Can Sirtuin 1 Serve as a Therapeutic Target in Pulmonary Arterial Hypertension? A Comprehensive Review
Abstract
1. Introduction
2. Molecular and Cellular Pathophysiology of Pulmonary (Arterial) Hypertension
3. Sirtuin 1
Modulators | Potency | References | |
---|---|---|---|
resveratrol– activator | SIRT1: EC50 = 100 μM *EC1.5 = 31.6 μM SIRT2: EC50 = 1.92 μM *EC1.5 > 300 μM SIRT3: *EC1.5 > 300 μM | [100,102] | |
SRT1720– activator | SIRT1: EC50 = 0.10 μM *EC1.5 = 0.16 μM SIRT2: *EC1.5 = 37 μM SIRT3: *EC1.5 > 300 μM | [100,102] | |
SRT2104– activator | SIRT1: *EC1.5 = 450 nM | [113] | |
SRT1460– activator | SIRT1: *EC1.5 = 2.9 μM SIRT2: *EC1.5 > 300 μM SIRT3: *EC1.5 > 300 μM | [102] | |
SRT2183– activator | SIRT1: *EC1.5 = 0.36 μM | [102] | |
SRT3025– activator | SIRT1: *EC1.5 < 1 µm | [114] | |
EX-527– inhibitor | SIRT1: IC50 = 38 nM SIRT2: IC50 = 19.6 μM SIRT3: IC50 = 48.7 μM | [115] | |
nicotinamide– inhibitor | SIRT1: IC50 = 62 μM SIRT2: IC50 = 10 μM SIRT3: IC50 = 31 μM | [116] | |
sirtinol– inhibitor | SIRT1: IC50 = 123.2 μM SIRT2: IC50 = 38 μM SIRT3: IC50: 189.0 μM | [117,118] | |
tenovin-6– inhibitor | SIRT1: IC50 = 21 μM SIRT2: IC50 = 10 μM SIRT3: IC50 = 67 μM | [119] | |
suramin– inhibitor | SIRT1: IC50 = 297 nM SIRT2: IC50 = 799 nM | [120] |
Sirtuin 1 in the Cardiovascular System
4. Sirtuin 1 in Pulmonary (Arterial) Hypertension
4.1. Monocrotaline-Induced Pulmonary Hypertension
4.2. Hypoxia- and Sugen/Hypoxia-Induced Pulmonary Hypertension
4.3. Sirtuin 1 Expression in Pulmonary (Arterial) Hypertension
4.4. Implications of Sirtuin 1 in the Pathogenesis of Pulmonary (Arterial) Hypertension
5. Limitations
6. Conclusions
7. Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ac-eNOS | acetylated endothelial nitric synthase |
Ach | acetylcholine |
Ac-Lys | acetyl-lysine |
ADP | adenosine diphosphate |
Akt | protein kinase B |
AMPK | adenosine monophosphate-activated kinase |
ANP | atrial natriuretic peptide |
APC | adenomatous polyposis coli |
ASC | apoptosis-associated speck-like protein containing a CARD |
ATP | adenosine triphosphate |
Bax | Bcl-2-associated x-protein |
Bcl-2 | B-cell lymphoma-2 |
Bcl-xl | B-cell lymphoma-extra-large |
BMP | bone morphogenetic protein |
BNP | brain natriuretic peptide |
cAMP | cyclic adenosine monophosphate |
CCL5 | CC Motif Chemokine Ligand 5 |
CD68 | cluster of differentiation 68 |
CDK2 | cyclin-dependent kinase 2 |
circ-SIRT1 | circular RNA derived from the SIRT1 gene |
CKIα | casein kinase I alpha |
c-Myc | cellular myelocytomatosis oncogene |
COL1A1 | collagen type I alpha I chain |
COX2 | cyclooxygenase 2 |
CR | calorie restriction |
CS | citrate synthase |
CTGF | connective tissue growth factor |
CVD | cardiovascular diseases |
Drp1 | dynamin-related protein 1 |
EC | endothelial cells |
EC1.5 | 1.5-fold effective concentration |
EC50 | half-maximal effective concentration |
EGFR | epidermal growth factor receptor |
EMA | European Medicines Agency |
EndMT | endothelial-to-mesenchymal transition |
eNOS | endothelial nitric oxide synthase |
ERRα | estrogen-related receptor alpha |
ET | ejection time |
ET-1 | endothelin-1 |
FDA | Food and Drug Administration |
FOXO1 | Forkhead box protein O1 |
FOXO3a | Forkhead box protein O3a |
G0 | gap 0 |
G1 | gap 1 |
Gclc | glutamate-cysteine ligase catalytic subunit |
Gclm | glutamate-cysteine ligase modifier subunit |
GLUT1 | glucose transporter 1 |
gp91phox | glycoprotein 91-phagocyte oxidase |
GSK3β | glycogen synthase kinase 3β |
H1 | histone H1 |
HFpEF | heart failure with preserved ejection fraction |
HIFs | hypoxia-inducible factors |
HIF-α | hypoxia-inducible factor-alpha |
HMGB1 | high-mobility group box 1 |
HO-1 | heme oxygenase-1 |
HUVEC | human umbilical vein endothelial cells |
I/R | ischemia/reperfusion |
IC50 | half-maximal inhibitory concentration |
ICAM-1 | intercellular adhesion molecule 1 |
IFN-γ | interferon-gamma |
IIA-Fc | activin receptor type IIA fusion protein |
IL-10 | interleukin-10 |
IL-18 | interleukin-18 |
IL-1β | interleukin-1beta |
IL-2 | interleukin-2 |
IL-4 | interleukin-4 |
IL-6 | interleukin-6 |
iNOS | inducible nitric oxide synthase |
iPAH | idiopathic pulmonary arterial hypertension |
IκBα | NF-κB inhibitor alpha |
Keap1 | Kelch-like ECH-associated protein 1 |
Kv1.5 | voltage-gated potassium channel |
LDH | lactate dehydrogenase |
LEF | lymphoid enhancer-binding factor |
L-NAME | N-nitro-L-arginine methyl ester |
LRP | lipoprotein receptor-related protein |
LV | left ventricle |
MCP-1 | monocyte chemotactic protein-1 |
MCT | monocrotaline |
MDA | malondialdehyde |
MI | myocardial infarction |
miR | microRNA |
MMP2 | matrix metalloproteinase 2 |
MMP9 | matrix metalloproteinase 9 |
MnSOD | manganese-dependent superoxide dismutase |
mPAP | mean pulmonary arterial pressure |
MPO | myeloperoxidase |
mPT | mitochondrial permeability transition |
MSC | mesenchymal stem cells |
mTOR | mechanistic target of rapamycin |
mTORC1 | mechanistic target of rapamycin complex 1 |
mTORC2 | mechanistic target of rapamycin complex 2 |
MuRF-1 | muscle RING-finger protein-1 |
NAD+ | nicotinamide adenine nucleotide |
NADPH | nicotinamide adenine dinucleotide phosphate |
NAM | nicotinamide |
NAMPT | nicotinamide phosphoribosyltransferase |
NF-κB | nuclear factor-kappa B |
NLRP3 | nucleotide-binding oligomerization domain-like receptor protein 3 |
NNT | nicotinamide nucleotide transhydrogenase |
NO | nitric oxide |
Notch1 | neurogenic locus notch homolog protein 1 |
NOX 4 | NADPH oxidase 4 |
NOX-1 | NADPH oxidase-1 |
Nqo1 | NAD(P)H: quinone oxidoreductase-1 |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
p21 | cyclin-dependent kinase inhibitor 1A |
p47phox | neutrophil cytosolic factor 1 |
p53 | tumor protein |
PA | pulmonary arteries |
PAAT | pulmonary artery acceleration time |
PAEC | pulmonary artery endothelial cells |
PAH | pulmonary arterial hypertension |
PAH-CTD | PAH associated with connective tissue disease |
p-Akt | phosphorylated-protein kinase B |
PASMC | pulmonary arterial smooth muscle cells |
PCNA | proliferating cell nuclear antigen |
PDGF | platelet-derived growth factor |
p-eNOS | phosphorylated endothelial nitric oxide synthase |
PGC-1α | peroxisome proliferator-activated receptor-gamma coactivator-1 alpha |
PGI2 | prostacyclin I2 |
PH | pulmonary hypertension |
PI3K | phosphoinositide 3-kinase |
PINK1 | PTEN-induced putative kinase 1 |
p-JNK | phosphorylated Jun N-terminal kinase |
PKA | cAMP-dependent protein kinase |
PKIA | cAMP-dependent protein kinase inhibitor |
PMEC | pulmonary microvascular endothelial cells |
PPARα | peroxisome proliferator-activated receptor alpha |
PTEN | phosphatase and tensin homologue deleted on chromosome 10 |
PTGS2 | prostaglandin-endoperoxide synthase 2 |
ROS | reactive oxygen species |
RV | right ventricle |
RVH | right ventricle hypertrophy |
RVSP | right ventricle systolic pressure |
S | septum |
SD | Sprague-Dawley |
si-Jag2 | short interfering RNA targeting Jagged2 |
Sir2 | silent information regulator 2 |
SIRT1 | sirtuin 1 |
SIRT2 | sirtuin 2 |
SIRT3 | sirtuin 3 |
SIRT7 | sirtuin 7 |
SIRTs | sirtuins |
SKL | secreted Klotho |
Smad1/5/8 | mothers against decapentaplegic homolog 1/5/8 |
Smad2/3 | mothers against decapentaplegic homolog 2/3 |
Smad4 | mothers against decapentaplegic homolog 4 |
Smad7 | mothers against decapentaplegic homolog 7 |
SOD2 | superoxide dismutase 2 |
SRC | non-receptor tyrosine kinase Src |
STAT3 | signal transducer and activator of transcription 3 |
SU5416 | Sugen 5416 |
TAPSE | tricuspid annular plane systolic excursion |
TCF | T-cell factor |
TFAM | mitochondrial transcription factor |
TGF-β | transforming growth factor-β |
TnC | troponin C |
TNF-α | tumor necrosis factor-alpha |
Trx-1 | thioredoxin-1 |
TSC2 | tuberous sclerosis complex subunit 2 |
VCAM-1 | vascular cell adhesion molecule 1 |
VDAC | voltage dependent anion channel |
VEGFA | vascular endothelial growth factor A |
VEGFR-2 | vascular endothelial growth factor receptor 2 |
VSMC | vascular smooth muscle cells |
Wnt | wingless-type mouse mammary tumor virus integration site family |
YAP | yes-associated protein |
α-SMA | alpha smooth muscle actin |
References
- Kovacs, G.; Bartolome, S.; Denton, C.P.; Gatzoulis, M.A.; Gu, S.; Khanna, D.; Badesch, D.; Montani, D. Definition, classification and diagnosis of pulmonary hypertension. Eur. Respir. J. 2024, 64, 2401324. [Google Scholar] [CrossRef]
- Guignabert, C.; Aman, J.; Bonnet, S.; Dorfmüller, P.; Olschewski, A.J.; Pullamsetti, S.; Rabinovitch, M.; Schermuly, R.T.; Humbert, M.; Stenmark, K.R. Pathology and pathobiology of pulmonary hypertension: Current insights and future directions. Eur. Respir. J. 2024, 64, 2401095. [Google Scholar] [CrossRef]
- Humbert, M.; McLaughlin, V.; Gibbs, J.S.R.; Gomberg-Maitland, M.; Hoeper, M.M.; Preston, I.R.; Souza, R.; Waxman, A.; Escribano Subias, P.; Feldman, J.; et al. Sotatercept for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2021, 384, 1204–1215. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Badesch, D.B.; Ghofrani, H.A.; Gibbs, J.S.R.; Gomberg-Maitland, M.; McLaughlin, V.V.; Preston, I.R.; Souza, R.; Waxman, A.B.; Grünig, E.; et al. STELLAR Trial Investigators. Phase 3 trial of sotatercept for treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2023, 388, 1478–1490. [Google Scholar] [CrossRef] [PubMed]
- Campagna, R.; Vignini, A. NAD+ homeostasis and NAD+-consuming enzymes: Implications for vascular health. Antioxidant 2023, 12, 376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Barnes, K.; Gibson, S.; Fillmore, N. Dual-edged role of SIRT1 in energy metabolism and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2024, 327, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Zurlo, G.; Piquereau, J.; Moulin, M.; Pires Da Silva, J.; Gressette, M.; Ranchoux, B.; Garnier, A.; Ventura-Clapier, R.; Fadel, E.; Humbert, M.; et al. Sirtuin 1 regulates pulmonary artery smooth muscle cell proliferation: Role in pulmonary arterial hypertension. J. Hypertens. 2018, 36, 1164–1177. [Google Scholar] [CrossRef]
- Cheng, X.W.; Narisawa, M.; Jin, X.; Murohara, T.; Kuzuya, M. Sirtuin 1 as a potential therapeutic target in pulmonary artery hypertension. J. Hypertens. 2018, 36, 1032–1035. [Google Scholar] [CrossRef]
- Kurakula, K.; Smolders, V.; Tura-Ceide, O.; Jukema, J.W.; Quax, P.H.A.; Goumans, M.J. Endothelial dysfunction in pulmonary hypertension: Cause or consequence? Biomedicines 2021, 9, 57. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, L.; Jia, Y.; Balistrieri, A.; Fraidenburg, D.R.; Wang, J.; Tang, H.; Yuan, J.X. Pathogenic mechanisms of pulmonary arterial hypertension: Homeostasis imbalance of endothelium-derived relaxing and contracting factors. JACC Asia 2022, 2, 787–802. [Google Scholar] [CrossRef]
- Humbert, M.; Morrell, N.W.; Archer, S.L.; Stenmark, K.R.; MacLean, M.R.; Lang, I.M.; Christman, B.W.; Weir, E.K.; Eickelberg, O.; Voelkel, N.F.; et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2004, 43 (Suppl. S12), 13S–24S. [Google Scholar] [CrossRef] [PubMed]
- Bousseau, S.; Sobrano Fais, R.; Gu, S.; Frump, A.; Lahm, T. Pathophysiology and new advances in pulmonary hypertension. BMJ Med. 2023, 2, e000137. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.; Nielsen-Kudsk, J.E.; Vonk Noordegraaf, A.; de Man, F.S. Right ventricular fibrosis. Circulation 2019, 139, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chi, L.; Kuebler, W.M.; Goldenberg, N.M. Perivascular inflammation in pulmonary arterial hypertension. Cells 2020, 9, 2338. [Google Scholar] [CrossRef]
- Xu, D.; Hu, Y.H.; Gou, X.; Li, F.Y.; Yang, X.Y.; Li, Y.M.; Chen, F. Oxidative stress and antioxidative therapy in pulmonary arterial hypertension. Molecules 2022, 27, 3724. [Google Scholar] [CrossRef]
- Shen, Y.; Goncharov, D.A.; Pena, A.; Baust, J.; Chavez Barragan, A.; Ray, A.; Rode, A.; Bachman, T.N.; Chang, B.; Jiang, L.; et al. Cross-talk between TSC2 and the extracellular matrix controls pulmonary vascular proliferation and pulmonary hypertension. Sci. Signal. 2022, 15, eabn2743. [Google Scholar] [CrossRef]
- Liu, S.F.; Nambiar Veetil, N.; Li, Q.; Kucherenko, M.M.; Knosalla, C.; Kuebler, W.M. Pulmonary hypertension: Linking inflammation and pulmonary arterial stiffening. Front. Immunol. 2022, 13, 959209. [Google Scholar] [CrossRef]
- Wang, R.R.; Yuan, T.Y.; Wang, J.M.; Chen, Y.C.; Zhao, J.L.; Li, M.T.; Fang, L.H.; Du, G.H. Immunity and inflammation in pulmonary arterial hypertension: From pathophysiology mechanisms to treatment perspective. Pharmacol. Res. 2022, 180, 106238. [Google Scholar] [CrossRef]
- Li, C.; Liu, P.; Song, R.; Zhang, Y.; Lei, S.; Wu, S. Immune cells and autoantibodies in pulmonary arterial hypertension. Acta Biochim. Biophys. Sin. 2017, 49, 1047–1057. [Google Scholar] [CrossRef]
- Stacher, E.; Graham, B.B.; Hunt, J.M.; Gandjeva, A.; Groshong, S.D.; McLaughlin, V.V.; Jessup, M.; Grizzle, W.E.; Aldred, M.A.; Cool, C.D.; et al. Modern age pathology of pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2012, 186, 261–272. [Google Scholar] [CrossRef]
- Savai, R.; Pullamsetti, S.S.; Kolbe, J.; Bieniek, E.; Voswinckel, R.; Fink, L.; Scheed, A.; Ritter, C.; Dahal, B.K.; Vater, A.; et al. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2012, 186, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Song, J.; Li, X.; Xia, Z.; Wang, Q.; Fu, J.; Miao, Y.; Wang, D.; Wang, X. The role of immune cells and inflammation in pulmonary hypertension: Mechanisms and implications. Front. Immunol. 2024, 15, 1374506. [Google Scholar] [CrossRef]
- Song, J.L.; Zheng, S.Y.; He, R.L.; Gui, L.X.; Lin, M.J.; Sham, J.S.K. Serotonin and chronic hypoxic pulmonary hypertension activate a NADPH oxidase 4 and TRPM2 dependent pathway for pulmonary arterial smooth muscle cell proliferation and migration. Vascul. Pharmacol. 2021, 138, 106860. [Google Scholar] [CrossRef] [PubMed]
- Archer, S.L. Pyruvate Kinase and Warburg Metabolism in Pulmonary Arterial Hypertension: Uncoupled Glycolysis and the Cancer-Like Phenotype of Pulmonary Arterial Hypertension. Circulation 2017, 136, 2486–2490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, B.; Wang, Y.; Zhang, H.; He, L.; Wang, P.; Dong, M. Mitochondrial dysfunction in pulmonary arterial hypertension. Front. Physiol. 2022, 13, 1079989. [Google Scholar] [CrossRef]
- Liu, R.; Xu, C.; Zhang, W.; Cao, Y.; Ye, J.; Li, B.; Jia, S.; Weng, L.; Liu, Y.; Liu, L.; et al. FUNDC1-mediated mitophagy and HIF1α activation drives pulmonary hypertension during hypoxia. Cell Death Dis. 2022, 13, 634. [Google Scholar] [CrossRef]
- Liang, S.; Yegambaram, M.; Wang, T.; Wang, J.; Black, S.M.; Tang, H. Mitochondrial Metabolism, Redox, and Calcium Homeostasis in Pulmonary Arterial Hypertension. Biomedicines 2022, 10, 341. [Google Scholar] [CrossRef]
- Pokharel, M.D.; Marciano, D.P.; Fu, P.; Franco, M.C.; Unwalla, H.; Tieu, K.; Fineman, J.R.; Wang, T.; Black, S.M. Metabolic reprogramming, oxidative stress, and pulmonary hypertension. Redox Biol. 2023, 64, 102797. [Google Scholar] [CrossRef]
- Ryanto, G.R.T.; Suraya, R.; Nagano, T. Mitochondrial Dysfunction in Pulmonary Hypertension. Antioxidants 2023, 12, 372. [Google Scholar] [CrossRef]
- Ling, H.; Peng, L.; Wang, J.; Rahhal, R.; Seto, E. Histone Deacetylase SIRT1 Targets Plk2 to Regulate Centriole Duplication. Cell Rep. 2018, 25, 2851–2865.e3. [Google Scholar] [CrossRef]
- Teixeira, C.S.S.; Cerqueira, N.M.F.S.A.; Gomes, P.; Sousa, S.F. A Molecular Perspective on Sirtuin Activity. Int. J. Mol. Sci. 2020, 21, 8609. [Google Scholar] [CrossRef]
- Majeed, Y.; Halabi, N.; Madani, A.Y.; Engelke, R.; Bhagwat, A.M.; Abdesselem, H.; Agha, M.V.; Vakayil, M.; Courjaret, R.; Goswami, N.; et al. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Sci. Rep. 2021, 11, 8177. [Google Scholar] [CrossRef]
- Wu, Q.J.; Zhang, T.N.; Chen, H.H.; Yu, X.F.; Lv, J.L.; Liu, Y.Y.; Liu, Y.S.; Zheng, G.; Zhao, J.Q.; Wei, Y.F.; et al. The sirtuin family in health and disease. Signal Transduct. Target. Ther. 2022, 7, 402. [Google Scholar] [CrossRef] [PubMed]
- Kassan, M.; Vikram, A.; Li, Q.; Kim, Y.R.; Kumar, S.; Gabani, M.; Liu, J.; Jacobs, J.S.; Irani, K. MicroRNA-204 promotes vascular endoplasmic reticulum stress and endothelial dysfunction by targeting Sirtuin1. Sci. Rep. 2017, 7, 9308. [Google Scholar] [CrossRef]
- Lu, C.L.; Liao, M.T.; Hou, Y.C.; Fang, Y.W.; Zheng, C.M.; Liu, W.C.; Chao, C.T.; Lu, K.C.; Ng, Y.Y. Sirtuin-1 and Its Relevance in Vascular Calcification. Int. J. Mol. Sci. 2020, 21, 1593. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Gan, D.; Luo, Z.; Yang, Q.; An, D.; Zhang, H.; Hu, Y.; Ma, Z.; Zeng, Q.; Xu, D.; et al. α-Ketoglutarate improves cardiac insufficiency through NAD+-SIRT1 signaling-mediated mitophagy and ferroptosis in pressure overload-induced mice. Mol. Med. 2024, 30, 15. [Google Scholar] [CrossRef] [PubMed]
- Poljšak, B.; Kovač, V.; Špalj, S.; Milisav, I. The Central Role of the NAD+ Molecule in the Development of Aging and the Prevention of Chronic Age-Related Diseases: Strategies for NAD+ Modulation. Int. J. Mol. Sci. 2023, 24, 2959. [Google Scholar] [CrossRef]
- Hwang, E.S.; Song, S.B. Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol. Life Sci. 2017, 74, 3347–3362. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Wang, Z.; Chen, H.Z.; Zhou, S.; Zheng, W.; Liu, G.; Wei, Y.S.; Cai, H.; Liu, D.P.; Liang, C.C. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc. Res. 2008, 80, 191–199. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, H.Z.; Wan, Y.Z.; Zhang, Q.J.; Wei, Y.S.; Huang, S.; Liu, J.J.; Lu, Y.B.; Zhang, Z.Q.; Yang, R.F.; et al. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ. Res. 2011, 109, 639–648. [Google Scholar] [CrossRef]
- Man, A.W.C.; Li, H.; Xia, N. The Role of Sirtuin1 in Regulating Endothelial Function, Arterial Remodeling and Vascular Aging. Front. Physiol. 2019, 10, 1173. [Google Scholar] [CrossRef] [PubMed]
- Potente, M.; Ghaeni, L.; Baldessari, D.; Mostoslavsky, R.; Rossig, L.; Dequiedt, F.; Haendeler, J.; Mione, M.; Dejana, E.; Alt, F.W.; et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007, 21, 2644–2658. [Google Scholar] [CrossRef] [PubMed]
- Budbazar, E.; Rodriguez, F.; Sanchez, J.M.; Seta, F. The Role of Sirtuin-1 in the Vasculature: Focus on Aortic Aneurysm. Front. Physiol. 2020, 11, 1047. [Google Scholar] [CrossRef]
- Mengozzi, A.; Costantino, S.; Paneni, F.; Duranti, E.; Nannipieri, M.; Mancini, R.; Lai, M.; La Rocca, V.; Puxeddu, I.; Antonioli, L.; et al. Targeting SIRT1 Rescues Age- and Obesity-Induced Microvascular Dysfunction in Ex Vivo Human Vessels. Circ. Res. 2022, 131, 476–491. [Google Scholar] [CrossRef]
- Bartoli-Leonard, F.; Wilkinson, F.L.; Schiro, A.; Serracino Inglott, F.; Alexander, M.Y.; Weston, R. Loss of SIRT1 in diabetes accelerates DNA damage-induced vascular calcification. Cardiovasc. Res. 2021, 117, 836–849. [Google Scholar] [CrossRef]
- Gorenne, I.; Kumar, S.; Gray, K.; Figg, N.; Yu, H.; Mercer, J.; Bennett, M. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation 2013, 127, 386–396. [Google Scholar] [CrossRef]
- Gao, P.; Xu, T.T.; Lu, J.; Li, L.; Xu, J.; Hao, D.L.; Chen, H.Z.; Liu, D.P. Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol. Med. 2014, 92, 347–357. [Google Scholar] [CrossRef]
- Chen, H.Z.; Wang, F.; Gao, P.; Pei, J.F.; Liu, Y.; Xu, T.T.; Tang, X.; Fu, W.Y.; Lu, J.; Yan, Y.F. Age-Associated Sirtuin 1 Reduction in Vascular Smooth Muscle Links Vascular Senescence and Inflammation to Abdominal Aortic Aneurysm. Circ. Res. 2016, 119, 1076–1088. [Google Scholar] [CrossRef]
- Kloza, M.; Krzyżewska, A.; Kozłowska, H.; Budziak, S.; Baranowska-Kuczko, M. Empagliflozin Plays Vasoprotective Role in Spontaneously Hypertensive Rats via Activation of the SIRT1/AMPK Pathway. Cells 2025, 14, 507. [Google Scholar] [CrossRef]
- Wang, A.J.; Zhang, J.; Xiao, M.; Wang, S.; Wang, B.J.; Guo, Y.; Tang, Y.; Gu, J. Molecular mechanisms of doxorubicin-induced cardiotoxicity: Novel roles of sirtuin 1-mediated signaling pathways. Cell Mol. Life Sci. 2021, 78, 3105–3125. [Google Scholar] [CrossRef]
- Hsu, C.P.; Zhai, P.; Yamamoto, T.; Maejima, Y.; Matsushima, S.; Hariharan, N.; Shao, D.; Takagi, H.; Oka, S.; Sadoshima, J. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 2010, 122, 2170–2182. [Google Scholar] [CrossRef]
- Kuno, A.; Hosoda, R.; Tsukamoto, M.; Sato, T.; Sakuragi, H.; Ajima, N.; Saga, Y.; Tada, K.; Taniguchi, Y.; Iwahara, N.; et al. SIRT1 in the cardiomyocyte counteracts doxorubicin-induced cardiotoxicity via regulating histone H2AX. Cardiovasc. Res. 2023, 118, 3360–3373. [Google Scholar] [CrossRef]
- Costantino, S.; Mengozzi, A.; Velagapudi, S.; Mohammed, S.A.; Gorica, E.; Akhmedov, A.; Mongelli, A.; Pugliese, N.R.; Masi, S.; Virdis, A.; et al. Treatment with recombinant Sirt1 rewires the cardiac lipidome and rescues diabetes-related metabolic cardiomyopathy. Cardiovasc. Diabetol. 2023, 22, 312. [Google Scholar] [CrossRef]
- Tang, Y.J.; Zhang, Z.; Yan, T.; Chen, K.; Xu, G.F.; Xiong, S.Q.; Wu, D.Q.; Chen, J.; Jose, P.A.; Zeng, C.Y.; et al. Irisin attenuates type 1 diabetic cardiomyopathy by anti-ferroptosis via SIRT1-mediated deacetylation of p53. Cardiovasc. Diabetol. 2024, 23, 116. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Sun, Y.; Wang, X.; Gong, T.; Su, J.; Shen, J.; Zhou, J.; Xia, J.; Wang, H.; Meng, X.; et al. Lamin A/C deficiency-mediated ROS elevation contributes to pathogenic phenotypes of dilated cardiomyopathy in iPSC model. Nat. Commun. 2024, 15, 7000. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.; Zhang, J.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and Its Roles in Inflammation. Front. Immunol. 2022, 13, 831168. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, H.Z. Histone Deacetylase SIRT1, Smooth Muscle Cell Function, and Vascular Diseases. Front. Pharmacol. 2020, 11, 537519. [Google Scholar] [CrossRef]
- Ding, Y.N.; Wang, H.Y.; Chen, X.F.; Tang, X.; Chen, H.Z. Roles of Sirtuins in Cardiovascular Diseases: Mechanisms and Therapeutics. Circ. Res. 2025, 136, 524–550. [Google Scholar] [CrossRef]
- Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Garcia-Peterson, L.M.; Mack, N.J.; Ahmad, N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid. Redox Signal. 2018, 28, 643–661. [Google Scholar] [CrossRef]
- Liu, Y.P.; Wen, R.; Liu, C.F.; Zhang, T.N.; Yang, N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed. Pharmacother. 2023, 164, 114931. [Google Scholar] [CrossRef]
- Li, Y.; Kang, K.; Bao, H.; Liu, S.; Zhao, B.; Hu, G.; Wu, J. Research Progress on the Interaction Between SIRT1 and Mitochondrial Biochemistry in the Aging of the Reproductive System. Biology 2025, 14, 643. [Google Scholar] [CrossRef]
- Mortuza, R.; Feng, B.; Chakrabarti, S. SIRT1 reduction causes renal and retinal injury in diabetes through endothelin 1 and transforming growth factor β1. J. Cell Mol. Med. 2015, 19, 1857–1867. [Google Scholar] [CrossRef]
- Diao, W.; Liu, G.; Shi, C.; Jiang, Y.; Li, H.; Meng, J.; Shi, Y.; Chang, M.; Liu, X. Evaluating the Effect of Circ-Sirt1 on the Expression of SIRT1 and Its Role in Pathology of Pulmonary Hypertension. Cell Transplant. 2022, 31, 9636897221081479. [Google Scholar] [CrossRef] [PubMed]
- Zhan, H.; Huang, F.; Niu, Q.; Jiao, M.; Han, X.; Zhang, K.; Ma, W.; Mi, S.; Guo, S.; Zhao, Z. Downregulation of miR-128 Ameliorates Ang II-Induced Cardiac Remodeling via SIRT1/PIK3R1 Multiple Targets. Oxidative Med. Cell. Longev. 2021, 2021, 8889195. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.W.; Wu, M.S.; Liu, Y.; Lu, M.; Guo, J.D.; Meng, Y.H.; Zhou, Y.H. SIRT1-mediated deacetylation of NF-κB inhibits the MLCK/MLC2 pathway and the expression of ET-1, thus alleviating the development of coronary artery spasm. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H458–H468. [Google Scholar] [CrossRef]
- Elmorsy, E.A.; Elashry, H.A.; Alkhamiss, A.S.; Alsaykhan, H.; Hamad, R.S.; Abdel-Reheim, M.A.; Alsoghair, M.; Alharbi, M.S.; Gabr, A.M.; Ellethy, A.T.; et al. E1231/NMN protects against experimental metabolic syndrome: The central role of SIRT1 in modulating AKT/Nrf2/NFκB signaling. Front. Pharmacol. 2025, 16, 1558709. [Google Scholar] [CrossRef]
- Breitenstein, A.; Stein, S.; Holy, E.W.; Camici, G.G.; Lohmann, C.; Akhmedov, A.; Spescha, R.; Elliott, P.J.; Westphal, C.H.; Matter, C.M.; et al. Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells. Cardiovasc. Res. 2011, 89, 464–472. [Google Scholar] [CrossRef]
- López-Fernández-Sobrino, R.; Soliz-Rueda, J.R.; Ávila-Román, J.; Arola-Arnal, A.; Suárez, M.; Muguerza, B.; Bravo, F.I. Blood Pressure-Lowering Effect of Wine Lees Phenolic Compounds Is Mediated by Endothelial-Derived Factors: Role of Sirtuin 1. Antioxidants 2021, 10, 1073. [Google Scholar] [CrossRef]
- Kim, K.T.; Heo, J.B.; Roh, T.; Jeon, S.M.; Heo, H.J.; Choi, Y.J.; Jo, E.K.; Song, G.Y.; Paik, S. Resveratrol derivative SH-707 inhibits NLRP3 inflammasome activation via a sirtuin 1-dependent pathway. Int. Immunopharmacol. 2025, 161, 115049. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Q.; Shen, Y.; Hou, J.; Yuan, Q.; Zhong, Z.; Liu, Y. Research progress on the role of exosomes in the pathogenesis, diagnosis, and treatment of pulmonary hypertension. Respir. Res. 2023, 24, 144. [Google Scholar]
- Yang, H.; Zhang, W.; Guo, S.; Zhang, M.; Hu, L.; Li, X.; Liu, J.; Wang, J.; Yin, Y. Progress of pyroptosis in pulmonary hypertension. Heart Fail. Rev. 2023, 28, 835–847. [Google Scholar]
- Wang, H.; Zhao, Q.; Zhang, Y.; Li, T.; Zhao, M.; Yang, W.; Wang, G. The role of ferroptosis in pulmonary hypertension. Front. Pharmacol. 2022, 13, 1032481. [Google Scholar]
- Zhao, L.; Li, M.; Hu, H.; Liu, Z.; Zhang, Y. Mitochondria and mitochondrial regulators in the development of pulmonary hypertension. Front. Med. 2022, 9, 994474. [Google Scholar]
- Li, Y.; Yang, Y.; Luo, J.; Włodarski, P.K.; Wang, G. Molecular mechanisms involved in the development of pulmonary arterial hypertension (PAH). J. Physiol. Pharmacol. 2022, 73, 163–177. [Google Scholar]
- Włodarski, A.; Strycharz, J.; Wróblewski, A.; Kasznicki, J.; Drzewoski, J.; Śliwińska, A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int. J. Mol. Sci. 2020, 21, 6902. [Google Scholar] [CrossRef]
- Jin, Q.; Xie, X.; Wang, C.; Zhang, W.; Wang, T.; Li, S.; Yang, Y.; Li, J.; Zhang, H. Endothelial cell metabolism in pulmonary arterial hypertension. Front. Pharmacol. 2021, 12, 767480. [Google Scholar]
- Zhang, Y.; He, J.; Wang, Y.; Chen, H.; Lin, J.; Zhong, C.; Li, L.; Huang, J.; Wang, H.; Liang, G.; et al. Mitochondrial metabolic reprogramming-mediated immunogenic cell death reveals immune and prognostic features of pulmonary arterial hypertension. Front. Immunol. 2023, 14, 1221181. [Google Scholar]
- Ho, M.F.; Walseth, T.F.; Anderson, S.M.; Gerrity, R.; Hohmeier, K.C.; Johnson, L.W.; Croatt, A.J.; Nath, K.A.; Limper, A.H.; Leof, E.B.; et al. Increased CD38 in the lungs of patients with pulmonary arterial hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 320, L872–L885. [Google Scholar]
- Waldman, M.; Nudelman, V.; Shainberg, A.; Kornwoski, R.; Aravot, D.; Abraham, N.G.; Arad, M.; Hochhauser, E. Regulation of oxidative stress and apoptosis in pulmonary hypertension: The role of heme oxygenase-1. J. Cardiovasc. Pharmacol. 2008, 51, 367–375. [Google Scholar]
- Hou, L.; Guo, D.; Wang, D.; He, W.; Wu, C.; Yang, J. Research progress on the mechanism of vascular remodeling in pulmonary hypertension: The role of endothelial cells and endothelial microenvironment. Biomed. Pharmacother. 2023, 159, 114224. [Google Scholar]
- Guo, J.; Wang, Y.; Guo, H.; Zhou, S.; Wu, B.; Zhu, L.; Wang, Y. Molecular mechanisms of vascular remodeling in idiopathic pulmonary arterial hypertension. Front. Pharmacol. 2022, 13, 1047672. [Google Scholar]
- Fan, C.; Luo, Y.; Ma, Y.; Chen, Y.; Li, X.; Yang, W.; Yang, X.; Li, W.; Sun, L. Epigenetics in pulmonary hypertension: Mechanisms and therapeutic targets. Front. Genet. 2022, 13, 963333. [Google Scholar]
- Scisciola, L.; Fusi, F.; Iside, C.; Fiore, D.; Liccardo, D.; Iannone, M.; Marfella, R.; Barbieri, M.; Paolisso, G.; D’Onofrio, N. Epigenetic mechanisms in pulmonary arterial hypertension: The key to precision medicine. Front. Cardiovasc. Med. 2022, 9, 965954. [Google Scholar]
- Fusi, J.; Bianchi, S.; Daniele, S.; Pellegrini, S.; Martini, C.; Galetta, F.; Giovannini, L.; Franzoni, F. An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds. Biomed. Pharmacother. 2018, 101, 805–819. [Google Scholar] [CrossRef]
- Iside, C.; Scafuro, M.; Nebbioso, A.; Altucci, L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front. Pharmacol. 2020, 11, 1225. [Google Scholar] [CrossRef]
- Kimira, Y.; Kasahara, Y.; Matsubara, H. Current understanding and future therapeutic prospects for pulmonary arterial hypertension with BMPR2 mutations. Int. J. Mol. Sci. 2023, 24, 1520. [Google Scholar]
- Baskaran, D.; Suresh, K. Pulmonary hypertension: Biomarkers and role of microRNAs. Am. J. Physiol. Lung Cell Mol. Physiol. 2023, 324, L293–L308. [Google Scholar]
- Ho, J.H.; Baskaran, R.; Wang, M.F.; Mohammedsaleh, Z.M.; Yang, H.S.; Balasubramanian, B.; Lin, W.T. Dipeptide IF and exercise training attenuate hypertension in SHR rats by inhibiting fibrosis and hypertrophy and activating AMPKα1, SIRT1, and PGC1α. Int. J. Mol. Sci. 2022, 23, 8167. [Google Scholar] [CrossRef]
- Galiniak, S.; Walczak, M.; Wilińska, M.; Kukla, M.; Michalski, Ł.; Biesiada, G. Role of microRNAs in pulmonary arterial hypertension: Review and exploratory analysis. Biomedicines 2021, 9, 438. [Google Scholar]
- Kumar, A.; Sharma, R.; Rehman, M.U.; Shah, B.A.; Goyal, S.N. Pharmacological overview of microRNA-based drugs for pulmonary arterial hypertension. Naunyn-Schmiedebergs Arch. Pharmacol. 2022, 395, 1159–1175. [Google Scholar]
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 2020, 11, 1021. [Google Scholar] [CrossRef]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Ahmad, F.; Philp, A.; Baar, K.; Williams, T.; Luo, H.; Ke, H.; Rehmann, H.; Taussig, R.; Brown, A.L.; et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 2012, 148, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Houghton, M.J.; Kerimi, A.; Tumova, S.; Boyle, J.P.; Williamson, G. Quercetin preserves redox status and stimulates mitochondrial function in metabolically-stressed HepG2 cells. Free Radic. Biol. Med. 2018, 129, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Kou, J.; Wang, P.; Ye, T.; Wang, Z.; Gao, Z.; Cong, L.; Li, M.; Dong, B.; Yang, W.; et al. Berberine-induced TFEB deacetylation by SIRT1 promotes autophagy in peritoneal macrophages. Aging 2021, 13, 7096–7119. [Google Scholar] [CrossRef]
- Guo, F.; Xu, F.; Li, S.; Zhang, Y.; Lv, D.; Zheng, L.; Gan, Y.; Zhou, M.; Zhao, K.; Xu, S.; et al. Amifostine ameliorates bleomycin-induced murine pulmonary fibrosis via NAD+/SIRT1/AMPK pathway-mediated effects on mitochondrial function and cellular metabolism. Eur. J. Med. Res. 2024, 29, 68. [Google Scholar] [CrossRef]
- Jadeja, R.N.; Powell, F.L.; Jones, M.A.; Fuller, J.; Joseph, E.; Thounaojam, M.C.; Bartoli, M.; Martin, P.M. Loss of NAMPT in aging retinal pigment epithelium reduces NAD+ availability and promotes cellular senescence. Aging 2018, 10, 1306–1323. [Google Scholar] [CrossRef]
- Cantó, C.; Gerhart-Hines, Z.; Feige, J.N.; Lagouge, M.; Noriega, L.; Milne, J.C.; Elliott, P.J.; Puigserver, P.; Auwerx, J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009, 458, 1056–1060. [Google Scholar] [CrossRef]
- Carollo, C.; Sorce, A.; Cirafici, E.; Mulè, G.; Caimi, G. Sirtuins and resveratrol in cardiorenal diseases: A narrative review of mechanisms and therapeutic potential. Nutrients 2025, 17, 1212. [Google Scholar] [CrossRef]
- Pacholec, M.; Bleasdale, J.E.; Chrunyk, B.; Cunningham, D.; Flynn, D.; Garofalo, R.S.; Griffith, D.; Griffor, M.; Loulakis, P.; Pabst, B.; et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 2010, 285, 8340–8351. [Google Scholar] [CrossRef]
- Villalba, J.M.; Alcaín, F.J. Sirtuin activators and inhibitors. Biofactors 2012, 38, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Milne, J.C.; Lambert, P.D.; Schenk, S.; Carney, D.P.; Smith, J.J.; Gagne, D.J.; Jin, L.; Boss, O.; Perni, R.B.; Vu, C.B.; et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007, 450, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Dong, X.; Wang, X.; Zheng, Y.; Qiu, J.; Peng, Y.; Xu, J.; Chai, Z.; Liu, C. Multiple roles of SIRT2 in regulating physiological and pathological signal transduction. Genet. Res. (Camb.) 2022, 2022, 9282484. [Google Scholar] [CrossRef] [PubMed]
- Murugasamy, K.; Munjal, A.; Sundaresan, N.R. Emerging roles of SIRT3 in cardiac metabolism. Front. Cardiovasc. Med. 2022, 9, 850340. [Google Scholar] [CrossRef]
- Ma, H.; Yu, Y.; Mo, L.; Chen, Q.; Dong, H.; Xu, Y.; Zhuan, B. Exosomal miR-663b from “M1” macrophages promotes pulmonary artery vascular smooth muscle cell dysfunction through inhibiting the AMPK/Sirt1 axis. Aging 2023, 15, 3549–3571. [Google Scholar] [CrossRef]
- Varshney, R.; Ali, Q.; Wu, C.; Sun, Z. Monocrotaline-Induced Pulmonary Hypertension Involves Downregulation of Antiaging Protein Klotho and eNOS Activity. Hypertension 2016, 68, 1255–1263. [Google Scholar] [CrossRef]
- Xi, L.; Ruan, L.; Yao, X.; Zhang, D.; Yuan, H.; Li, Q.; Yan, C. SIRT1 promotes pulmonary artery endothelial cell proliferation by targeting the Akt signaling pathway. Exp. Ther. Med 2020, 20, 179. [Google Scholar] [CrossRef]
- Yu, L.; Tu, Y.; Jia, X.; Fang, K.; Liu, L.; Wan, L.; Xiang, C.; Wang, Y.; Sun, X.; Liu, T.; et al. Resveratrol Protects Against Pulmonary Arterial Hypertension in Rats via Activation of Silent Information Regulator 1. Cell Physiol. Biochem. 2017, 42, 55–67. [Google Scholar] [CrossRef]
- Liu, H.; Pan, Z.; Wu, X.; Gong, C.; Hu, J. Jagged 2 inhibition attenuates hypoxia-induced mitochondrial damage and pulmonary hypertension through Sirtuin 1 signaling. PLoS ONE 2024, 19, e0297525. [Google Scholar] [CrossRef]
- Ding, M.; Lei, J.; Qu, Y.; Zhang, H.; Xin, W.; Ma, F.; Liu, S.; Li, Z.; Jin, F.; Fu, E. Calorie Restriction Attenuates Monocrotaline-induced Pulmonary Arterial Hypertension in Rats. J. Cardiovasc. Pharmacol. 2015, 65, 562–570, Erratum in: J. Cardiovasc. Pharmacol. 2015, 66, 514; Erratum in J. Cardiovasc. Pharmacol. 2015, 66, 322. [Google Scholar] [CrossRef]
- Zhou, S.; Li, M.T.; Jia, Y.Y.; Liu, J.J.; Wang, Q.; Tian, Z.; Liu, Y.T.; Chen, H.Z.; Liu, D.P.; Zeng, X.F. Regulation of Cell Cycle Regulators by SIRT1 Contributes to Resveratrol-Mediated Prevention of Pulmonary Arterial Hypertension. Biomed. Res. Int. 2015, 2015, 762349. [Google Scholar] [CrossRef]
- Vázquez-Garza, E.; Bernal-Ramírez, L.; Jerjes-Sánchez, C.; Lozano, O.; Acuña-Morín, E.; Vanoye-Tamez, M.; Ramos-González, M.R.; Chapoy-Villanueva, H.; Pérez-Plata, L.; Sánchez-Trujillo, L.; et al. Resveratrol Prevents Right Ventricle Remodeling and Dysfunction in Monocrotaline-Induced Pulmonary Arterial Hypertension with a Limited Improvement in the Lung Vasculature. Oxidative Med. Cell. Longev. 2020, 2020, 1841527. [Google Scholar] [CrossRef]
- Hoffmann, E.; Wald, J.; Lavu, S.; Roberts, J.; Beaumont, C.; Haddad, J.; Elliott, P.; Westphal, C.; Jacobson, E. Pharmacokinetics and tolerability of SRT2104, a first-in-class small molecule activator of SIRT1, after single and repeated oral administration in man. Br. J. Clin. Pharmacol. 2013, 75, 186–196. [Google Scholar] [CrossRef]
- Miranda, M.X.; van Tits, L.J.; Lohmann, C.; Arsiwala, T.; Winnik, S.; Tailleux, A.; Stein, S.; Gomes, A.P.; Suri, V.; Ellis, J.L.; et al. The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur. Heart J. 2015, 36, 51–59. [Google Scholar] [CrossRef]
- Solomon, J.M.; Pasupuleti, R.; Xu, L.; McDonagh, T.; Curtis, R.; DiStefano, P.S.; Huber, L.J. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell. Biol. 2006, 26, 28–38. [Google Scholar] [CrossRef]
- Rye, P.T.; Frick, L.E.; Ozbal, C.C.; Lamarr, W.A. Advances in label-free screening approaches for studying sirtuin-mediated deacetylation. J. Biomol. Screen. 2011, 16, 1217–1226. [Google Scholar] [CrossRef]
- Kahyo, T.; Ichikawa, S.; Hatanaka, T.; Yamada, M.K.; Setou, M. A novel chalcone polyphenol inhibits the deacetylase activity of SIRT1 and cell growth in HEK293T cells. J. Pharmacol. Sci. 2008, 108, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Grozinger, C.M.; Chao, E.D.; Blackwell, H.E.; Moazed, D.; Schreiber, S.L. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 2001, 276, 38837–38843. [Google Scholar] [CrossRef] [PubMed]
- Lain, S.; Hollick, J.J.; Campbell, J.; Staples, O.D.; Higgins, M.; Aoubala, M.; McCarthy, A.; Appleyard, V.; Murray, K.E.; Baker, L.; et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008, 13, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Trapp, J.; Meier, R.; Hongwiset, D.; Kassack, M.U.; Sippl, W.; Jung, M. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). ChemMedChem 2007, 2, 1419–1431. [Google Scholar] [CrossRef]
- Bononi, G.; Citi, V.; Martelli, A.; Poli, G.; Tuccinardi, T.; Granchi, C.; Testai, L.; Calderone, V.; Minutolo, F. Sirtuin 1-activating derivatives belonging to the anilinopyridine class displaying in vivo cardioprotective activities. RSC Med. Chem. 2023, 15, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Campagna, R.; Mazzanti, L.; Pompei, V.; Alia, S.; Vignini, A.; Emanuelli, M. The Multifaceted Role of Endothelial Sirt1 in Vascular Aging: An Update. Cells 2024, 13, 1469. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xu, C.; Man, A.W.C.; Bai, B.; Luo, C.; Huang, Y.; Xu, A.; Vanhoutte, P.M.; Wang, Y. Endothelial SIRT1 prevents age-induced impairment of vasodilator responses by enhancing the expression and activity of soluble guanylyl cyclase in smooth muscle cells. Cardiovasc. Res. 2019, 115, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhao, H.; Liu, Y.; Yang, Z.; Yao, H.; Liu, T.; Gou, T.; Wang, L.; Zhang, J.; Tian, Y.; et al. Novel Role of the SIRT1 in Endocrine and Metabolic Diseases. Int. J. Biol. Sci. 2023, 19, 484–501. [Google Scholar] [CrossRef]
- Toulassi, I.A.; Al Saedi, U.A.; Gutlapalli, S.D.; Poudel, S.; Kondapaneni, V.; Zeb, M.; Cancarevic, I. A Paradigm Shift in the Management of Atherosclerosis: Protective Role of Sirtuins in Atherosclerosis. Cureus 2021, 13, e12735. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, L.; Guo, X.; Tao, H.; Liu, Y.; Liu, X.; Zhang, Y.; Meng, X. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J. Pharm. Anal. 2024, 14, 157–176. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.; Zhu, J.; You, A.; Huang, X.; Yi, X.; Xue, M. Mangiferin prevents myocardial infarction-induced apoptosis and heart failure in mice by activating the Sirt1/FoxO3a pathway. J. Cell. Mol. Med. 2021, 25, 2944–2955. [Google Scholar] [CrossRef]
- Ding, X.; Zhu, C.; Wang, W.; Li, M.; Ma, C.; Gao, B. SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol. Res. 2024, 199, 106957. [Google Scholar] [CrossRef]
- Podyacheva, E.; Toropova, Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022, 13, 1035387, Erratum in Front. Pharmacol. 2023, 14, 1154384. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, X.; Teng, T.; Ma, Z.G.; Tang, Q.Z. Cellular Senescence in Cardiovascular Diseases: A Systematic Review. Aging Dis. 2022, 13, 103–128. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, L.; Dai, Q.; Li, X.; Masuoka, T.; Lv, J. Role of sirtuin 1 in depression-induced coronary heart disease: Molecular pathways and therapeutic potential (Review). Biomed. Rep. 2025, 22, 46. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.J.; Wang, C.J.; He, Y.; Zhou, Y.L.; Peng, X.D.; Liu, S.K. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol. Sin. 2018, 39, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.L.; Mostoslavsky, R.; Saito, S.; Manis, J.P.; Gu, Y.; Patel, P.; Bronson, R.; Appella, E.; Alt, F.W.; Chua, K.F. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA 2003, 100, 10794–10799. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Y.; Zhang, Y.; Ye, T.; Wang, K.; Li, S.; Zhang, Y. SIRT1 mediates the inhibitory effect of Dapagliflozin on EndMT by inhibiting the acetylation of endothelium Notch1. Cardiovasc. Diabetol. 2023, 22, 331. [Google Scholar] [CrossRef]
- Mattagajasingh, I.; Kim, C.S.; Naqvi, A.; Yamamori, T.; Hoffman, T.A.; Jung, S.B.; DeRicco, J.; Kasuno, K.; Irani, K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 2007, 104, 14855–14860. [Google Scholar] [CrossRef]
- Pan, Q.; Gao, Z.; Zhu, C.; Peng, Z.; Song, M.; Li, L. Overexpression of histone deacetylase SIRT1 exerts an antiangiogenic role in diabetic retinopathy via miR-20a elevation and YAP/HIF1α/VEGFA depletion. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E932–E943. [Google Scholar] [CrossRef]
- Chen, C.; Hu, S.; Hu, H.J.; Liu, Z.X.; Wu, X.T.; Zou, T.; Su, H. Dronedarone Attenuates Ang II-Induced Myocardial Hypertrophy Through Regulating SIRT1/FOXO3/PKIA Axis. Korean Circ. J. 2024, 54, 172–186. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Zheng, X.; Lu, Z.; Zhou, H. Dapagliflozin attenuates myocardial hypertrophy via activating the SIRT1/HIF-1α signaling pathway. Biomed. Pharmacother. 2023, 165, 115125. [Google Scholar] [CrossRef]
- Jiang, Q.; Lu, M.; Li, J.; Zhu, Z. Ginkgolide B Protects Cardiomyocytes from Angiotensin II-Induced Hypertrophy via Regulation of Autophagy through SIRT1-FoxO1. Cardiovasc. Ther. 2021, 2021, 5554569. [Google Scholar] [CrossRef]
- Zhang, Y.; Connelly, K.A.; Thai, K.; Wu, X.; Kapus, A.; Kepecs, D.; Gilbert, R.E. Sirtuin 1 Activation Reduces Transforming Growth Factor-β1-Induced Fibrogenesis and Affords Organ Protection in a Model of Progressive, Experimental Kidney and Associated Cardiac Disease. Am. J. Pathol. 2017, 187, 80–90. [Google Scholar]
- Yin, B.; Wang, Y.B.; Li, X.; Hou, X.W. β-aminoisobutyric acid ameliorates hypertensive vascular remodeling via activating the AMPK/SIRT1 pathway in VSMCs. Bioengineered 2022, 13, 14382–14401. [Google Scholar] [CrossRef] [PubMed]
- Bugyei-Twum, A.; Ford, C.; Civitarese, R.; Seegobin, J.; Advani, S.L.; Desjardins, J.F.; Kabir, G.; Zhang, Y.; Mitchell, M.; Switzer, J.; et al. Sirtuin 1 activation attenuates cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transactivation. Cardiovasc. Res. 2018, 114, 1629–1641. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Zuo, Z.; Tian, J.; Ali, Q.; Lin, Y.; Lei, H.; Sun, Z. Activation of SIRT1 Attenuates Klotho Deficiency-Induced Arterial Stiffness and Hypertension by Enhancing AMP-Activated Protein Kinase Activity. Hypertension 2016, 68, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yan, J.; Ni, X.; Hu, S.; Zhang, M.; Ying, Y. Phloretin targets SIRT1 to alleviate oxidative stress, apoptosis, and inflammation in deep venous thrombosis. Toxicol. Res. 2023, 40, 83–96. [Google Scholar] [CrossRef]
- Pai, P.Y.; Wong, J.K.S.; Cui, Z.Y.; Lin, Y.Y.; Lee, S.D. Angiotensin II Receptor Blocker Irbesartan Enhanced SIRT1 longevity Signaling Replaces the Mitochondrial Biogenetic Survival Pathway to Attenuate Hypertension-Induced Heart Apoptosis. J. Cardiovasc. Dev. Dis. 2022, 9, 266. [Google Scholar] [CrossRef]
- Han, Y.; Sun, W.; Ren, D.; Zhang, J.; He, Z.; Fedorova, J.; Sun, X.; Han, F.; Li, J. SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion. Redox Biol. 2020, 34, 101538. [Google Scholar] [CrossRef]
- Ni, Y.; Deng, J.; Liu, X.; Li, Q.; Zhang, J.; Bai, H.; Zhang, J. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol. J. Cell. Mol. Med. 2021, 25, 203–216. [Google Scholar] [CrossRef]
- Zhu, H.Z.; Zhang, L.Y.; Zhai, M.E.; Xia, L.; Cao, Y.; Xu, L.; Li, K.F.; Jiang, L.Q.; Shi, H.; Li, X.; et al. GDF11 Alleviates Pathological Myocardial Remodeling in Diabetic Cardiomyopathy Through SIRT1-Dependent Regulation of Oxidative Stress and Apoptosis. Front. Cell Dev. Biol. 2021, 9, 686848. [Google Scholar] [CrossRef]
- Hao, Z.; Xu, G.; Yuan, M.; Tan, R.; Xia, Y.; Liu, Y.; Yin, X. Leucine Supplementation in Middle-Aged Male Mice Improved Aging-Induced Vascular Remodeling and Dysfunction via Activating the Sirt1-Foxo1 Axis. Nutrients 2022, 14, 3856. [Google Scholar] [CrossRef]
- Yang, K.; Velagapudi, S.; Akhmedov, A.; Kraler, S.; Lapikova-Bryhinska, T.; Schmiady, M.O.; Wu, X.; Geng, L.; Camici, G.G.; Xu, A.; et al. Chronic SIRT1 supplementation in diabetic mice improves endothelial function by suppressing oxidative stress. Cardiovasc Res. 2023, 119, 2190–2201. [Google Scholar] [CrossRef]
- Corbi, G.; Conti, V.; Troisi, J.; Colucci, A.; Manzo, V.; Di Pietro, P.; Calabrese, M.C.; Carrizzo, A.; Vecchione, C.; Ferrara, N.; et al. Cardiac rehabilitation increases SIRT1 activity and β-hydroxybutyrate levels and decreases oxidative stress in patients with HF with preserved ejection fraction. Oxidative Med. Cell. Longev. 2019, 2019, 7049237. [Google Scholar] [CrossRef]
- Pei, J.; Liu, Z.; Wang, C.; Chu, N.; Liu, L.; Tang, Y.; Liu, H.; Xiang, Q.; Cheng, H.; Li, M.; et al. Progesterone Attenuates SIRT1-Deficiency-Mediated Pre-Eclampsia. Biomolecules 2022, 12, 422. [Google Scholar] [CrossRef]
- Sasaki, Y.; Ikeda, Y.; Miyauchi, T.; Uchikado, Y.; Akasaki, Y.; Ohishi, M. Estrogen-SIRT1 Axis Plays a Pivotal Role in Protecting Arteries Against Menopause-Induced Senescence and Atherosclerosis. J. Atheroscler. Thromb. 2020, 27, 47–59. [Google Scholar] [CrossRef]
- Karolczak, K.; Watala, C. Estradiol as the Trigger of Sirtuin-1-Dependent Cell Signaling with a Potential Utility in Anti-Aging Therapies. Int. J. Mol. Sci. 2023, 24, 13753. [Google Scholar] [CrossRef]
- Bendale, D.S.; Karpe, P.A.; Chhabra, R.; Shete, S.P.; Shah, H.; Tikoo, K. 17-β Oestradiol prevents cardiovascular dysfunction in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br. J. Pharmacol. 2013, 170, 779–795. [Google Scholar] [CrossRef]
- Csiszar, A.; Labinskyy, N.; Olson, S.; Pinto, J.T.; Gupte, S.; Wu, J.M.; Hu, F.; Ballabh, P.; Podlutsky, A.; Losonczy, G.; et al. Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension 2009, 54, 668–675. [Google Scholar] [CrossRef]
- Tang, H.; Ning, K.; Wu, B.; Wang, X.; He, J.; Li, P.; Pan, L.; Zhang, J.; He, Y.; Bian, S.; et al. Scutellarein ameliorates pulmonary arterial hypertension via sirtuin 1 mediated deacetylation of nicotinamide nucleotide transhydrogenase. Biochem. Pharmacol. 2025, 237, 116932. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Gu, X.; Zhang, H.; Xu, X.; Chen, L. Phoenixin 20 ameliorates pulmonary arterial hypertension via inhibiting inflammation and oxidative stress. Aging 2024, 16, 5027–5037. [Google Scholar] [CrossRef] [PubMed]
- Paffett, M.L.; Lucas, S.N.; Campen, M.J. Resveratrol reverses monocrotaline-induced pulmonary vascular and cardiac dysfunction: A potential role for atrogin-1 in smooth muscle. Vascul Pharmacol. 2012, 56, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; You, Y.; Zhu, H. 15-HETE protects pulmonary artery smooth muscle cells against apoptosis via SIRT1 regulation during hypoxia. Biomed. Pharmacother. 2018, 108, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Hei, B.; Hao, W.; Lin, S.; Liu, X.; Meng, X.; Wang, Y.; Zhao, M.; Yu, H.; Yang, L.; et al. Shionone Exhibits Anti-inflammatory and Antiproliferative Effects in Pulmonary Arterial Endothelial Cells and Smooth Muscle Cells via SIRT1 in Pulmonary Arterial Hypertension. Rev. Bras. Farmacogn. 2024, 34, 1287–1297. [Google Scholar] [CrossRef]
- Boucherat, O.; Agrawal, V.; Lawrie, A.; Bonnet, S. The Latest in Animal Models of Pulmonary Hypertension and Right Ventricular Failure. Circ. Res. 2022, 130, 1466–1486. [Google Scholar] [CrossRef]
- Bueno-Beti, C.; Sassi, Y.; Hajjar, R.J.; Hadri, L. Pulmonary Artery Hypertension Model in Rats by Monocrotaline Administration. Methods Mol. Biol. 2018, 1816, 233–241. [Google Scholar] [PubMed]
- Corssac, G.B.; Bonetto, J.P.; Campos-Carraro, C.; Cechinel, L.R.; Zimmer, A.; Parmeggiani, B.; Grings, M.; Carregal, V.M.; Massensini, A.R.; Siqueira, I.; et al. Pulmonary arterial hypertension induces the release of circulating extracellular vesicles with oxidative content and alters redox and mitochondrial homeostasis in the brains of rats. Hypertens. Res. 2021, 44, 918–931. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.H.; Ma, J.L.; Ding, D.; Ma, Y.J.; Wei, Y.P.; Jing, Z.C. Experimental animal models of pulmonary hypertension: Development and challenges. Anim. Models Exp. Med. 2022, 5, 207–216. [Google Scholar] [CrossRef]
- Corboz, M.R.; Nguyen, T.L.; Stautberg, A.; Cipolla, D.; Perkins, W.R.; Chapman, R.W. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J. Aerosol Med. Pulm. Drug Deliv. 2024, 37, 241–283. [Google Scholar] [CrossRef]
- Lin, Q.; Fan, C.; Skinner, J.T.; Hunter, E.N.; Macdonald, A.A.; Illei, P.B.; Yamaji-Kegan, K.; Johns, R.A. RELMα Licenses Macrophages for Damage-Associated Molecular Pattern Activation to Instigate Pulmonary Vascular Remodeling. J. Immunol. 2019, 203, 2862–2871. [Google Scholar] [CrossRef]
- Jing, X.; Wu, S.; Liu, Y.; Wang, H.; Huang, Q. Circular RNA Sirtuin1 represses pulmonary artery smooth muscle cell proliferation, migration and autophagy to ameliorate pulmonary hypertension via targeting microRNA-145-5p/protein kinase-B3 axis. Bioengineered 2022, 13, 8759–8771. [Google Scholar] [CrossRef]
- Wilson, D.N.; Schacht, S.E.; Al-Nakkash, L.; Babu, J.R.; Broderick, T.L. Resveratrol prevents pulmonary trunk remodeling but not right ventricular hypertrophy in monocrotaline-induced pulmonary hypertension. Pathophysiology 2016, 23, 243–250. [Google Scholar] [CrossRef]
- Klinke, A.; Berghausen, E.; Friedrichs, K.; Molz, S.; Lau, D.; Remane, L.; Berlin, M.; Kaltwasser, C.; Adam, M.; Mehrkens, D.; et al. Myeloperoxidase aggravates pulmonary arterial hypertension by activation of vascular Rho-kinase. JCI Insight 2018, 3, e97530. [Google Scholar] [CrossRef]
- Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004, 23, 2369–2380. [Google Scholar] [CrossRef]
- Yu, Q.; Dong, L.; Li, Y.; Liu, G. SIRT1 and HIF1α signaling in metabolism and immune responses. Cancer Lett. 2018, 418, 20–26. [Google Scholar] [CrossRef]
- Planavila, A.; Iglesias, R.; Giralt, M.; Villarroya, F. Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc. Res. 2011, 90, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Li, J.; Li, B.; Chong, Y.; Zheng, G.; Sun, S.; Feng, F. SIRT1 alleviates isoniazid-induced hepatocyte injury by reducing histone acetylation in the IL-6 promoter region. Int. Immunopharmacol. 2019, 67, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Lu, C.; An, L.; Gao, Q.; Xie, W.; Miao, F.; Chen, X.; Pan, Y.; Wang, Q. SIRT1 relieves Necrotizing Enterocolitis through inactivation of Hypoxia-inducible factor (HIF)-1a. Cell Cycle 2020, 19, 2018–2027. [Google Scholar] [CrossRef] [PubMed]
- Alcendor, R.R.; Gao, S.; Zhai, P.; Zablocki, D.; Holle, E.; Yu, X.; Tian, B.; Wagner, T.; Vatner, S.F.; Sadoshima, J. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 2007, 100, 1512–1521. [Google Scholar] [CrossRef]
- Elibol, B.; Kilic, U. High Levels of SIRT1 Expression as a Protective Mechanism Against Disease-Related Conditions. Front. Endocrinol. 2018, 9, 614. [Google Scholar] [CrossRef]
- Salla, M.; Karaki, N.; El Kaderi, B.; Ayoub, A.J.; Younes, S.; Abou Chahla, M.N.; Baksh, S.; El Khatib, S. Enhancing the Bioavailability of Resveratrol: Combine It, Derivatize It, or Encapsulate It? Pharmaceutics 2024, 16, 569. [Google Scholar] [CrossRef]
- Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int. J. Mol. Sci. 2019, 20, 1381. [Google Scholar] [CrossRef]
- Wang, J.; Liu, T.; Chen, P.; Yin, D.; Zhang, H.; Qiu, X.; Zou, S.; Li, W. Pharmacokinetic evaluation of two oral Resveratrol formulations in a randomized, open-label, crossover study in healthy fasting subjects. Sci. Rep. 2025, 15, 24515. [Google Scholar] [CrossRef]
- Patel, K.R.; Scott, E.; Brown, V.A.; Gescher, A.J.; Steward, W.P.; Brown, K. Clinical trials of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 161–169. [Google Scholar] [CrossRef]
- Almeida, L.; Vaz-da-Silva, M.; Falcão, A.; Soares, E.; Costa, R.; Loureiro, A.I.; Fernandes-Lopes, C.; Rocha, J.F.; Nunes, T.; Wright, L.; et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol. Nutr. Food Res. 2009, 53 (Suppl. 1), S7–S15. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Ho, C.T.; Chen, Y.K. Biological actions and molecular effects of resveratrol, pterostilbene, and 3′-hydroxypterostilbene. J. Food Drug Anal. 2017, 25, 134–147. [Google Scholar] [CrossRef]
- Reddy, R.; Kalra, S.S.; Alzghoul, B.; Khan, A.; Zayed, Y. Effect of Obesity on Mortality in Pulmonary Hypertension-A Systematic Review and Meta-Analysis. J. Cardiovasc. Dev. Dis. 2023, 10, 419. [Google Scholar] [CrossRef]
- Curjuric, I.; Imboden, M.; Bridevaux, P.O.; Gerbase, M.W.; Haun, M.; Keidel, D.; Kumar, A.; Pons, M.; Rochat, T.; Schikowski, T.; et al. Common SIRT1 variants modify the effect of abdominal adipose tissue on aging-related lung function decline. Age 2016, 38, 52. [Google Scholar] [CrossRef]
Rodents Specifications | Conditions/ Comments | Modulator | Administration | SIRT1 Expression in PH | Effects After Modulator | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species/Age/ Weight/Sex | Dose/Concentration/ Route/Duration/Time | RVSP | PAP/ mPAP | RV Hypertrophy | PA Wall Thickness | Result/s | ||||
Preventive models | ||||||||||
SIRT1 KO mice (mice C57BL/6J); 5–6 w; n/d; female | 21 d in hypoxia (10% O2) | C57BL/6J carrying both the UBC-Cre-ERT2 and the SIRT1floxDE4/ floxDE4 alleles) | tamoxifene (30 mg/kg/d) for 4 consecutive d to induce SIRT1 deletion, 21 d before exposure to hypoxia | ↓ in lungs | ↑ | n/d | ↑ | ↓↓ non-muscular ↔ part. muscular ↑ tot. muscular | in lungs: ↑ α-SMA, acetylation; ↓ PPARα, PGC-1α, HIF-1α; ↑↑ GLUT1, mitochondrial biogenesis | [7] |
SD rats; 6 w; 150–200 g; male | 40 d in hypoxia (10% O2) | circ-SIRT1 | 1 × 108 CFU; i.v.; once, at 1 and 20 d of 40 d treatment | ↓ in PASMCs and lungs | ↓ | n/d | ↓ | ↓ pulmonary small blood vessels thickness and lumen stenosis | ↑ SIRT1 expression in PASMCs and lungs; in lungs: ↓ Smad3, Smad7, TGF-β1, VCAM-1, α-SMA, ICAM-1, PCNA, vimentin | [63] |
Wistar rats; n/d; 200–300 g; male | 21 d, fractional inspired oxygen of 0.21 and 0.12 | resveratrol | 25 mg/kg/d; n/d; 21 d | ↓↓ in PASMCs | ↓↓ | n/d | ↓ | ↓ | ↔ SIRT1 expression in PASMCs | [108] |
SRT1720 | 25 mg/kg/d; n/d; 21 d | ↓ in PASMCs | ↓ | n/d | n/d | ↓ | ↔ SIRT1 expression in PASMCs | |||
SD rats; 6–8 w; 180–240 g; male | 28 d in hypoxia (10% O2) | adeno-associated virus serotype 1-Jag2 | n/d; 14 d before exposure to hypoxia | n/d | ↓↓ | n/d | ↓↓ | ↓↓↓ <50 μm, ↓↓ >50 μm | in lungs: ↑↑↑ SOD; ↓↓ MPO, MDA activity; ↑↑ Nrf2, HO-1 | [109] |
SD rats; n/d; 240–260 g, male | 60 mg/kg of MCT, 21 d (PAP, PA relaxation) or 7 d (eNOS level, SIRT1 expression) before evaluation | adenoviral vectors for the overexpression of SIRT1 | 7.5 × 109 pfu; i.t.; 1 d before MCT injection | n/d | n/d | ↓ | n/d | n/d | ↑↑ SIRT1 expression; in PA: ↑ p-eNOS; ↓↓ ac-eNOS | [110] |
60 mg/kg of MCT, 21 d before evaluation | short-term CR | 10% restriction; 14 d before MCT injection +35% restriction; p.o.; 21 d after MCT injection | ↓ in PA | n/d | ↓ | ↓↓ | ↓ | ↑ SIRT1 expression; in PA: ↔ eNOS; ↑ p-eNOS; ↓↓ ac-eNOS | ||
SD rats; 6–8 w; 200–220 g; male | 60 mg/kg of MCT, 21 d before evaluation | scutellarein | 50 mg/kg/d; i.p. | ↓↓ in lungs | ↓↓ | n/d | ↓↓ | ↓↓ | ↑↑ SIRT1 expression; in serum: ↓↓ TNF-α, IL-6, IL-1β, α-SMA | [157] |
C57BL/6 mice; 6–8 w; 20–22 g; male | 28 d in hypoxia (10% O2) + SU5416 injection (20 mg/kg i.p.) once a week | 10 mg/kg/d; i.p. | ↓↓ in lungs | ↓↓ | n/d | ↓↓ | ↓↓ | ↑↑ SIRT1 expression; in serum: ↓↓ TNF-α, IL-6, IL-1β, α-SMA | ||
n/d rats; 7–9 w; n/d; male | 28 d in hypoxia (10.5% O2) | phoenixin-20 | 100 ng/g/d; 28 d; n/d | n/d | ↓ | ↓ | ↓ | ↓ | in lungs: ↓ TNF-α, IL-6, MCP-1, MDA, NLRP3, ASC; ↑ SOD activity | [158] |
Therapeutic model | ||||||||||
SD rats; 6–8 w; n/d; male | 21 d in hypoxia (10% O2) and 35 d in normoxia, SU5416 injection (20 mg/kg) on day 0 of the experiment | SRT2104 | 100 mg/kg/d, by gavage; at the beginning of w 4 of the experiment for 5 w., 5 d/w | n/d | ↓ | ↓ | ↓↓↓ | ↓↓ | n/d | [16] |
C57BL/6J mice; n/d; n/d; female, male | 35 d in hypoxia (10% O2), SU5416 injections (20 mg/kg) on d 0, 7 and 14 of the experiment | 100 mg/kg/d, by gavage; at w. 4, 5 d/w, 7 d from day 15 after PH induction | n/d | ↓ | ↓ | ↓↓↓ | ↓ | n/d | ||
SD rats; 6–8 w; 200–250 g; male | 28 d in hypobaric conditions (pressure—380 mmHg, PaO2—79.6 mmHg) | exosomes derived from M1 macrophage with miR-663b low expression | 20 μg of M1miR-663b-in-Exo; i.v.; 7 d, from d 30 | ↓↓↓↓ in PASMCs | ↓ | n/d | ↓ | n/d | ↑ SIRT1 expression in PASMCs; in PASMCs: ↓ TNF-α, IL-6, IL-1β, iNOS, COX2; ↑ Nrf2, HO-1, Trx-1, AMPK | [105] |
SD rats; 6–8 w; n/d; male | 60 mg/kg of MCT, 21 d before evaluation | MSC overexpressing secreted KL | 3.5 × 106 MSC/rat; i.v.; once, 3 d after MCT injection | ↓↓↓ in lungs | ↓ | n/d | ↓ | ↓ PASMC proliferation; ↑ lumen area | ↔ SIRT1 expression; in lungs: ↔ eNOS; ↑↑ p-eNOS; ↓ CD68 | [106] |
SD rats; adult; 280–300 g; male | 60 mg/kg of MCT, 14 d before evaluation | resveratrol | 2.5 mg/kg/d; p.o.; for 14 d after MCT injection or for 21 d after MCT injection | ↓↓↓ in lungs | ↓ | ↓ | ↔ | ↔ 25–50 μm; ↓↓ 51–100 μm; ↓ 101–500 μm | ↑↑ SIRT1 expression in lungs; ↑↑ p21; ↔ cyclin D | [111] |
60 mg/kg of MCT, 21 d before evaluation | ↓↓↓ | ↓↓↓ | ↓↓↓ | ↓↓ 25–50 μm; ↓↓ 51–100 μm; ↓ 101–500 μm | ↑↑ SIRT1 expression in lungs; ↑↑ p21; ↓↓↓ cyclin D | |||||
60 mg/kg of MCT, 14 d before evaluation | 20 mg/kg/d; p.o.; for 14 d. after MCT injection or for 21 d after MCT injection | ↓ | ↓↓↓ | ↓ | ↔ 25–50 μm; ↓↓ 51–100 μm; ↓↓↓ 101–500 μm | ↑ SIRT1 expression in lungs; ↑↑↑ p21; ↓↓↓ cyclin D | ||||
60 mg/kg of MCT, 21 d. before evaluation | ↓↓↓ | ↓↓↓ | ↓↓↓ | ↓↓ 25–50 μm; ↓↓ 51–100 μm; ↓↓ 101–500 μm | ↑↑ SIRT1 expression in lungs; ↑ p21; ↓↓↓ cyclin D | |||||
SD rats; adult; >300 g; male | 60 mg/kg of MCT | resveratrol | 20 mg/kg/d; by gavage for 42 d after MCT injection | ↔ in RV | n/d | ↔ | ↓ | n/d | in RV: ↓ BNP, TnC, Ac-Lys; ↔ Col1, IL-1β, IL-10 | [112] |
SD rats; adult; 300 g; male | 60 mg/kg of MCT, 14 d before evaluation | resveratrol | 25 mg/kg/ d; p.o., in the drinking water; for 14 d after MCT injection or for 21 d after MCT injection | n/d | ↓ | n/d | ↓ | ↓ | n/d | [156] |
60 mg/kg of MCT, 21 d before evaluation | n/d | ↓ | n/d | ↓ | ↓ | in lungs: ↓ IL-6, IL-1, TNFα, PDGFα, PDGFβ, MCP-1, iNOS, ICAM-1, in PA: ↓ NOX-1; ↑ eNOS | ||||
SD rats; 8–10 w; >300 g; male | 50 mg/kg of MCT, 28 d before evaluation | resveratrol | 3 mg/kg/d, p.o. in the drinking water; for 14 d from d 28 after PH induction | n/d | ↓ | n/d | ↓ | ↔ <75 μm, ↓ 75–150 μm, ↔ >150 μm | in PA: ↑ atrogin-1; ↔ MuRF-1, eNOS, Kv1.5 | [159] |
SD rats; 4–5 w; 180–220 g; male | 60 mg/kg of MCT | sh-circSIRT1 | 2 × 108 TU/mL sh-RNA lentiviral vector of stably targeting circ-SIRT1; i.v. | n/d | n/d | ↓ | ↓ | ↓ | in PA: ↑ miR-145-5p | [168] |
Cell Culture | Conditions | Modulator | Effects | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
Viability | Regulation of Apoptosis and Proliferation | Anti-Inflammatory, Antioxidant | Mitochondrial Dysfunction | SIRT1 Expression/ Other Mechanisms | |||||
HUMAN | |||||||||
iPAH PASMC obtained during lung transplantation | in normoxia | Stac-3; 10 μM | ↔ | ↓ PCNA | ↑ SOD2 | ↑ VDAC, PPARα, CS, ERRα, PGC-1α, GLUT1, LDH | ↔ SIRT1 expression | [7] | |
iPAH PASMC obtained during lung transplantation | 48 h in normoxia | SRT2104; 10 μM | n/d | ↑ TSC2; ↓ Col1A1, p-Akt, fibronectin | n/d | n/d | - | [16] | |
PAEC | 72 h in hypoxia (10% O2, 5% CO2) | SRT1720; 4 μM | ↑ | ↑ p-Akt, Bcl2, HIF-1 | ↑ HIF-1 | n/d | ↔ Akt | [107] | |
NAC; 5000 μM | n/d | ↓ p-Akt, Bcl2, HIF-1 | ↓ HIF-1 | n/d | ↔ Akt | ||||
PASMC | PDGF (10 ng/mL) for 48 h | resveratrol; 10 µM | n/d | ↓ (proliferation) | ↓ NF-κB | n/d | - | [156] | |
PASMC | 48 h in hypoxia (1% O2) | scutellarein; 50 and 100 µM | ↓↓ | ↓↓ (proliferation and apoptosis) | ↓↓ IL-6; ↓ TNF-α, IL-1β | n/d | ↑↑ SIRT1 expression | [157] | |
PASMC | PDGF (10 ng/mL) for 48 h | resveratrol | 10 µM | n/d | ↔ (proliferation and apoptosis) | n/d | n/d | - | [159] |
30 µM | ↑ atrogin-1; ↔ (proliferation and apoptosis) | ||||||||
100 µM | ↑ atrogin-1; ↓↓ (proliferation and apoptosis) | ||||||||
PASMC | 48 h in hypoxia | si-circSIRT1 | n/d | ↓ (proliferation) ↑ (apoptosis) | n/d | n/d | ↓ migration, Beclin-1, ATG5, LC3 II, Akt3 ↑ p62, miR-145-5p | [168] | |
RAT | |||||||||
PASMC | in normoxia | Stac-3; 10 μM | n/d | ↓↓↓ ac-histone H1, ac-FOXO1; ↓ PCNA | n/d | ↓ ac-PGC-1α | ↔ SIRT1 expression | [7] | |
PASMC | 24 h in hypoxia (3% O2) | circ-SIRT1 | ↓ | ↓ Smad3, Smad7, TGF-β1, α-SMA | ↓ VCAM-1 | n/d | ↓ migration | [63] | |
PASMC | 24 h in hypoxia (92% N2, 5% CO2, 3% O2) | resveratrol 30 and 50 μM | n/d | ↓ (proliferation) | n/d | n/d | n/d | [108] | |
SRT1720 (1, 3, 5, and 10 μM) | ↓ | ↑↑ (apoptosis; 1 μM); ↓ (proliferation; 3, 5, and 10 μM) | n/d | n/d | ↑ SNO; ↓ migration; ↓↓ mPT | ||||
PASMC | 24 h in hypoxia (5% CO2, 1% O2) | Rat 1-Jag2 | ↓ | ↑ Bax; ↓↓ Bcl2 | n/d | ↑↑ Tom20, Coxiv | n/d | [109] | |
PMEC | in hypoxia (5% CO2) | phoenixin 20 | 10 nM | n/d | n/d | ↑ SOD; ↓ MDA, TNF-α, IL-6, NLRP3, ASC, MCP-1 | n/d | ↑ SIRT1 expression; ↓ MCP-1 | [158] |
20 nM | ↑↑ SOD; ↓↓ MDA, TNF-α, IL-6, NLRP3, ASC, MCP-1 | ||||||||
PASMC | 48 h in hypoxia (2.5% O2, 5% CO2) | 15-HETE | n/d | n/d | n/d | n/d | ↑ SIRT1 expression | [160] | |
15-HETE + serum deprivation | ↑ | ↑ Bcl-xl, Bcl2; ↓ caspase 3 ↓ (apoptosis) | n/d | n/d | n/d | ||||
PASMC | 24 h in hypoxia (2% O2, 5% CO2) | Shionone | 2 µg/ml | ↔ | ↑ Bax; ↓↓ Bcl2; ↑↑ (apoptosis) | ↓ TNF-α, IL-6; ↔ IL-1β | n/d | ↑↑ SIRT1 expression ↑↑ eNOS; ↓ ET-1 | [161] |
4 µg/ml | ↓↓ | ↑↑ Bax; ↓↓ Bcl2; ↑↑ (apoptosis) | ↓↓ TNF-α, IL-1β, IL-6 | n/d | ↑↑ SIRT1 expression ↑↑ eNOS; ↓↓ ET-1 | ||||
8 µg/ml | ↓↓ | ↑↑ Bax; ↓↓ Bcl2; ↑↑ (apoptosis) | ↓↓ TNF-α, IL-1β, IL-6 | n/d | ↑↑ SIRT1 expression ↑↑ eNOS; ↓↓ ET-1 | ||||
PAEC | 24 h in hypoxia (2% O2, 5% CO2) | 2, 4, 8 µg/ml | n/d | n/d | n/d | n/d | ↑↑ SIRT1 expression | ||
8 µg/mL + SIRT1-siRNA | ↓↓ | ↑↑ Bax; ↓↓ Bcl2; ↑↑ (apoptosis) | ↑↑ TNF-α, IL-1β, IL-6 | n/d | ↓↓ eNOS; ↑↑ ET-1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budziak, S.; Kloza, M.; Krzyżewska, A.; Baranowska-Kuczko, M. Can Sirtuin 1 Serve as a Therapeutic Target in Pulmonary Arterial Hypertension? A Comprehensive Review. Molecules 2025, 30, 3740. https://doi.org/10.3390/molecules30183740
Budziak S, Kloza M, Krzyżewska A, Baranowska-Kuczko M. Can Sirtuin 1 Serve as a Therapeutic Target in Pulmonary Arterial Hypertension? A Comprehensive Review. Molecules. 2025; 30(18):3740. https://doi.org/10.3390/molecules30183740
Chicago/Turabian StyleBudziak, Sandra, Monika Kloza, Anna Krzyżewska, and Marta Baranowska-Kuczko. 2025. "Can Sirtuin 1 Serve as a Therapeutic Target in Pulmonary Arterial Hypertension? A Comprehensive Review" Molecules 30, no. 18: 3740. https://doi.org/10.3390/molecules30183740
APA StyleBudziak, S., Kloza, M., Krzyżewska, A., & Baranowska-Kuczko, M. (2025). Can Sirtuin 1 Serve as a Therapeutic Target in Pulmonary Arterial Hypertension? A Comprehensive Review. Molecules, 30(18), 3740. https://doi.org/10.3390/molecules30183740