type 1, brain atrophy and cognitive decline. Neurobiol. Aging 2012, 33, e201–e208. [Google Scholar] [CrossRef]
- Wang, H.; Sang, J.; Ji, Z.; Yu, Y.; Wang, S.; Zhu, Y.; Li, H.; Wang, Y.; Ge, R.-S. Halogenated bisphenol A derivatives potently inhibit human and rat 11β-hydroxysteroid dehydrogenase 1: Structure–activity relationship and molecular docking. Environ. Toxicol. 2024, 39, 2560–2571. [Google Scholar] [CrossRef]
- Wang, H.; Sang, J.; Ji, Z.; Yu, Y.; Wang, S.; Zhu, Y.; Li, H.; Wang, Y.; Zhu, Q.; Ge, R.-S. Bisphenol A Analogues Inhibit Human and Rat 11β-Hydroxysteroid Dehydrogenase 1 Depending on Its Lipophilicity. Molecules 2023, 28, 4894. [Google Scholar] [CrossRef]
- Mesnage, R.; Phedonos, A.; Arno, M.; Balu, S.; Corton, J.C.; Antoniou, M.N. Transcriptome Profiling Reveals Bisphenol A Alternatives Activate Estrogen Receptor Alpha in Human Breast Cancer Cells. Toxicol Sci. 2017, 158, 431–443. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, H.; Cheng, H.; Wu, C.; Ruan, H.; Zhu, B.; Zhou, P.; Xu, Z.; Xiang, H. BPZ inhibits early mouse embryonic development by disrupting maternal-to-zygotic transition and mitochondrial function. Ecotoxicol. Environ. Saf. 2025, 289, 117693. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, H.; Hu, C.; Wang, Q.; Wang, S.; Ge, R.-S.; Li, X. Bisphenol Z inhibits the function of Leydig cells via upregulation of METTL3 expression in adult male rats. J. Steroid Biochem. Mol. Biol. 2025, 252, 106786. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S.; Tang, Y.; Hu, Z.; Shi, L.; Lu, J.; Li, H.; Wang, Y.; Zhu, Y.; Lin, H.; et al. Direct inhibition of bisphenols on human and rat 11β-hydroxysteroid dehydrogenase 2: Structure-activity relationship and docking analysis. Ecotoxicol. Environ. Saf. 2023, 254, 114715. [Google Scholar] [CrossRef]
Plot | X-Axis and Y-Axis | Slope and Point of Intersection with Y-Axis | Equation | Comments |
---|---|---|---|---|
Lineweaver-Burk | 1/[S] | Km/Vmax | ||
Highlights the errors at low concentrations | ||||
1/V | 1/Vmax | |||
Eadie-Hofstee | V/[S] | −Km | ||
V | Vmax | The points may merge at extremely high and low concentrations | ||
Hanes-Woolf | [S] | 1/Vmax | ||
[S]/V | Km/Vmax | Better error distribution than Lineweaver-Burk plots |
Ligand + Protein Combination | Estimated Free Energy of Biding (kcal/mol) | Final Intermolecular Energy (kcal/mol) | vdW + Hbond + Desolv Energy (kcal/mol) | Electrostatic Energy (kcal/mol) | Final Total Internal Energy (kcal/ mol) | Torsional Free Energy (kcal/mol) | Unbound System’s Energy (kcal/mol) | Estimated Inhibition Constant, Ki (nM) |
---|---|---|---|---|---|---|---|---|
Bisphenol Z + 11β-HSD1 (human) | −8.21 | −9.41 | −9.06 | −0.34 | −0.99 | 1.19 | −0.99 | 953.93 |
Bisphenol Z + 11β-HSD1 (rat) | −8.29 | −9.48 | −9.39 | −0.09 | −0.91 | 1.19 | 0.91 | 839.63 |
Bisphenol Z + 11β-HSD2 (Arabidopsis) | −8.06 | −9.26 | −9.22 | −0.04 | −0.78 | 1.19 | −0.78 | 1230 |
Enzyme | Aromatic/ π-π Interactions | Hydrophobic Contacts | Hydrogen Bonds |
---|---|---|---|
Human 11β-HSD1 | Tyr183 | Ile218, Leu215, Ala223 | Asn119, Lys187 |
Rat 11β-HSD1 | Tyr158, Ala198 | Ile193 | Gly16, Ile193 |
Arabidopsis 11β-HSD2 | Phe227, Tyr196, Thr185 | – | Gln136, Ser183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuzimski, T.; Sugajski, M. Inhibitory Effects of Bisphenol Z on 11β-Hydroxysteroid Dehydrogenase 1 and In Silico Molecular Docking Analysis. Molecules 2025, 30, 3941. https://doi.org/10.3390/molecules30193941
Tuzimski T, Sugajski M. Inhibitory Effects of Bisphenol Z on 11β-Hydroxysteroid Dehydrogenase 1 and In Silico Molecular Docking Analysis. Molecules. 2025; 30(19):3941. https://doi.org/10.3390/molecules30193941
Chicago/Turabian StyleTuzimski, Tomasz, and Mateusz Sugajski. 2025. "Inhibitory Effects of Bisphenol Z on 11β-Hydroxysteroid Dehydrogenase 1 and In Silico Molecular Docking Analysis" Molecules 30, no. 19: 3941. https://doi.org/10.3390/molecules30193941
APA StyleTuzimski, T., & Sugajski, M. (2025). Inhibitory Effects of Bisphenol Z on 11β-Hydroxysteroid Dehydrogenase 1 and In Silico Molecular Docking Analysis. Molecules, 30(19), 3941. https://doi.org/10.3390/molecules30193941