Investigation of Analgesic, Anti-Inflammatory, and Thrombolytic Effects of Methanolic Extract and Its Fractions of Dischidia bengalensis: In Vitro and In Vivo Studies with In Silico Interventions
Abstract
1. Introduction
2. Results
2.1. Phytochemical Screening
2.2. GC-MS Profiling
2.3. Acute Toxicity Evaluation and Dose Determination
2.4. Anti-Inflammatory Activity
Carrageenan-Induced Paw Edema
2.5. Analgesic Activity
2.5.1. Acetic Acid-Induced Writhing Method
2.5.2. Tail Immersion Test
2.6. Thrombolytic Activity
Human Blood Clot Lysis Method
2.7. In Silico Study
2.7.1. ADME/T Analysis
2.7.2. Molecular Docking
Molecular Docking for Anti-Inflammatory Activity
Molecular Docking for Analgesic Activity
Molecular Docking for Thrombolytic Activity
Compounds | PubChem ID | Docking Score (kcal/mol) | ||
---|---|---|---|---|
Anti-Inflammatory (2az5) | Analgesic (6cox) | Thrombolytic (1a5h) | ||
Phenol, 3,5-bis(1,1-dimethylethyl)- | 70825 | −5.4 | −6.4 | −6.3 |
Pentadecanoic acid, methyl ester | 23518 | −4.1 | −6.4 | −5.6 |
Neophytadiene | 10446 | −4.4 | −6.9 | −6.5 |
3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 5366244 | −4.3 | −7.2 | −6.7 |
Hexadecanoic acid, methyl ester | 8181 | −3.9 | −6.4 | −5.4 |
n-Hexadecanoic acid | 985 | −4.3 | −6.4 | −6 |
9,12-Octadecadienoic acid (Z,Z)-, methyl ester | 5284421 | −4.4 | −6.9 | −6.1 |
8,11,14-Docosatrienoic acid, methyl ester | 5364473 | −4.2 | −7.1 | −6.1 |
11-Octadecenoic acid, methyl ester | 5364432 | −4.4 | −6.6 | −5.6 |
Phytol | 5280435 | −4.6 | −7.2 | −6.7 |
10E,12Z-Octadecadienoic acid | 5282800 | −4.3 | −7 | −6 |
9,11-Octadecadienoic acid, methyl ester, (E,E)- | 5365686 | −3.9 | −6.9 | −6 |
9-Octadecenamide, (Z)- | 5283387 | −4.1 | −6.8 | −5.5 |
Aciphyllene | 565709 | −5.9 | −8.6 | −6.4 |
Lupeol | 259846 | −6.8 | 4.2 | −9.5 |
9,19-Cyclolanost-25-ene-3,24-diol | 11419367 | −6.2 | −1.8 | −7.7 |
Lup-20(29)-en-3-ol, acetate, (3beta)- | 92157 | −6.3 | 6 | −9.5 |
Epilupeol | 5270628 | −6.8 | 5.2 | −9.6 |
Lupeol, methyl ether | 15226333 | −6.7 | 6.1 | −9.5 |
beta-Amyrone | 12306160 | −7.3 | −1.1 | −8.4 |
Stigmasterol | 5280794 | −6.6 | −5.9 | −7.9 |
gamma-Sitosterol | 457801 | −6.4 | −6.4 | −7.8 |
24-Norursa-3,12-diene | 91735342 | −7.1 | 4.1 | −7.4 |
Standards (Indomethacin, Diclofenac, Estreptoquinasa) | −6.3 | −8.4 | −6.5 |
Section Number | Receptor | Compounds Name | Binding Affinity (kcal/mol) | Bond Type | Amino Acids |
---|---|---|---|---|---|
1 | 2az5 | beta-Amyrone | −7.3 | Pi-Alkyl | TYR59 (2), TYR119 |
24-Norursa-3,12-diene | −7.1 | Alkyl | LEU57 | ||
Pi-Alkyl | TYR59, TYR151 | ||||
Epilupeol | −6.8 | Alkyl | LEU57, ILE155 | ||
Pi-Alkyl | TYR59 (3), TYR119 (2), TYR151 | ||||
Indomethacin (Standard) | −6.3 | Pi-Pi Stacked | TYR59 (2) | ||
Alkyl | LEU57, ILE155 | ||||
Pi-Alkyl | HIS15, TYR59, TYR151, LEU57 | ||||
2 | 6cox | Aciphyllene | −8.6 | Alkyl | VAL349 (2), LEU352, VAL523 (2), ALA527 (3), LEU531, LEU384 |
Pi-Alkyl | PHE381, TYR385 (2), TRP387 | ||||
3,7,11,15-Tetramethyl-2-hexadecen-1-ol | −7.2 | Alkyl | VAL349 (3), ALA516, VAL523 (2), ALA527 (2), LEU352 (3), LEU531 (2), LEU359 | ||
Pi-Alkyl | HIS90, TYR385, TRP387, PHE518 | ||||
Phytol | −7.2 | Conventional Hydrogen Bond | GLN192, LEU352 | ||
Alkyl | VAL349 (3), VAL523 (2), ALA527, MET522, LEU352 (2), LEU531, LEU359 | ||||
Pi-Alkyl | HIS90, TYR355 (2), TRP387, PHE518 (2) | ||||
Diclofenac (Standard) | −8.4 | Pi-Pi T-shaped | TRP387, VAL349, VAL523, ALA527, LEU352 | ||
3 | 1a5h | Epilupeol | −9.6 | Alkyl | ARG174 (2) |
Pi-Alkyl | HIS57, TYR99 (2), TRP215 (2) | ||||
Lupeol, methyl ether | −9.5 | Alkyl | ARG174 (2) | ||
Pi-Alkyl | HIS57, TYR99 (2), TRP215 (2) | ||||
Lupeol | −9.5 | Carbon Hydrogen Bond | GLN192 | ||
Alkyl | ARG174 (2) | ||||
Pi-Alkyl | HIS57, TYR99, TRP215 (2) | ||||
Estreptoquinasa (Standard) | −6.5 | Conventional Hydrogen Bond | THR175 | ||
Carbon Hydrogen Bond | THR175 (2) | ||||
Pi-Alkyl | TYR99, TRP215 (2) |
2.8. PASS Prediction
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Collection and Identification
4.3. Extraction
4.4. Solvent-Solvent Partition
4.5. Experimental Design and Animals
4.6. Acute Toxicity Evaluation and Dose Determination
4.7. Phytochemical Screening
4.8. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
4.9. Anti-Inflammatory Activity
Carrageenan-Induced Paw Edema Test
4.10. Analgesic Activity
4.10.1. Acetic Acid-Induced Writhing Method
4.10.2. Tail Immersion
4.11. Thrombolytic Activity
Blood Clot Lysis Method
4.12. In Silico Study
4.12.1. Ligand Preparation
4.12.2. Protein Preparation
4.12.3. Molecular Docking
4.13. Prediction of Activity Spectra for Substances (PASS)
4.14. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ME | methanolic extract |
DCM | dichloromethane fraction |
NH | n-hexane fraction |
EA | ethyl acetate fractions |
NSAIDs | nonsteroidal anti-inflammatory drugs |
tPA | tissue plasminogen activator |
GC-MS | gas chromatography-mass spectrometry |
MPE | maximum possible effect |
PASS | prediction of activity spectra for substances |
References
- Patel, D.; Singh, J. Medicinal plants as natural reservoirs of bioactive compounds: An overview. J. Nat. Remedies 2017, 17, 55–65. [Google Scholar]
- Saikia, G.; Devi, N. Ethnomedicinal understandings and pharmacognosy of Dischidia (Apocynaceae: Asclepiadoideae): A potential epiphytic genus. Phytomed. Plus 2025, 5, 100707. [Google Scholar]
- Rahmatullah, M.; Pk, S.R.; Al-Imran, M.; Jahan, R. The Khasia tribe of Sylhet district, Bangladesh, and their fast-disappearing knowledge of medicinal plants. J. Altern. Complement. Med. 2013, 19, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Shankar, R.; Tripathi, A.K.; Neyaz, S.; Anku, G.; Rawat, M.S.; Dhiman, K.S. Distribution of medicinal plants in Kurung Kumey, East Kameng and West Kameng districts of Arunachal Pradesh: Their systemic conservation. World J. Pharm Res. 2015, 4, 977–993. [Google Scholar]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Rainsford, K. Anti-inflammatory drugs in the 21st century. In Inflammation in the Pathogenesis of Chronic Diseases: The COX-2 Controversy; Springer: Berlin/Heidelberg, Germany, 2007; pp. 3–27. [Google Scholar]
- Calixto, J.B.; Campos, M.M.; Otuki, M.F.; Santos, A.R.S. Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med. 2004, 70, 93–103. [Google Scholar]
- Pan, M.-H.; Lai, C.-S.; Ho, C.-T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010, 1, 15–31. [Google Scholar] [CrossRef]
- Goldberg, D.S.; McGee, S.J. Pain as a global public health priority. BMC Public Health 2011, 11, 770. [Google Scholar] [CrossRef]
- Bannister, K.; Dickenson, A.H. The plasticity of descending controls in pain: Translational probing. J. Physiol. 2017, 595, 4159–4166. [Google Scholar] [CrossRef] [PubMed]
- El-Tallawy, S.N.; Nalamasu, R.; Pergolizzi, J.V.; Gharibo, C. Pain management during the COVID-19 pandemic. Pain Ther. 2020, 9, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Adedapo, A.A.; Sofidiya, M.O.; Maphosa, V.; Moyo, B.; Masika, P.J.; Afolayan, A.J. Anti-inflammatory and analgesic activities of the aqueous extract of Cussonia paniculata stem Bark. Rec. Nat. Prod. 2008, 2, 46. [Google Scholar]
- Kumara, N. Identification of strategies to improve research on medicinal plants used in Sri Lanka. In WHO Symposium; University of Ruhuna: Galle, Sri Lanka, 2001; pp. 12–14. [Google Scholar]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Mackman, N. Triggers, targets and treatments for thrombosis. Nature 2008, 451, 914–918. [Google Scholar] [CrossRef]
- Umesh, M.K.; Sanjeevkumar, C.B.; Hanumantappa, B.; Ramesh, L. Evaluation of in vitro anti-thrombolytic activity and cytotoxicity potential of Typha angustifolia L leaves extracts. Int. J. Pharm. Pharm. Sci. 2014, 6, 81–85. [Google Scholar]
- Prasad, S.; Kashyap, R.S.; Deopujari, J.Y.; Purohit, H.J.; Taori, G.M.; Daginawala, H.F. Development of an In Vitro model to study clot lysis activity of thrombolytic drugs. Thromb. J. 2006, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, F.; Chadni, S.H.; Mou, K.N.; Hasif, K.M.I.; Ahmed, T.; Akter, M. In-vitro thrombolytic activity and phytochemical evaluation of leaf extracts of four medicinal plants of Asteraceae family. J. Pharmacogn. Phytochem. 2017, 6, 1166–1169. [Google Scholar]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef]
- Hossain, S.; Rabbi, S.A.H.; Mamun, M.J.I.; Masum, M.A.A.; Suma, K.J.; Rasel, M.H.; Hasan, M.A.; Mohammad, M.; Hossain, D. Antioxidant, Anti-inflammatory, and Neuropharmacological Potential of Syngonium podophyllum Flower Methanolic Extract: Insights from In Vivo, In Vitro, In Silico, and GC-MS/MS Analysis. Chem. Biodivers. 2025, e202500425. [Google Scholar]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr. Computational methods in drug discovery. Pharmacol. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef]
- Afrin, S.R.; Islam, M.R.; Proma, N.M.; Shorna, M.K.; Akbar, S.; Hossain, M.K. Quantitative screening of phytochemicals and pharmacological attributions of the leaves and stem barks of Macropanaxdispermus (Araliaceae) in treating the inflammation and arthritis. J. Herbmed. Pharmacol. 2020, 10, 75–83. [Google Scholar] [CrossRef]
- Afrin, S.R.; Islam, M.R.; Khanam, B.H.; Proma, N.M.; Didari, S.S.; Jannat, S.W.; Hossain, M.K. Phytochemical and pharmacological investigations of different extracts of leaves and stem barks of Macropanaxdispermus (Araliaceae): A promising ethnomedicinal plant. Futur. J. Pharm. Sci. 2021, 7, 165. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Beshbishy, A.M.; Alkazmi, L.; Adeyemi, O.S.; Nadwa, E.; Rashwan, E.; El-Mleeh, A.; Igarashi, I. Gas chromatography-mass spectrometry analysis, phytochemical screening and antiprotozoal effects of the methanolic Viola tricolor and acetonic Laurus nobilis extracts. BMC Complement. Med. Ther. 2020, 20, 87. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Din, K.M.; Rasheed, R.; Sadiq, A.; Jan, M.S.; Minhas, A.M.; Khan, A. Phytochemical investigation, anti-inflammatory, antipyretic and antinociceptive activities of Zanthoxylum armatum DC extracts-in vivo and in vitro experiments. Heliyon 2020, 6, e05571. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Rajasekar, N.; Sivanantham, A. Therapeutic potential of plant-derived tannins in non-malignant respiratory diseases. J. Nutr. Biochem. 2021, 94, 108632. [Google Scholar] [CrossRef]
- Renda, G.; Gökkaya, İ.; Şöhretoğlu, D. Immunomodulatory properties of triterpenes. Phytochem. Rev. 2022, 21, 537–563. [Google Scholar] [CrossRef]
- Mazzanti, G.; Braghiroli, L. Analgesic antiinflammatory action of Pfaffiapaniculata (Martius) kuntze. Phytother. Res. 1994, 8, 413–416. [Google Scholar] [CrossRef]
- Panthong, A.; Supraditaporn, W.; Kanjanapothi, D.; Taesotikul, T.; Reutrakul, V. Analgesic, anti-inflammatory and venotonic effects of Cissus quadrangularis Linn. J. Ethnopharmacol. 2007, 110, 264–270. [Google Scholar] [CrossRef]
- Paramita, S.; Ismail, S.; Marliana, E.; Moerad, E.B. Anti-inflammatory activities of Curcuma aeruginosa with membrane stabilization and carrageenan-induced paw oedema test. EurAsian J. Biosci. 2019, 13, 2389–2394. [Google Scholar]
- Sadeghi, H.; Mostafazadeh, M.; Sadeghi, H.; Naderian, M.; Barmak, M.J.; Talebianpoor, M.S.; Mehraban, F. In vivo anti-inflammatory properties of aerial parts of Nasturtium officinale. Pharm. Biol. 2014, 52, 169–174. [Google Scholar] [CrossRef]
- Tasleem, F.; Azhar, I.; Ali, S.N.; Perveen, S.; Mahmood, Z.A. Analgesic and anti-inflammatory activities of Piper nigrum L. Asian Pac. J. Trop. Med. 2014, 7, S461–S468. [Google Scholar]
- Nunes, C.D.R.; Arantes, M.B.; de Faria Pereira, S.M.; Da Cruz, L.L.; de Souza Passos, M.; De Moraes, L.P.; Vieira, I.J.C.; de Oliveira, D.B. Plants as sources of anti-inflammatory agents. Molecules 2020, 25, 3726. [Google Scholar] [CrossRef]
- Gonfa, Y.H.; Tessema, F.B.; Bachheti, A.; Rai, N.; Tadesse, M.G.; Singab, A.N.; Chaubey, K.K.; Bachheti, R.K. Anti-inflammatory activity of phytochemicals from medicinal plants and their nanoparticles: A review. Curr. Res. Biotechnol. 2023, 6, 100152. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Jangle, S.N. Evaluation of in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. Int. J. Basic Appl. Med. Sci. 2012, 2, 109–116. [Google Scholar]
- Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009, 285, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.-Y.; Herr, D.R.; Sun, G.Y.; Lin, T.-N. Anti-inflammatory effects of phytochemical components of Clinacanthusnutans. Molecules 2022, 27, 3607. [Google Scholar] [CrossRef]
- Fatema, K.; Mia, M.A.R.; Nipun, T.S.; Hossen, S.M.M. Phytochemical Profiling and Pharmacological Evaluation of Methanolic Leaf Extract of C. digyna for Cytotoxic, Anti-inflammatory, Antioxidant, Antiarthritic, and Analgesic Activities. Food Sci. Nutr. 2024, 12, 10231–10241. [Google Scholar] [CrossRef]
- Trongsakul, S.; Panthong, A.; Kanjanapothi, D.; Taesotikul, T. The analgesic, antipyretic and anti-inflammatory activity of Diospyrosvariegata Kruz. J. Ethnopharmacol. 2003, 85, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Ezeja, M.I.; Omeh, Y.S.; Ezeigbo, I.I.; Ekechukwu, A. Evaluation of the analgesic activity of the methanolic stem bark extract of Dialiumguineense (Wild). Ann. Med. Health Sci. Res. 2011, 1, 55–62. [Google Scholar]
- Lee, K.-H.; Choi, E.-M. Analgesic and anti-inflammatory effects of Ligulariafischeri leaves in experimental animals. J. Ethnopharmacol. 2008, 120, 103–107. [Google Scholar] [CrossRef]
- Onasanwo, S.A.; Elegbe, R.A. Anti-nociceptive and anti-inflammatory properties of the leaf extracts of Hedranthera barteri in rats and mice. S. Afr. J. Biomed. Res. 2006, 9. [Google Scholar]
- Akindele, A.J.; Ibe, I.F.; Adeyemi, O.O. Analgesic and antipyretic activities of Drymaria cordata (Linn.) Willd (Caryophyllaceae) extract. S. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 25–35. [Google Scholar]
- Marchioro, M.; Blank, M.D.F.A.; Mourao, R.H.V.; Antoniolli, A.R. Anti-nociceptive activity of the aqueous extract of Erythrina velutina leaves. Fitoterapia 2005, 76, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Eva, T.A.; Mamurat, H.; Rahat, M.H.H.; Hossen, S.M.M. Unveiling the pharmacological potential of Coelogynesuaveolens: An investigation of its diverse pharmacological activities by in vivo and computational studies. Food Sci. Nutr. 2024, 12, 1749–1767. [Google Scholar] [CrossRef] [PubMed]
- Bachhav, R.S.; Gulecha, V.S.; Upasani, C. Analgesic and anti-inflammatory activity of Argyreia speciosa root. Indian J. Pharmacol. 2009, 41, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Uche, F.I.; Aprioku, J.S. The Phytochemical Constituents, Analgesic and Anti-inflammatory effects of methanol extract of Jatropha curcas leaves in Mice and Wister albino rats. J. Appl. Sci. Environ. Manag. 2010, 11. [Google Scholar] [CrossRef]
- Santiago, L.Â.M.; Neto, R.N.M.; Ataíde, A.C.S.; Fonseca, D.C.S.C.; Soares, E.F.A.; Sousa, J.C.d.S.; Mondego-Oliveira, R.; Ribeiro, R.M.; Cartágenes, M.D.S.d.S.; Lima-Neto, L.G.; et al. Flavonoids, alkaloids and saponins: Are these plant-derived compounds an alternative to the treatment of rheumatoid arthritis? A literature review. Clin. Phytosci. 2021, 7, 58. [Google Scholar] [CrossRef]
- Das, B.K.; Al-Amin, M.M.; Russel, S.M.; Kabir, S.; Bhattacherjee, R.; Hannan, J.M.A. Phytochemical screening and evaluation of analgesic activity of Oroxylum indicum. Indian J. Pharm. Sci. 2014, 76, 571. [Google Scholar]
- Devi, R.A.; Tandan, S.K.; Kumar, D.; Dudhgaonkar, S.P.; Lal, J. Analgesic activity of Caesalpinia bonducella flower extract. Pharm. Biol. 2008, 46, 668–672. [Google Scholar] [CrossRef]
- Zeb, A.; Ahmad, S.; Ullah, F.; Ayaz, M.; Sadiq, A. Anti-nociceptive activity of ethnomedicinally important analgesic plant Isodon rugosus Wall. ex Benth: Mechanistic study and identifications of bioactive compounds. Front. Pharmacol. 2016, 7, 200. [Google Scholar] [CrossRef]
- Tatiya, A.U.; Saluja, A.K.; Kalaskar, M.G.; Surana, S.J.; Patil, P.H. Evaluation of analgesic and anti-inflammatory activity of Bridelia retusa (Spreng) bark. J. Tradit. Complement. Med. 2017, 7, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, M.; Islam, A.; Mamun, J.I.; Rasel, H.; Al Masum, M.A.; Rabbi, S.A.H.; Khalil, I.; Ali, L.; Hossen, S.M.M. Methanolic Extract of Edible Lasia spinosa Rhizome: A Potential Natural Source of Analgesic, Diuretic, and Thrombolytic Agents. J. Herbs Spices Med. Plants 2025, 31, 381–406. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, J.; Zhuang, Z.; Yang, Y.; Lin, L.; Wang, S. Thrombolytic effects of Douchi Fibrinolytic enzyme from Bacillus subtilis LD-8547 in vitro and in vivo. BMC Biotechnol. 2012, 12, 36. [Google Scholar] [CrossRef]
- Khanam, B.H.; Rakib, A.; Faiz, F.B.; Uddin, M.G.; Hossain, M.K.; Sultan, R.A. Highly Anticancer and Moderate Thrombolytic Property of Accacia rugata of Mimosaceae Family. J. Plant Sci. 2020, 8, 12–16. [Google Scholar]
- Jobaer, M.A.; Ashrafi, S.; Ahsan, M.; Hasan, C.M.; Rashid, M.A.; Islam, S.N.; Masud, M.M. Phytochemical and biological investigation of an indigenous plant of bangladesh, Gynura procumbens (lour.) merr.: Drug discovery from nature. Molecules 2023, 28, 4186. [Google Scholar] [CrossRef]
- Noor, S.; Prodhan, A.; Zohora, F.; Tareq, F.; Ahsan, M.; Hasan, C.; Islam, S. Phytochemical, antioxidant, antimicrobial, thrombolytic as well as cytotoxic studies on the stem bark of Manilkara zapota (Sapotaceae). Asian J. Chem. 2014, 26, 6138. [Google Scholar] [CrossRef]
- Tareq, A.M.; Farhad, S.; Uddin, A.N.; Hoque, M.; Nasrin, M.S.; Uddin, M.M.R.; Hasan, M.; Sultana, A.; Munira, M.S.; Lyzu, C.; et al. Chemical profiles, pharmacological properties, and in silico studies provide new insights on Cycas pectinata. Heliyon 2020, 6, e04061. [Google Scholar] [CrossRef] [PubMed]
- Emon, N.U.; Alam, S.; Rudra, S.; Riya, S.R.; Paul, A.; Hossen, S.M.; Kulsum, U.; Ganguly, A. Antidepressant, anxiolytic, antipyretic, and thrombolytic profiling of methanol extract of the aerial part of Piper nigrum: In vivo, in vitro, and in silico approaches. Food Sci. Nutr. 2021, 9, 833–846. [Google Scholar] [CrossRef]
- Mohammad, M.; Rasel, H.; Richi, F.T.; Mamun, J.I.; Ekram, E.H.; Rabbi, S.A.H.; Hossain, S.; Hasan, A.; Sarker, F.; Alam, S. Neuropharmacological, cytotoxic, and anthelmintic potentials of Lasia spinosa (L.) Thwaites rhizome: In vivo, in vitro, and computational approach. Pharmacol. Res. Nat. Prod. 2025, 7, 100254. [Google Scholar] [CrossRef]
- Kupchan, S.M.; Tsou, G. Tumor Inhibitors. LXXXI. Structure and partial synthesis of fabacein. J. Org. Chem. 1973, 38, 1055–1056. [Google Scholar] [CrossRef]
- Harborne, A.J. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Evans, W.C. Trease and Evans Pharmacognosy, 15th ed.; Elsevier Health Sciences, Saunders: Edinburgh, UK, 2002; Volume 249. [Google Scholar]
- Nair, V.; Kumar, R.; Singh, S.; Gupta, Y.K. Investigation into the anti-inflammatory and antigranuloma activity of Colchicum luteum Baker in experimental models. Inflammation 2012, 35, 881–888. [Google Scholar]
- Koster, R.; Anderson, M.; De Beer, E.J. Acetic Acid for Analgesics Screening. Fed. Proc. 1959, 18, 412–417. [Google Scholar]
- Dambisya, Y.M.; Lee, T.-L.; Sathivulu, V.; Jais, A.M.M. Influence of temperature, pH and naloxone on the antinociceptive activity of Channa striatus (haruan) extracts in mice. J. Ethnopharmacol. 1999, 66, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.P.; Shankar, N.B. Analgesic activity of Mollugo pentaphylla Linn. by tail immersion method. Asian J. Pharm. Clin. Res. 2009, 2, 61–63. [Google Scholar]
- Mohammad, M.; Mamun, J.I.; Khatun, M.M.; Rasel, H.; Al Masum, M.A.; Suma, K.J.; Haque, M.R.; Rabbi, S.A.H.; Hossain, H.; Hasnat, H.; et al. A Multifaceted Exploration of Shirakiopsis indica (Willd) Fruit: Insights into the Neuropharmacological, Antipyretic, Thrombolytic, and Anthelmintic Attributes of a Mangrove Species. Drugs Drug Candidates 2025, 4, 31. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. In Chemical biology: Methods and Protocols; Springer: New York, NY, USA, 2015; pp. 243–250. [Google Scholar]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Iyashiro, J.M.; Penning, T.D.; Seibert, K.; et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1996, 384, 644–648. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
Serial No. | Tests for Phytoconstituents | Test Names | Inference |
---|---|---|---|
1 | Alkaloids | (a) Wagner’s Test | + |
(b) Mayer’s Test | + | ||
(c) Dragendroff’s test | + | ||
(d) Hager’s test | - | ||
2 | Tannins | (a) Braymen’s Test | - |
(b) 10% sodium hydroxide test | + | ||
3 | Phytosterols | (a) Salkowski’s test | - |
4 | Terpenoids | (a) Chloroform and sulfuric acid Test | + |
5 | Flavonoids | (a) Zinc-hydrochloric acid reduction test | - |
(b) Lead acetate test | + | ||
(c) Alkaline reagent test | + | ||
(d) Conc. sulfuric acid test | + | ||
(e) 10% Ferric Chloride test | - | ||
6 | Saponins | (a) Sodium bicarbonate | - |
(b) Olive oil test | + | ||
7 | Glycosides | (a) Aqueous Sodium hydroxide test | + |
8 | Cardiac glycosides | (a) Keller-Killiani test | - |
9 | Quinones | (a) Conc. Hydrochloric acid test | - |
10 | Phenols | (a) 5%Ferric chloride test | + |
(b) Lead acetate test | + | ||
(c) Potassium dichromate test | + | ||
11 | Reducing sugars | (a) Fehling’s test | - |
12 | Carbohydrates | (a) Test for starch | + |
13 | Proteins and amino acids | (a) Xanthoproteic test | - |
14 | Carboxylic acids | (a) Effervescence test | - |
15 | Phlobatannins | (a) Hydrochloride test | - |
SL NO | Compound Name | R. Time | Area % |
---|---|---|---|
1 | Hexanal | 4.601 | 0.15 |
2 | 1-Dodecanol | 11.89 | 0.10 |
3 | Valeramide, 5-phenyl-N-methyl- | 12.205 | 0.25 |
4 | n-Pentadecanol | 12.257 | 0.20 |
5 | Decane, 1-iodo- | 12.298 | 0.25 |
6 | Phenol, 3,5-bis(1,1-dimethylethyl)- | 12.535 | 0.20 |
7 | (2E)-2-Heptylidenecyclohexanone | 12.58 | 0.10 |
8 | Phenol, 4-ethenyl-2,6-dimethoxy- | 13.135 | 0.30 |
9 | 2-Bromotetradecane | 13.35 | 0.32 |
10 | .beta.-D-Mannofuranoside, 1-O-5-phenylpent-1-yl- | 14.096 | 0.10 |
11 | 5-Octadecene, (E)- | 14.22 | 0.23 |
12 | Eicosane | 14.422 | 0.30 |
13 | Oxalic acid, cyclohexylmethyl tridecyl ester | 14.496 | 0.13 |
14 | Pentadecanal- | 14.666 | 0.13 |
15 | Methyl tetradecanoate | 14.728 | 0.20 |
16 | Pentadecanoic acid, methyl ester | 16.04 | 0.20 |
17 | Neophytadiene | 16.204 | 0.62 |
18 | 2-Pentadecanone, 6,10,14-trimethyl- | 16.297 | 1.28 |
19 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 16.559 | 0.33 |
20 | Calcitriol | 16.709 | 0.18 |
21 | 9-methylheptadecane | 17.125 | 0.10 |
22 | Hexadecanoic acid, methyl ester | 17.503 | 3.38 |
23 | 6-Pentadecenoic acid, 13-methyl-, (6Z)- | 17.803 | 0.12 |
24 | n-Hexadecanoic acid | 18.078 | 12.99 |
25 | Oxirane, [(hexadecyloxy)methyl]- | 18.615 | 0.25 |
26 | Hexadecanoic acid, 15-methyl-, methyl ester | 19.078 | 0.18 |
27 | Pentadecanoic acid | 19.687 | 0.22 |
28 | Cyclopentanol, 2,4,4-trimethyl- | 20.009 | 0.13 |
29 | 9,12-Octadecadienoic acid (Z,Z)-, methyl ester | 20.203 | 1.13 |
30 | 8,11,14-Docosatrienoic acid, methyl ester | 20.308 | 1.17 |
31 | 11-Octadecenoic acid, methyl ester | 20.4 | 0.15 |
32 | Phytol | 20.462 | 0.82 |
33 | Methyl stearate | 20.727 | 0.63 |
34 | 10E,12Z-Octadecadienoic acid | 20.852 | 1.67 |
35 | 7-Tetradecenal, (Z)- | 20.948 | 2.95 |
36 | Tetracosanoic acid, isopropyl ester | 21.2 | 0.18 |
37 | Octadecanoic acid | 21.328 | 2.18 |
38 | Hexadecanamide | 21.657 | 1.18 |
39 | Benzoic acid, undecyl ester | 22.104 | 0.17 |
40 | Undec-10-ynoic acid, tetradecyl ester | 22.949 | 0.38 |
41 | 9-Octadecynoic acid, methyl ester | 23.661 | 0.12 |
42 | 4,8,12,16-Tetramethylheptadecan-4-olide | 24.452 | 0.87 |
43 | 9,11-Octadecadienoic acid, methyl ester, (E,E)- | 24.571 | 0.55 |
44 | 9-Octadecenamide, (Z)- | 24.669 | 8.58 |
45 | Octadecanamide | 25.099 | 0.65 |
46 | Eicosanal- | 25.779 | 0.22 |
47 | Hexanoic acid, heptadecyl ester | 26.77 | 0.13 |
48 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 27.133 | 0.48 |
49 | Tricosanoic acid, methyl ester | 28.912 | 0.15 |
50 | Pentacosanal | 28.997 | 0.13 |
51 | Aciphyllene | 29.465 | 0.17 |
52 | 4-Chlordehydromethyltestosterone | 32.27 | 0.15 |
53 | alpha-Tocospiro B | 32.391 | 0.62 |
54 | Lupeol | 34.31 | 0.92 |
55 | 9,19-Cyclolanost-25-ene-3,24-diol | 34.712 | 0.25 |
56 | 1-Phenanthrenecarboxylic acid, 7-ethyltetradecahydro-1,4a,7-trimethyl-, methyl ester, [1R-(1alpha,4abeta,4balpha,7beta)] | 34.873 | 1.32 |
57 | Cholesta-4,6-dien-3-ol, (3beta)- | 35.322 | 2.55 |
58 | Lup-20(29)-en-3-ol, acetate, (3beta)- | 35.563 | 5.70 |
59 | Epilupeol | 35.959 | 0.18 |
60 | Cholest-5-en-3-ol (3beta)-, carbonochloridate | 36.1 | 0.33 |
61 | Vitamin E | 36.173 | 1.55 |
62 | Lupeol, methyl ether | 36.781 | 2.13 |
63 | beta-Amyrone | 37.019 | 4.00 |
64 | Brasiliamide A, Me derivative | 37.868 | 6.35 |
65 | Stigmasterol | 38.355 | 4.76 |
66 | 1,1,6-trimethyl-3-methylene-2-(3,6,9,13-tetramethyl-6-ethenye-10,14-dimethylene-pentadec-4-enyl)cyclohexane | 38.47 | 0.90 |
67 | 17-(1,5-Dimethyl-3-phenylthiohex-4-enyl)-4,4,10,13,14-pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclope | 38.776 | 4.30 |
68 | (1R,4aR,5S)-5-[(E)-5-Hydroxy-3-methylpent-3-enyl]-1,4a-dimethyl-6-methylidene-3,4,5,7,8,8a-hexahydro-2H-naphthalene-1-carbaldeh | 39.09 | 5.23 |
69 | gamma-Sitosterol | 39.603 | 8.20 |
70 | 24-Norursa-3,12-diene | 39.841 | 2.97 |
Sample | Pre-Injection Paw Circumference (cm) | Post-Injection Paw Circumference (cm) (% of Inhibition) | |||
---|---|---|---|---|---|
1st Hour | 2nd Hour | 3rd Hour | 4th Hour | ||
Control | 0.98 ± 0.06 | 1.5 ± 0.04 | 1.5 ± 0.04 | 1.48 ± 0.04 | 1.5 ± 0.05 |
Indomethacin | 1.02 ± 0.04 | 1.26 ± 0.05 ** (53.85) | 1.24 ± 0.05 ** (57.69) | 1.12 ± 0.04 *** (80) | 1.04 ± 0.02 *** (96.15) |
ME-400 | 1.26 ± 0.02 | 1.32 ± 0.04 (88.46) | 1.3 ± 0.03 * (92.31) | 1.3 ± 0.03 * (92.31) | 1.3 ± 0.03 ** (92.31) |
ME-200 | 1.26 ± 0.05 | 1.36 ± 0.05 (80.77) | 1.34 ± 0.04 (84.62) | 1.32 ± 0.04 * (88) | 1.3 ± 0.03 ** (92.31) |
NH-400 | 1.14 ± 0.02 | 1.32 ± 0.02 (65.38) | 1.3 ± 0.03 * (69.23) | 1.28 ± 0.02 ** (72) | 1.22 ± 0.04 *** (84.62) |
NH-200 | 1.18 ± 0.04 | 1.38 ± 0.04 (61.54) | 1.36 ± 0.02 (65.38) | 1.32 ± 0.02 * (72) | 1.24 ± 0.02 *** (88.46) |
DCM-400 | 1.16 ± 0.04 | 1.3 ± 0.07 * (73.08) | 1.28 ± 0.07 ** (76.92) | 1.26 ± 0.05 ** (80) | 1.22 ± 0.04 *** (88.46) |
DCM-200 | 1.18 ± 0.02 | 1.36 ± 0.05 (65.38) | 1.34 ± 0.05 (69.2307) | 1.32 ± 0.05 * (72) | 1.24 ± 0.02 *** (88.46) |
EA-400 | 1.14 ± 0.07 | 1.38 ± 0.06 (53.85) | 1.36 ± 0.04 (57.69) | 1.3 ± 0.04 * (68) | 1.24 ± 0.05 ** (80.77) |
EA-200 | 1.16 ± 0.05 | 1.4 ± 0.04 (53.85) | 1.38 ± 0.04 (57.69) | 1.36 ± 0.04 (60) | 1.28 ± 0.04 (76.92) |
Group | Number of Writhing (Mean ± SEM) | % of Inhibition of Writhing |
---|---|---|
Control | 46.9 ± 0.51 | 0 |
Diclofenac | 5.6 ± 0.24 *** | 88.06 |
ME-200 | 17.9 ± 0.33 *** | 61.83 |
ME-400 | 7.8 ± 0.2 *** | 83.37 |
NH-200 | 28.7 ± 0.58 ** | 38.81 |
NH-400 | 9.1 ± 0.24 *** | 80.60 |
DCM-200 | 38.7 ± 0.2 | 17.48 |
DCM-400 | 21.5 ± 0.22 ** | 54.16 |
EA-200 | 16.2 ± 0.37 *** | 65.46 |
EA-400 | 11.8 ± 0.37 *** | 74.84 |
Sample and Dose (mg/kg) | Reaction Times in Seconds (Mean ± SEM) and %MPE | ||||
---|---|---|---|---|---|
Pre-Treatment | 30 min | 60 min | 90 min | 120 min | |
Control | 3.5 ± 0.39 | 3.95 ± 0.14 (3.91) | 3.44 ± 0.13 (−0.47) | 3.87 ± 0.17 (3.23) | 3.86 ± 0.11 *** (3.13) |
Pentazocine-10 | 3.31 ± 0.47 | 7.73 ± 0.59 *** (37.73) | 8.89 ± 0.59 *** (47.7) | 10.23 ± 0.62 *** (59.19) | 9.69 ± 0.45 *** (54.58) |
ME-200 | 3.1 ± 0.15 | 9.05 ± 1.17 *** (50.03) | 9.84 ± 1.17 *** (56.64) | 9.29 ± 1.04 *** (52.03) | 9.13 ± 1.17 *** (50.71) |
ME-400 | 2.83 ± 0.30 | 7.26 ± 0.37 *** (36.39) | 7.78 ± 0.37 *** (40.73) | 9.09 ± 0.17 *** (51.42) | 9.43 ± 0.69 *** (54.21) |
NH-200 | 2.47 ± 0.35 | 7.34 ± 0.15 *** (38.89) | 8.43 ± 0.15 *** (47.59) | 9.03 ± 0.65 *** (52.36) | 9.01 ± 0.22 *** (52.22) |
NH-400 | 2.70 ± 0.42 | 7.83 ± 0.35 *** (41.69) | 7.89 ± 0.35 *** (42.19) | 9.29 ± 0.48 *** (53.56) | 9.16 ± 0.19 *** (52.47) |
EA-200 | 2.95 ± 0.41 | 7.15 ± 0.17 ** (34.87) | 8.13 ± 0.17 *** (43.02) | 8.82 ± 0.28 *** (48.73) | 8.83 ± 0.26 *** (48.76) |
EA-400 | 2.93 ± 0.34 | 7.45 ± 0.37 *** (37.46) | 8.27 ± 0.37 *** (44.22) | 8.76 ± 0.35 *** (48.28) | 9.02 ± 0.32 *** (50.44) |
DCM-200 | 3.46 ± 0.40 | 7.24 ± 0.28 ** (32.72) | 8.30 ± 0.28 *** (41.96) | 8.23 ± 0.33 *** (41.30) | 8.73 ± 0.28 *** (45.70) |
DCM-400 | 3.18 ± 0.26 | 7.36 ± 0.41 *** (35.42) | 8.28 ± 0.41 *** (43.18) | 8.48 ± 0.46 *** (44.89) | 9.01 ± 0.33 *** (49.37) |
Sample | %Elongation of Latency Time | |||
---|---|---|---|---|
30 min | 60 min | 90 min | 120 min | |
Control | - | - | - | - |
Standard | 48.93 | 61.28 | 62.20 | 60.22 |
ME-200 | 56.41 | 65.01 | 58.36 | 57.77 |
ME-400 | 45.62 | 55.78 | 57.43 | 59.09 |
NH-200 | 46.25 | 59.18 | 57.17 | 57.21 |
NH-400 | 49.60 | 56.39 | 58.36 | 57.89 |
EA-200 | 44.84 | 57.69 | 56.17 | 56.32 |
EA-400 | 47.06 | 58.38 | 55.84 | 57.25 |
DCM-200 | 45.47 | 58.54 | 52.98 | 55.85 |
DCM-400 | 46.41 | 58.44 | 54.41 | 57.22 |
Compounds Name | Absorption | Distribution | Metabolism | Excretion | Toxicity | Drug Likeliness | Bioavai- Lability | |||
---|---|---|---|---|---|---|---|---|---|---|
Water Solubility (log mol/L) | Intestinal Absorption (Human) (%Absorbed) | VDss (Human) (log L/kg) | BBB Permeability (log BB) | CYP3A4 Substrate | Total Clearance (log mL/min/kg) | AMES Toxicity | Hepato- Toxicity | |||
Phenol, 3,5-bis(1,1-dimethylethyl)- | −4.972 | 94.942 | 0.047 | 0.297 | No | 0.733 | No | No | - | - |
Pentadecanoic acid, methyl ester | −5.874 | 95.372 | 0.508 | 0.772 | No | 1.629 | No | No | Yes | 0.55 |
Neophytadiene | −8.559 | 92.85 | 0.692 | 0.983 | Yes | 1.764 | No | No | Yes | 0.55 |
3,7,11,15-Tetramethyl-2-hexadecen-1-ol | −6.558 | 91.793 | 0.127 | −0.16 | Yes | 1.798 | No | No | Yes | 0.55 |
Hexadecanoic acid, methyl ester | −6.927 | 92.335 | 0.334 | 0.749 | Yes | 1.861 | No | No | Yes | 0.55 |
n-Hexadecanoic acid | −5.562 | 92.004 | −0.543 | −0.111 | Yes | 1.763 | No | No | Yes | 0.85 |
9,12-Octadecadienoic acid (Z,Z)-, methyl ester | −7.343 | 92.66 | 0.272 | 0.767 | Yes | 2.032 | No | No | - | - |
8,11,14-Docosatrienoic acid, methyl ester | −7.902 | 91.792 | 0.152 | 0.832 | Yes | 2.211 | No | No | Yes | 0.55 |
11-Octadecenoic acid, methyl ester | −7.436 | 92.154 | 0.299 | 0.777 | Yes | 1.98 | No | No | Yes | 0.55 |
Phytol | −7.535 | 90.643 | 0.385 | 0.793 | Yes | 1.686 | No | No | Yes | 0.55 |
10E,12Z-Octadecadienoic acid | −5.862 | 92.329 | −0.587 | −0.142 | Yes | 1.931 | No | Yes | - | - |
9,11-Octadecadienoic acid, methyl ester, (E,E)- | −7.343 | 92.66 | 0.272 | 0.767 | Yes | 2.028 | No | No | Yes | 0.55 |
9-Octadecenamide, (Z)- | −7.074 | 90.218 | 0.281 | −0.389 | Yes | 1.959 | No | No | Yes | 0.55 |
Aciphyllene | −5.547 | 96.209 | 0.687 | 0.767 | No | 1.217 | No | No | Yes | 0.55 |
Lupeol | −5.861 | 95.782 | 0 | 0.726 | Yes | 0.153 | No | No | Yes | 0.55 |
9,19-Cyclolanost-25-ene-3,24-diol | −5.626 | 93.699 | −0.192 | −0.357 | Yes | 0.344 | No | Yes | Yes | 0.55 |
Lup-20(29)-en-3-ol, acetate, (3beta)- | −6.006 | 97.894 | −0.12 | 0.644 | Yes | 0.06 | No | No | Yes | 0.55 |
Epilupeol | −5.861 | 95.782 | 0 | 0.726 | Yes | 0.153 | No | No | Yes | 0.55 |
Lupeol, methyl ether | −6.144 | 97.862 | 0.043 | 0.832 | Yes | 0.18 | No | No | Yes | 0.55 |
beta-Amyrone | −6.674 | 97.473 | 0.224 | 0.693 | Yes | −0.096 | No | No | Yes | 0.55 |
Stigmasterol | −6.682 | 94.97 | 0.178 | 0.771 | Yes | 0.618 | No | No | Yes | 0.55 |
gamma-Sitosterol | −6.773 | 94.464 | 0.193 | 0.193 | Yes | 0.628 | No | No | Yes | 0.55 |
24-Norursa-3,12-diene | −6.925 | 95.778 | 0.47 | 0.857 | Yes | 0.235 | No | No | Yes | 0.55 |
Compound Name | Biological Activity | |||||
---|---|---|---|---|---|---|
Anti-Inflammatory | Analgesic | Thrombolytic | ||||
Pa | Pi | Pa | Pi | Pa | Pi | |
Phenol, 3,5-bis(1,1-dimethylethyl)- | 0.610 | 0.029 | 0.489 | 0.043 | 0.283 | 0.013 |
Pentadecanoic acid, methyl ester | 0.510 | 0.054 | 0.538 | 0.019 | 0.322 | 0.007 |
Neophytadiene | 0.286 | 0.082 | 0.391 | 0.116 | 0.170 | 0.117 |
3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 0.300 | 0.182 | 0.458 | 0.070 | 0.346 | 0.005 |
Hexadecanoic acid, methyl ester | 0.510 | 0.054 | 0.538 | 0.019 | 0.322 | 0.007 |
n-Hexadecanoic acid | 0.515 | 0.052 | 0.526 | 0.023 | 0.326 | 0.006 |
9,12-Octadecadienoic acid (Z,Z)-, methyl ester | 0.728 | 0.013 | 0.593 | 0.008 | 0.328 | 0.006 |
8,11,14-Docosatrienoic acid, methyl ester | 0.728 | 0.013 | 0.593 | 0.008 | 0.328 | 0.006 |
11-Octadecenoic acid, methyl ester | 0.607 | 0.030 | 0.573 | 0.011 | 0.353 | 0.005 |
Phytol | 0.458 | 0.070 | 0.300 | 0.182 | 0.346 | 0.005 |
10E,12Z-Octadecadienoic acid | 0.675 | 0.019 | 0.540 | 0.018 | 0.331 | 0.006 |
9,11-Octadecadienoic acid, methyl ester, (E,E)- | 0.664 | 0.020 | 0.552 | 0.015 | 0.327 | 0.006 |
9-Octadecenamide, (Z)- | 0.384 | 0.104 | 0.598 | 0.008 | 0.295 | 0.010 |
Aciphyllene | 0.376 | 0.108 | 0.425 | 0.090 | - | - |
Lupeol | 0.708 | 0.015 | 0.726 | 0.003 | 0.274 | 0.015 |
9,19-Cyclolanost-25-ene-3,24-diol | 0.681 | 0.018 | 0.485 | 0.046 | 0.152 | 0.146 |
Lup-20(29)-en-3-ol, acetate, (beta)- | 0.737 | 0.012 | 0.679 | 0.004 | 0.226 | 0.043 |
Epilupeol | 0.708 | 0.015 | 0.726 | 0.003 | 0.274 | 0.015 |
Lupeol, methyl ether | 0.713 | 0.014 | 0.641 | 0.005 | 0.231 | 0.039 |
beta-Amyrone | 0.859 | 0.005 | 0.785 | 0.002 | 0.325 | 0.006 |
Stigmasterol | 0.542 | 0.045 | 0.601 | 0.008 | - | - |
gamma-Sitosterol | 0.467 | 0.067 | 0.558 | 0.014 | - | - |
24-Norursa-3,12-diene | 0.900 | 0.004 | 0.606 | 0.007 | 0.219 | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahar, A.; Khandakar, M.J.; Mamun, M.J.I.; Rasel, M.H.; Ihsan, A.B.; Raj, A.; Ahmed, S.; Hossain, M.K.; Hasan, M.R.; Saito, T. Investigation of Analgesic, Anti-Inflammatory, and Thrombolytic Effects of Methanolic Extract and Its Fractions of Dischidia bengalensis: In Vitro and In Vivo Studies with In Silico Interventions. Molecules 2025, 30, 3724. https://doi.org/10.3390/molecules30183724
Nahar A, Khandakar MJ, Mamun MJI, Rasel MH, Ihsan AB, Raj A, Ahmed S, Hossain MK, Hasan MR, Saito T. Investigation of Analgesic, Anti-Inflammatory, and Thrombolytic Effects of Methanolic Extract and Its Fractions of Dischidia bengalensis: In Vitro and In Vivo Studies with In Silico Interventions. Molecules. 2025; 30(18):3724. https://doi.org/10.3390/molecules30183724
Chicago/Turabian StyleNahar, Ainun, Md. Jahin Khandakar, Md. Jahirul Islam Mamun, Md. Hossain Rasel, Abu Bin Ihsan, Asef Raj, Saika Ahmed, Mohammed Kamrul Hossain, Md Riasat Hasan, and Takashi Saito. 2025. "Investigation of Analgesic, Anti-Inflammatory, and Thrombolytic Effects of Methanolic Extract and Its Fractions of Dischidia bengalensis: In Vitro and In Vivo Studies with In Silico Interventions" Molecules 30, no. 18: 3724. https://doi.org/10.3390/molecules30183724
APA StyleNahar, A., Khandakar, M. J., Mamun, M. J. I., Rasel, M. H., Ihsan, A. B., Raj, A., Ahmed, S., Hossain, M. K., Hasan, M. R., & Saito, T. (2025). Investigation of Analgesic, Anti-Inflammatory, and Thrombolytic Effects of Methanolic Extract and Its Fractions of Dischidia bengalensis: In Vitro and In Vivo Studies with In Silico Interventions. Molecules, 30(18), 3724. https://doi.org/10.3390/molecules30183724