A Remarkable Selectivity Observed in Hetero-Diels–Alder Reactions of Levoglucosenone (LGO) with Thiochalcones: An Experimental and Computational Study †
Abstract
1. Introduction
2. Results and Discussion
2.1. Experimental Work
2.2. Mechanistic Investigations by DFT Calculations
3. Materials and Methods
3.1. Materials
3.2. Analytical Methods and Equipment
3.3. Quantum Chemical Calculations
3.4. Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Witczak, Z.J. (Ed.) Levoglucosenone and Levoglucosans: Chemistry and Applications; ATL Press: Mount Prospect, IL, USA, 1994. [Google Scholar]
- Witczak, Z.J.; Tatsuta, K. (Eds.) Carbohydrate Synthons in Natural Products Chemistry. Synthesis, Functionalization, and Applications; ACS Symposium, Series No. 841; American Chemical Society: Washington, DC, USA, 2003. [Google Scholar]
- Tsuchiya, Y.; Sumi, K. Thermal decomposition products of cellulose. J. Appl. Polym. Sci. 1979, 14, 2003–2013. [Google Scholar] [CrossRef]
- Klepp, J.; Dillon, W.; Lin, Y.; Feng, P.; Greatrex, B.W. Preparation of (−)-Levoglucosenone from Cellulose Using Sulfuric Acid in Polyethylene Glycol. Org. Synth. 2020, 97, 38–53. [Google Scholar] [CrossRef]
- Allais, F. Total syntheses and production pathways of levoglucosenone, a highly valuable chiral chemical platform for the chemical industry. Curr. Opin. Green Sustain. Chem. 2023, 40, 100744. [Google Scholar] [CrossRef]
- Camp, J.E.; Greatrex, B.W. Levoglucosenone: Bio-Based Platform for Drug Discovery. Front. Chem. 2022, 10, 902239. [Google Scholar] [CrossRef]
- Stanfield, M.K.; Terry, R.S.; Smith, J.A.; Thickett, S.C. Levoglucosan and levoglucosenone as bio-based platforms for polymer synthesis. Polym. Chem. 2023, 14, 4949–4956. [Google Scholar] [CrossRef]
- Pollard, B.; Gardiner, M.G.; Banwell, M.G.; Connal, L.A. Polymers from Cellulosic Waste: Direct Polymerization of Levoglucosenone using DBU as a Catalyst. ChemSusChem 2024, 17, e202301165. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.; Rizzo, A.; Ryu, H.; Choa, M.; Choi, T.-L. Controlled polymerization of levoglucosenone derived enynes to give bio-based polymers with tunable degradation rates and high glass transition temperatures. Chem. Sci. 2025, 16, 8435–8442. [Google Scholar] [CrossRef] [PubMed]
- Blake, A.J.; Cook, T.A.; Forsyth, A.C.; Gould, R.O.; Paton, R.M. 1.3-Dipolar Cycloaddition Reactions of Levoglucosenone. Tetrahedron 1992, 48, 8053–8064. [Google Scholar] [CrossRef]
- Cicetti, S.; Spanevello, R.A.; Sarotti, A.M. In DFT We Trust: Exhaustive Exploration of 1,3-Dipolar Cycloadditions Between Nitrones and Levoglucosenone Exposesa Curious Case of Conformational Dynamics. Eur. J. Org. Chem. 2024, 27, e202400433. [Google Scholar] [CrossRef]
- Mlostoń, G.; Urbaniak, K.; Palusiak, M.; Witczak, Z.J.; Würthwein, E.-U. (3 + 2)-Cycloadditions of Levoglucosenone (LGO) with Fluorinated Nitrile Imines Derived from Trifluoroacetonitrile; An Experimental and Computational Study. Molecules 2023, 28, 7348. [Google Scholar] [CrossRef]
- Novikov, R.A.; Rafikov, R.R.; Shulishov, E.V.; Konyushkin, L.D.; Semenov, V.V.; Tomilov, Y.V. Reactions of levoglucosenone and its derivatives with diazo compounds. Russ. Chem. Bull. Int. Ed. 2009, 58, 327–334. [Google Scholar] [CrossRef]
- Mlostoń, G.; Celeda, M.; Palusiak, M. Higher-order (8 + 2) cycloadditions of tropothione with levoglucosenone (LGO) and structurally similar exo-cyclic enones derived from cyrene. Carbohydr. Res. 2023, 529, e108844. [Google Scholar] [CrossRef]
- Ward, D.D.; Shafizadeh, F. Cycloaddition “4 + 2” reactions of levoglucosenone. Carbohydr. Res. 1981, 95, 155–176. [Google Scholar] [CrossRef]
- Bhate, P.; Horton, D. Stereoselective synthesis of functionalized carbocycles by cycloaddition to levoglucosenone. Carbohydr. Res. 1983, 122, 189–199. [Google Scholar] [CrossRef]
- Pollard, B.; Liu, X.; Connal, L.A.; Banwell, M.G.; Gardiner, M.G. The synthesis and manipulation of certain Diels–Alder adducts of levoglucosenone and iso-levoglucosenone. Austr. J. Chem. 2023, 76, 797–811. [Google Scholar] [CrossRef]
- Giri, G.F.; Sarotti, A.M.; Spanevello, R.A. Understanding reactivity and regioselectivity in Diels–Alder reactions of a sugar-derived dienophile bearing two competing EWGs. An experimental and computational study. Carbohydr. Res. 2015, 415, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Sarotti, A.M.; Spanevello, R.A.; Duhayon, C.; Suárez, A.G. Exploring structural effects of levoglucosenone derived chiral auxiliaries in asymmetric Diels–Alder cycloadditions. Tetrahedron 2007, 63, 241–251. [Google Scholar] [CrossRef]
- Comba, M.B.; Tsai, Y.; Sarotti, A.M.; Mangione, M.I.; Suárez, A.G.; Spanevello, R.A. Levoglucosenone and its new applications: Valorization of cellulose residues. Eur. J. Org. Chem. 2018, 2018, 590–604. [Google Scholar] [CrossRef]
- Tietze, L.; Kettschau, G. Hetero Diels-Alder reactions in organic chemistry. Top. Curr. Chem. 2015, 189, 1–120. [Google Scholar] [CrossRef]
- Eschenbrenner-Lux, V.; Kumar, K.; Waldmann, H. The asymmetric hetero-Diels-Alder reaction in the syntheses of biologically relevant compounds. Angew. Chem. Int. Ed. 2014, 53, 11146–11157. [Google Scholar] [CrossRef]
- Blond, G.; Gulea, M.; Mamane, V. Recent Contributions to Hetero Diels-Alder Reactions. Curr. Org. Chem. 2016, 20, 2161–2210. [Google Scholar] [CrossRef]
- Mlostoń, G.; Grzelak, P.; Hamera-Fałdyga, R.; Jasiński, M.; Pipiak, P.; Urbaniak, K.; Albrecht, Ł.; Hejmanowska, J.; Heimgartner, H. Aryl, hetaryl, and ferrocenyl thioketones as versatile building blocks for exploration in the organic chemistry of sulfur. Phosphorus Sulfur Silicon Rel. Elem. 2017, 192, 204–211. [Google Scholar] [CrossRef]
- Mlostoń, G.; Urbaniak, K.; Jasiński, M.; Würthwein, E.-U.; Heimgartner, H.; Zimmer, R.; Reissig, H.-U. The (4 + 2)-cycloaddition of α-nitrosoalkenes with thiochalcones as a prototype of periselective hetero-Diels-Alder reactions—Experimental and computational studies. Chem. Eur. J. 2020, 26, 237–248. [Google Scholar] [CrossRef]
- Buday, P.; Seeber, P.; Neumann, C.; Abul-Futouh, H.; Görls, H.; Gräfe, S.; Matczak, P.; Kupfer, S.; Weigand, W.; Mloston, G. Iron(0) mediated stereoselective (3 + 2)-cycloaddition of thiochalcones via a diradical intermediate. Chem. Eur. J. 2020, 26, 11412–11416. [Google Scholar] [CrossRef]
- Matczak, P.; Kupfer, S.; Mlostoń, G.; Budday, P.; Görls, H.; Weigand, W. Metal-ligand bonding in tricarbonyliron(0) complexes bearing thiochalcone ligands. New J. Chem. 2022, 46, e12924. [Google Scholar] [CrossRef]
- Mlostoń, G.; Grzelak, P.; Heimgartner, H. Hetero-Diels-Alder reactions of hetaryl-thiochalcones with acetylenic dienophiles. J. Sulfur Chem. 2017, 38, 1–10. [Google Scholar] [CrossRef][Green Version]
- Mlostoń, G.; Hamera-Fałdyga, R.; Heimgartner, H. First synthesis of ferrocenyl substituted thiochalcones and their [4+2]-cycloadditions with acetylenic dienophiles. J. Sulfur Chem. 2018, 39, 322–331. [Google Scholar] [CrossRef]
- Mousavi-Ebadia, M.; Safaei-Ghomi, J.; Nejad, M.J. Synthesis of thiopyran derivatives via [4 + 2] cycloaddition reactions. RSC Adv. 2025, 15, 11160. [Google Scholar] [CrossRef]
- Breugst, M.; Reissig, H.-U. The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition. Angew. Chem. Int. Ed. 2020, 59, 12293–12307. [Google Scholar] [CrossRef]
- Houk, K.N.; Liu, F.; Yang, Z.; Seeman, J.I. Evolution of the Diels-Alder Reaction Mechanism since the 1930s: Woodward, Houk with Woodward, and the Influence of Computational Chemistry on Understanding Cycloadditions. Angew. Chem. Int. Ed. 2021, 60, 12660–12681. [Google Scholar] [CrossRef] [PubMed]
- Jasiński, R. On the Question of Stepwise [4 + 2] Cycloaddition Reactions and Their Stereochemical Aspects. Symmetry 2021, 13, 1911. [Google Scholar] [CrossRef]
- Mlostoń, G.; Urbaniak, K.; Urbaniak, P.; Marko, A.; Heimgartner, H. First thia-Diels-Alder reactions of thiochalcones with 1,4-quinones. Beilstein J. Org. Chem. 2018, 14, 1834–1839. [Google Scholar] [CrossRef]
- Mlostoń, G.; Urbaniak, K.; Zimmer, R.; Reissig, H.-U.; Heimgartner, H. Hetero-Diels-Alder reactions of conjugated nitrosoalkenes with ferrocenyl, hetaryl and cylcoaliphatic thioketones. ChemistrySelect 2018, 3, 11724–11728. [Google Scholar] [CrossRef]
- Mlostoń, G.; Urbaniak, K.; Sobiecka, M.; Heimgartner, H.; Würthwein, E.-U.; Zimmer, R.; Lentz, D.; Reissig, H.-U. Hetero-Diels-Alder reactions of on in situ-generated azoalkenes with thioketones; Experimental and theoretical studies. Molecules 2021, 26, 2544. [Google Scholar] [CrossRef]
- Lopes, S.M.M.; Cardoso, A.L.; Lemos, A.; Pinho e Melo, T.M.V.D. Recent Advance in the Chemistry of Conjugated Nitrosoalkenes and Azoalkenes. Chem. Rev. 2018, 118, 11324–11352. [Google Scholar] [CrossRef]
- Sustmann, R.; Tappanchai, S.; Bandmann, H. α-(E)-1-Methoxy-1,3-butadiene and 1,1-Dimethoxy-1,3-butadiene in (4 + 2) Cycloadditions. A Mechanistic Comparison. J. Am. Chem. Soc. 1996, 118, 12555–12561. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A.; Brandenburg, J.G.; Bannwarth, C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865, Erratum in Phys. Rev. Lett. 1997, 78, 1396. https://doi.org/10.1103/PhysRevLett.77.3865. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6169. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036. [Google Scholar] [CrossRef]
- Weigend, R.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef]
- Gaussian 16, Revision B.01; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., et al., Eds.; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Mlostoń, G.; Grzelak, P.; Utecht, G.; Jasiński, M. First [3 + 2]-cycloadditions of thiochalcones as C=S dipolarophiles in reactions with fluorinated nitrile imines. Synthesis 2017, 49, 2129–2137. [Google Scholar] [CrossRef]
- Hegab, M.I. A review on chemical and biological studies of thiopyran derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2025, 200, 1–11. [Google Scholar] [CrossRef]
- Deepthi, A.; Leena, S.S.; Krishnan, D. Update on thiopyran-fused heterocycle synthesis (2013–2024). Org. Biomol. Chem. 2024, 22, 5676–5717. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, L.A.; Rodenhuis, N.; Dijkstra, D.; Wikstrom, H.; Pugsley, T.A.; Serpa, K.A.; Meltzer, L.T.; Heffner, T.G.; Wise, L.D.; Lajiness, M.E.; et al. Synthesis and Pharmacological Evaluation of Thiopyran Analogues of the Dopamine D3 Receptor-Selective Agonist (4aR,10bR)-(+)-trans-3,4,4a,10b-Tetrahydro-4-n-propyl-2H,5H-[1]-benzopyrano [4,3-b]-1,4-oxazin-9-ol (PD 128907). J. Med. Chem. 2000, 43, 2871–2882. [Google Scholar] [CrossRef]
- Baghipour, T.; Khalilzadeh, M.A.; Rajabi, M.; Mehrzad, J. Synthesis and antiproliferative activity of diethyl 5-acetyl-4-methyl-6-(2-fluorophenylimino)-6H-thiopyran-2,3-dicarboxylate (3TM). Afr. J. Biotechnol. 2011, 10, 14155–14159. [Google Scholar] [CrossRef]
- Pasha, G.F.; Asghari, S.; Tajbakhsh, M.; Mohseni, M. Synthesis and antimicrobial evaluation of some new bicyclopyrazolone-based thiopyran ring systems. J. Chin. Chem. Soc. 2019, 66, 600–667. [Google Scholar] [CrossRef]
- Brown, M.J.; Carter, P.S.; Fenwick, A.E.; Fosberry, A.P.; Hamprecht, D.W.; Hibbs, M.J.; Jarvest, R.L.; Mensah, L.; Milner, P.H.; O’Hanlon, P.J.; et al. The antimicrobial natural product chuangxinmycin and some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase. Bioorg. Med. Chem. Lett. 2002, 12, 3171–3173. [Google Scholar] [CrossRef]
- Jatin; Murugappan, S.; Kirad, S.; Ala, C.; Kuthe, P.V.; Kondapalli, C.S.V.G.; Sankaranarayanan, M. Thiochromenes and thiochromanes: A comprehensive review of their diverse biological activities and structure–activity relationship (SAR) insights. RSC Med. Chem. 2025, 16, 1941–1968. [Google Scholar] [CrossRef] [PubMed]
- Wilde, R.G.; Billheimer, J.T.; Germain, S.J.; Hausner, E.A.; Meunier, P.C.; Munzer, D.A.; Stoltenborg, J.K.; Gillies, P.J.; Burcham, D.L.; Huang, S.-M.; et al. ACAT Inhibitors derived from hetero-Diels-Alder cycloadducts of thioaldehydes. Bioorg. Med. Chem. 1996, 4, 1493–1513. [Google Scholar] [CrossRef]
- CrysAlisPRO Software System, Oxford Diffraction/Agilent Technologies UK Ltd.: Yarnton, UK, 2015.
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlostoń, G.; Urbaniak, K.; Palusiak, M.; Würthwein, E.-U.; Reissig, H.-U.; Witczak, Z.J. A Remarkable Selectivity Observed in Hetero-Diels–Alder Reactions of Levoglucosenone (LGO) with Thiochalcones: An Experimental and Computational Study. Molecules 2025, 30, 3783. https://doi.org/10.3390/molecules30183783
Mlostoń G, Urbaniak K, Palusiak M, Würthwein E-U, Reissig H-U, Witczak ZJ. A Remarkable Selectivity Observed in Hetero-Diels–Alder Reactions of Levoglucosenone (LGO) with Thiochalcones: An Experimental and Computational Study. Molecules. 2025; 30(18):3783. https://doi.org/10.3390/molecules30183783
Chicago/Turabian StyleMlostoń, Grzegorz, Katarzyna Urbaniak, Marcin Palusiak, Ernst-Ulrich Würthwein, Hans-Ulrich Reissig, and Zbigniew J. Witczak. 2025. "A Remarkable Selectivity Observed in Hetero-Diels–Alder Reactions of Levoglucosenone (LGO) with Thiochalcones: An Experimental and Computational Study" Molecules 30, no. 18: 3783. https://doi.org/10.3390/molecules30183783
APA StyleMlostoń, G., Urbaniak, K., Palusiak, M., Würthwein, E.-U., Reissig, H.-U., & Witczak, Z. J. (2025). A Remarkable Selectivity Observed in Hetero-Diels–Alder Reactions of Levoglucosenone (LGO) with Thiochalcones: An Experimental and Computational Study. Molecules, 30(18), 3783. https://doi.org/10.3390/molecules30183783