Spectroscopic and Chemometric Evaluation of the Stability of Timolol, Naphazoline, and Diflunisal in the Presence of Reactive Excipients Under Forced Degradation Conditions
Abstract
1. Introduction
2. Results and Discussion
2.1. FT-IR/ATR and NIR Analysis
2.1.1. Results for Individual APIs and Individual Excipients
2.1.2. Results for Binary Mixtures of TIM
2.1.3. Results for Binary Mixtures of NAPH
2.1.4. Results for Binary Mixtures of DIF
2.2. Chemometric Analysis of FT-IR/ATR and NIR Data
3. Materials and Methods
3.1. Chemicals
3.2. Instrumentation
3.3. Forced Degradation
3.4. FT-IR/ATR and NIR Spectrometry
3.5. Chemometric Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Timolol. Available online: https://go.drugbank.com/drugs/DB00373 (accessed on 20 January 2025).
- Naphazoline. Available online: https://go.drugbank.com/drugs/DB06711 (accessed on 20 January 2025).
- Snetkov, P.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Diflunisal targeted delivery systems: A review. Materials 2021, 14, 6687. [Google Scholar] [CrossRef] [PubMed]
- Veronica, N.; Heng, P.W.S.; Liew, C.V. Ensuring product stability—Choosing the right excipients. J. Pharm. Sci. 2022, 111, 2158–2171. [Google Scholar] [CrossRef] [PubMed]
- Bout, M.R.; Vromans, H. Influence of commonly used excipients on the chemical degradation of enalapril maleate in its solid state: The role of condensed water. Eur. J Pharm. Sci. 2022, 171, 106121. [Google Scholar] [CrossRef]
- Byrn, S.R.; Xu, W.; Newman, A.W. Chemical reactivity in solid-state pharmaceuticals: Formulation implications. Adv. Drug Deliv. Rev. 2001, 48, 115–136. [Google Scholar] [CrossRef]
- The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Topic Q1A(R2) Stability Testing of New Active Substances and Products; ICH: Geneva, Switzerland, 2003. [Google Scholar]
- González-González, O.; Ramirez, I.O.; Ramirez, B.I.; O’Connell, P.; Ballesteros, M.P.; Torrado, J.J.; Serrano, D.R. Drug stability: ICH versus accelerated predictive stability studies. Pharmaceutics 2022, 14, 2324. [Google Scholar] [CrossRef]
- Rajagopal, K.; Kanmani, G.; Venkatesan, S.; Palanivelu, A. Formulation and characterization of ophthalmic in situ gel forming solution of timolol maleate for glaucoma. Int. J. Pharm. Compd. 2025, 29, 132–140. [Google Scholar]
- Mandour, A.A.; Nabil, N.; Zaaza, H.E.; Ibrahim, M.M.; Ibrahim, M.A. Two stability indicating chromatographic methods: TLC densitometric versus HPLC method for the simultaneous determination of brinzolamide and timolol maleate in ophthalmic formulation in the presence of probable carcinogenic oxidative degradation product of timolol maleate. Separations 2023, 10, 37. [Google Scholar] [CrossRef]
- Mohammed Ali, S.; Kosar Hikmat, H.H.; Dlivan Fattah, A.; Hilal Demir, K. Development of a stability-indicating HPLC method for the simultaneous quantification of antazoline nitrate and naphazoline sulfate in a commercial ophthalmic formulation. J. Liq. Chromatogr. Relat. Technol. 2022, 45, 284–293. [Google Scholar] [CrossRef]
- Maher, H. Development and validation of a stability-indicating HPLC-DAD method with ANN optimization for the determination of diflunisal and naproxen in pharmaceutical tablets. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 634–665. [Google Scholar] [CrossRef]
- Lejwoda, K.; Gumieniczek, A.; Filip, A.; Naumczuk, B. The study on timolol and its potential phototoxicity using chemical, in silico and in vitro methods. Pharmaceuticals 2024, 17, 98. [Google Scholar] [CrossRef]
- Lejwoda, K.; Gumieniczek, A.; Filip, A.; Naumczuk, B. Two small molecule drugs with topical applications, diflunisal and naphazoline, and their potentially toxic photodegradants: Analysis by chemical and biological methods. Molecules 2024, 29, 4122. [Google Scholar] [CrossRef]
- Pignatello, R.; Ferro, M.; De Guidi, G.; Salemi, G.; Vandelli, M.A.; Guccione, S.; Geppi, M.; Forte, C.; Puglisi, G. Preparation, characterisation and photosensitivity studies of solid dispersions of diflunisal and Eudragit RS100R and RL100R. Int. J. Pharm. 2001, 218, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Sortino, S.; Cosa, G.; Scaiano, J.C. pH effect on the efficiency of the photodeactivation pathways of naphazoline: A combined steady state and time resolved study. New J. Chem. 2000, 24, 159–163. [Google Scholar] [CrossRef]
- Devrukhakar, P.S.; Shankar, M.S.; Shankar, G.; Srinivas, R. Proposal of degradation pathway with toxicity prediction for hydrolytic and photolytic degradation products of timolol. J. Pharm. Biomed. Anal. 2018, 154, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liang, Q.; Zhou, D.; Wang, Z.; Tao, T.; Zuo, Y. Photodegradation kinetics, products and mechanism of timolol under simulated sunlight. J. Hazard. Mat. 2013, 252–253, 220–226. [Google Scholar] [CrossRef]
- Jujare, V.K.; Dantuluri, A.K. Hydroxyethyl cellulose as a versatile viscosity modifier in the development of sugar-free, elegant oral liquid formulations. Int. J. Curr. Res. Chem. Pharm. Sci. 2023, 10, 1–23. [Google Scholar]
- Abbas, K.; Amin, M.; Hussain, M.A.; Sher, M.; Abbas Bukhari, S.N.; Edgar, K.J. Design, characterization and pharmaceutical/pharmacological applications of ibuprofen conjugates based on hydroxyethyl cellulose. RSC Adv. 2017, 7, 50672–50679. [Google Scholar] [CrossRef]
- Zhang, K.; Pellett, J.D.; Narang, A.S.; Wang, Y.J.; Zhang, Y.T. Reactive impurities in large and small molecule pharmaceutical excipients—A review. TrAC Trends Anal. Chem. 2018, 101, 34–42. [Google Scholar] [CrossRef]
- Jaipal, A.; Pandey, M.M.; Charde, S.Y.; Raut, P.P.; Prasanth, K.V.; Prasad, R.G. Effect of HPMC and mannitol on drug release and bioadhesion behavior of buccal discs of buspirone hydrochloride: In-vitro and in-vivo pharmacokinetic studies. Saudi Pharm. J. 2015, 23, 315–326. [Google Scholar] [CrossRef]
- Hotha, K. Drug-excipient interactions: Case studies and overview of drug degradation pathway. Am. J. Analyt. Chem. 2016, 7, 107–140. [Google Scholar] [CrossRef]
- Bianchi, M.; Pegoretti, A.; Fredi, G. An overview of poly(vinyl alcohol) and poly(vinyl pyrrolidone) in pharmaceutical additive manufacturing. J. Vinyl Addit. Technol. 2023, 29, 223–239. [Google Scholar] [CrossRef]
- Aruldass, S.; Mathivanan, V.; Mohamed, A.R.; Tye, C.T. Factors affecting hydrolysis of polyvinyl acetate to polyvinyl alcohol. J. Environ. Chem. Eng. 2019, 7, 103238. [Google Scholar] [CrossRef]
- Kodym, A.; Pawłowska, M.; Rumiński, J.K.; Bartosińska, A.; Kieliba, A. Stability of cefepime in aqueous eye drops. Die Pharm.-Int. J. Pharm. 2011, 66, 17–23. [Google Scholar]
- Bogdanova, S.; Pajeva, I.; Nikolova, P.; Tsakovska, I.; Müller, B. Interactions of poly(vinylpyrrolidone) with ibuprofen and naproxen: Experimental and modeling studies. Pharm. Res. 2005, 22, 806815. [Google Scholar] [CrossRef] [PubMed]
- Gwak, H.S.; Chun, I.K. Effect of vehicles and penetration enhancers on the in vitro percutaneous absorption of tenoxicam through hairless mouse skin. Int. J. Pharm. 2002, 236, 57–64. [Google Scholar] [CrossRef]
- Abou-Taleb, H.A.; Shoman, M.E.; Makram, T.S.; Abdel-Aleem, J.A.; Abdelkader, H. Exploration of the Safety and Solubilization, Dissolution, Analgesic Effects of Common Basic Excipients on the NSAID Drug Ketoprofen. Pharmaceutics 2023, 15, 713. [Google Scholar] [CrossRef]
- Abdelkader, H.; Abdallah, O.Y.; Salem, H.S. Comparison of the effect of tromethamine and polyvinylpyrrolidone on dissolution properties and analgesic effect of nimesulide. AAPS PharmSciTech. 2007, 8, 65. [Google Scholar] [CrossRef]
- Merino-Bohórquez, V.; Casas, M.; Caracuel, F.; Cameán, M.; Fernández-Anguita, M.J.; Ramírez-Soto, G.; Lucero, M.J. Physicochemical stability of a new topical timolol 0.5% gel formulation for the treatment of infant hemangioma. Pharm. Dev. Technol. 2015, 20, 562–569. [Google Scholar] [CrossRef]
- Shafie, M.A.A.; Rady, M.A.H. In vitro and in vivo evaluation of timolol maleate ocular inserts using different polymers. J. Clin. Exp. Ophthalmol. 2012, 3, 246. [Google Scholar]
- Shetty, N.G.; Rompicherla, N.C. A study on stability and in vivo drug release of naphazoline and antazoline in situ gelling systems for ocular delivery. Int. J. Pharma Bio Sci. 2013, 4, 161–171. [Google Scholar]
- Kaur, A.; Goindi, S.; Katare, O.P. Thermal analysis and quantitative characterization of compatibility between diflunisal and lipid excipients as raw materials for development of solid lipid nanoparticles. Thermochim. Acta 2016, 643, 23–32. [Google Scholar] [CrossRef]
- Martínez-Ohárriz, M.C.; Rodríguez-Espinosa, C.; Martín, C.; Goñi, M.M.; Tros-Ilarduya, M.C.; Sánchez, M. Solid dispersions of diflunisal–PVP: Polymorphic and amorphous states of the drug. Drug Dev. Ind. Pharm. 2002, 28, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Chavan, S.R.; Bhagwat, A.M.; Rao, M.; Choudhari, A.P. Importance of forced degradation study in pharmaceutical industry—A review. World J. Pharm. Res. 2019, 8, 639–653. [Google Scholar]
- Wang, S.; Lin, S.; Chen, T.; Cheng, W. Eudragit E accelerated the diketopiperazine formation of enalapril maleate determined by thermal FTIR microspectroscopic technique. Pharm. Res. 2004, 21, 2127–2132. [Google Scholar] [CrossRef]
- Araña, J.; González Díaz, O.; Miranda Saracho, M.; Doña Rodr´ıguez, J.M.; Herrera Melián, J.A.; Pérez Peña, J. Maleic acid photocatalytic degradation using Fe-TiO2 catalysts Dependence of the degradation mechanism on the Fe catalysts content. Appl. Catal. B Environ. 2002, 36, 113–124. [Google Scholar] [CrossRef]
- Alburyhi, M.M.; Saif, A.A.; Noman, M.A.; Al Khawlani, M.A. Bisoprol-Excipient Compatibility Studies for Advanced Drug Delivery Systems Development. World J. Pharm. Med. Res. 2024, 10, 304–324. [Google Scholar]
- Marothu, V.K.; Yerramothu, P.; Gorrepati, M.; Majeti, S.; Mamidala, S.K.; Nellutla, A. Application of HPLC to assess the compatibility of bisoprolol fumarate with selected excipients in mixtures by isothermal stress testing. Ann. Pharm. Fr. 2015, 73, 442–451. [Google Scholar] [CrossRef]
- Rusdin, A.; Mohd Gazzali, A.; Ain Thomas, N.; Megantara, S.; Aulifa, D.L.; Budiman, A.; Muchtaridi, M. Advancing Drug Delivery Paradigms: Polyvinyl Pyrolidone (PVP)-Based Amorphous Solid Dispersion for Enhanced Physicochemical Properties and Therapeutic Efficacy. Polymers 2024, 16, 286. [Google Scholar] [CrossRef]
- Oliveira, B.G.; Lima, M.C.A.; Pitta, I.R. A theoretical study of red-shifting and blue-shifting hydrogen bonds occurring between imidazolidine derivatives and PEG/PVP polymers. J. Mol. Model. 2010, 16, 119–127. [Google Scholar] [CrossRef]
- El-Hinnawi, M.A.; Najib, N.M. Ibuprofen–polyvinylpyrrolidone dispersions. Proton nuclear magnetic resonance and infrared studies. Int. J. Pharm. 1987, 37, 175–177. [Google Scholar] [CrossRef]
- Bookwala, M.; Thipsay, P.; Ross, S.; Zhang, F.; Bandari, S.; Repka, M.A. Preparation of a crystalline salt of indomethacin and tromethamine by hot melt extrusion technology. Eur. J. Pharm. Biopharm. 2018, 31, 109–119. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Pearson Education Ltd.: Harlow, UK, 2010. [Google Scholar]
- Reich, G. Near-infrared spectroscopy and imaging: Basic principles. Adv. Drug Deliv. Rev. 2005, 57, 1109–1143. [Google Scholar] [CrossRef]
- Biancolillo, A.; Marini, F. Chemometric methods for spectroscopy-based pharmaceutical analysis. Front. Chem. 2018, 6, 576. [Google Scholar] [CrossRef]
- Gomes, E.C.L.; Carvahom, I.E.; Fialho, S.L.; Barbosa, J.; Yoshida, M.I.; Silva-Cunha Junior, A. Mixing method influence on compatibility and polymorphism studies by DSC and statistical analysis: Application to tenofovir disoproxil fumarate. J. Therm. Anal. Calorim. 2018, 131, 2123–2128. [Google Scholar] [CrossRef]
- Lopes, M.S.; Catelani, T.A.; Nascimento, A.L.C.S.; Garcia, J.S.; Trevisan, M.G. Ketoconazole: Compatibility with pharmaceutical excipients using DSC and TG techniques. J. Therm. Anal. Calorim. 2020, 141, 1371–1378. [Google Scholar] [CrossRef]
- The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Topic Q1B Photostability Testing of New Active Substances and Medicinal Products; ICH: Geneva, Switzerland, 1998. [Google Scholar]
Matrices | IR Spectra | PC1 (%) | PC2 (%) | PC3 (%) |
---|---|---|---|---|
Active pharmaceutical ingredients | FT-IR/ATR | 67.00 | 23.78 | 8.97 |
NIR | 92.22 | 3.68 | 1.94 | |
Excipients | FT-IR/ATR | 60.59 | 17.44 | 13.71 |
NIR | 88.15 | 8.16 | 2.97 | |
TIM mixtures with excipients | FT-IR/ATR | 92.13 | 5.03 | 1.85 |
NIR | 94.73 | 3.38 | 1.33 | |
NAPH mixtures with excipients | FT-IR/ATR | 88.63 | 5.60 | 4.04 |
NIR | 93.32 | 4.14 | 1.88 | |
DIF mixtures with excipients | FT-IR/ATR | 93.36 | 3.51 | 3.07 |
NIR | 95.49 | 2.81 | 1.21 |
Active Pharmaceutical Ingredients | IR Spectra | High Temperature/ High Humidity | UV/Vis Light | ||
---|---|---|---|---|---|
PCA | HCA | PCA | HCA | ||
TIM | FT-IR/ATR | – | – | + | + |
NIR | ++ | +++ | ++ | +++ | |
NAPH | FT-IR/ATR | ++ | + | ++ | + |
NIR | + | +++ | ++ | +++ | |
DIF | FT-IR/ATR | – | – | – | + |
NIR | +++ | +++ | + | +++ |
Binary Mixtures of TIM with Excipients | IR Spectra | High Temperature/ High Humidity | UV/Vis Light | ||
---|---|---|---|---|---|
PCA | HCA | PCA | HCA | ||
TIM and HEC | FT-IR/ATR | + | ++ | – | ++ |
NIR | + | ++ | ++ | ++ | |
TIM and MAN | FT-IR/ATR | ++ | ++ | ++ | ++ |
NIR | ++ | +++ | + | +++ | |
TIM and PVA | FT-IR/ATR | + | +++ | + | ++ |
NIR | + | ++ | + | ++ | |
TIM and PVP | FT-IR/ATR | + | +++ | + | ++ |
NIR | ++ | +++ | ++ | + | |
TIM and TRIS | FT-IR/ATR | +++ | +++ | ++ | +++ |
NIR | ++ | +++ | +++ | +++ |
Binary Mixtures of NAPH with Excipients | IR Spectra | High Temperature/ High Humidity | UV/Vis Light | ||
---|---|---|---|---|---|
PCA | HCA | PCA | HCA | ||
NAPH and HEC | FT-IR/ATR | + | ++ | + | ++ |
NIR | + | +++ | + | +++ | |
NAPH and MAN | FT-IR/ATR | + | +++ | + | ++ |
NIR | + | +++ | ++ | ++ | |
NAPH and PVA | FT-IR/ATR | + | ++ | + | ++ |
NIR | + | +++ | – | ++ | |
NAPH and PVP | FT-IR/ATR | + | ++ | + | ++ |
NIR | + | ++ | + | +++ | |
NAPH and TRIS | FT-IR/ATR | + | +++ | + | +++ |
NIR | + | +++ | + | +++ |
Binary Mixtures of DIF with Excipients | IR Spectra | High Temperature/ High Humidity | UV/Vis Light | ||
---|---|---|---|---|---|
PCA | HCA | PCA | HCA | ||
DIF and HEC | FT-IR/ATR | ++ | +++ | + | +++ |
NIR | – | +++ | ++ | +++ | |
DIF and MAN | FT-IR/ATR | ++ | ++ | + | +++ |
NIR | +++ | +++ | +++ | +++ | |
DIF and PVA | FT-IR/ATR | – | ++ | + | ++ |
NIR | – | + | + | + | |
DIF and PVP | FT-IR/ATR | + | +++ | + | + |
NIR | +++ | ++ | ++ | ++ | |
DIF and TRIS | FT-IR/ATR | ++ | +++ | ++ | +++ |
NIR | +++ | + | +++ | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumieniczek, A.; Wesolowski, M.; Berecka-Rycerz, A.; Leyk, E. Spectroscopic and Chemometric Evaluation of the Stability of Timolol, Naphazoline, and Diflunisal in the Presence of Reactive Excipients Under Forced Degradation Conditions. Molecules 2025, 30, 3807. https://doi.org/10.3390/molecules30183807
Gumieniczek A, Wesolowski M, Berecka-Rycerz A, Leyk E. Spectroscopic and Chemometric Evaluation of the Stability of Timolol, Naphazoline, and Diflunisal in the Presence of Reactive Excipients Under Forced Degradation Conditions. Molecules. 2025; 30(18):3807. https://doi.org/10.3390/molecules30183807
Chicago/Turabian StyleGumieniczek, Anna, Marek Wesolowski, Anna Berecka-Rycerz, and Edyta Leyk. 2025. "Spectroscopic and Chemometric Evaluation of the Stability of Timolol, Naphazoline, and Diflunisal in the Presence of Reactive Excipients Under Forced Degradation Conditions" Molecules 30, no. 18: 3807. https://doi.org/10.3390/molecules30183807
APA StyleGumieniczek, A., Wesolowski, M., Berecka-Rycerz, A., & Leyk, E. (2025). Spectroscopic and Chemometric Evaluation of the Stability of Timolol, Naphazoline, and Diflunisal in the Presence of Reactive Excipients Under Forced Degradation Conditions. Molecules, 30(18), 3807. https://doi.org/10.3390/molecules30183807