Dual Modulatory Effects of Phytochemicals from Iris ×germanica L. var. florentina Dykes. Rhizome Extract on Melanogenesis
Abstract
1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis
2.2. Identification of Melanogenesis-Modulating Phytochemicals via Bioassay-Direct Fractionation
2.3. Confirmation of Melanogenesis-Modulating Activity of Purified Phytochemicals
2.4. Evaluation of Hydrophilic and Lipophilic Extracts on Melanin Synthesis in 3D Skin Equivalent Models
3. Materials and Methods
3.1. Plant Material and Authetication
3.2. Extraction
3.3. Reagents
3.4. Instrumentation
3.5. LC-MS Analysis
3.6. Bioassay Directed Fractionation
3.7. Cell Culture
3.8. Melanin Contents of B16 Cells
3.9. Skin Equivalent Tissue Maintenance and Treatment
3.10. Melanin Content of Skin Equivalent Tissue
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SC-CO2 | Supercritical carbon dioxide |
LC | Liquid chromatography |
MS | Mass spectrometry |
UV | Ultraviolet |
DHA | Dihydroxyacetone |
α-MSH | Alpha melanocyte-stimulating hormone |
MC1R | Melanocortin 1 receptor |
SIK | Salt-inducible kinase |
MITF | Microphthalmia-associated transcription factor |
TRPM1 | Transient receptor potential cation channel subfamily M member 1 |
IBMX | 3-isobutyl-1-methylxanthine |
cAMP | Cyclic adenosine monophosphate |
PAR-2 | Protease-activated receptor 2 |
UV-Vis | Ultraviolet-Visible |
BDF | Bioassay directed fractionation |
HPLC | High-performance liquid chromatography |
PTU | Phenylthiourea |
MEL | MelanoDerm™ |
MEL-B | MelanoDerm™ derived from African American skin |
HPTLC | High-performance thin-layer chromatography |
SNPs | Single nucleotide polymorphisms |
DMSO | Dimethyl sulfoxide |
NMR | Nuclear magnetic resonance |
DMEM | Dulbecco’s modified eagle’s medium |
FBS | Fetal bovine serum |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
References
- Costin, G.E.; Hearing, V.J. Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2007, 21, 976–994. [Google Scholar] [CrossRef]
- Ali, S.A.; Naaz, I.; Zaidi, K.U.; Ali, A.S. Recent Updates in Melanocyte Function: The Use of Promising Bioactive Compounds for the Treatment of Hypopigmentary Disorders. Mini Rev. Med. Chem. 2017, 17, 785–798. [Google Scholar] [CrossRef]
- Rees, J.L. The genetics of sun sensitivity in humans. Am. J. Hum. Genet. 2004, 75, 739–751. [Google Scholar] [CrossRef]
- Alaluf, S.; Atkins, D.; Barrett, K.; Blount, M.; Carter, N.; Heath, A. Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin. Pigment Cell Res. 2002, 15, 112–118. [Google Scholar] [CrossRef]
- Horibe, I.; Satoh, Y.; Shiota, Y.; Kumagai, A.; Horike, N.; Takemori, H.; Uesato, S.; Sugie, S.; Obata, K.; Kawahara, H.; et al. Induction of melanogenesis by 4′-O-methylated flavonoids in B16F10 melanoma cells. J. Nat. Med. 2013, 67, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Baswan, S.M.; Leverett, J.; Pawelek, J. Clinical evaluation of the lightening effect of cytidine on hyperpigmented skin. J. Cosmet. Dermatol. 2019, 18, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Baswan, S.M.; Yim, S.; Leverett, J.; Scholten, J.; Pawelek, J. Cytidine decreases melanin content in a reconstituted three-dimensional human epidermal model. Arch. Dermatol. Res. 2019, 311, 249–250. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.F.; Huang, C.C.; Lee, M.Y.; Lin, Y.S. Fermented broth in tyrosinase- and melanogenesis inhibition. Molecules 2014, 19, 13122–13135. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- Warthan, M.M.; Uchida, T.; Wagner, R.F., Jr. UV light tanning as a type of substance-related disorder. Arch. Dermatol. 2005, 141, 963–966. [Google Scholar] [CrossRef]
- Fu, J.M.; Dusza, S.W.; Halpern, A.C. Sunless tanning. J. Am. Acad. Dermatol. 2004, 50, 706–713. [Google Scholar] [CrossRef]
- Garone, M.; Howard, J.; Fabrikant, J. A review of common tanning methods. J. Clin. Aesthetic Dermatol. 2015, 8, 43–47. [Google Scholar]
- Hadley, M.E.; Dorr, R.T. Melanocortin peptide therapeutics: Historical milestones, clinical studies and commercialization. Peptides 2006, 27, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Foretz, M.; Marion, A.; Campbell, D.G.; Gourlay, R.; Boudaba, N.; Tournier, E.; Titchenell, P.; Peggie, M.; Deak, M.; et al. The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nat. Commun. 2014, 5, 4535. [Google Scholar] [CrossRef] [PubMed]
- Passeron, T.; Namiki, T.; Passeron, H.J.; Le Pape, E.; Hearing, V.J. Forskolin protects keratinocytes from UVB-induced apoptosis and increases DNA repair independent of its effects on melanogenesis. J. Investig. Dermatol. 2009, 129, 162–166. [Google Scholar] [CrossRef]
- Soderling, S.H.; Beavo, J.A. Regulation of cAMP and cGMP signaling: New phosphodiesterases and new functions. Curr. Opin. Cell Biol. 2000, 12, 174–179. [Google Scholar] [CrossRef]
- McNaughton, B.R.; Gareiss, P.C.; Jacobs, S.E.; Fricke, A.F.; Scott, G.A.; Miller, B.L. A potent activator of melanogenesis identified from small-molecule screening. ChemMedChem Chem. Enabling Drug Discov. 2009, 4, 1583–1589. [Google Scholar] [CrossRef]
- Rachmin, I.; Ostrowski, S.M.; Weng, Q.Y.; Fisher, D.E. Topical treatment strategies to manipulate human skin pigmentation. Adv. Drug Deliv. Rev. 2020, 153, 65–71. [Google Scholar] [CrossRef]
- Gillbro, J.M.; Olsson, M.J. The melanogenesis and mechanisms of skin-lightening agents—existing and new approaches. Int. J. Cosmet. Sci. 2011, 33, 210–221. [Google Scholar] [CrossRef]
- Bae, Y.C.; Rettig, S.; Weiss, E.; Bernstein, L.; Geronemus, R. Treatment of Post-Inflammatory Hyperpigmentation in Patients With Darker Skin Types Using a Low Energy 1927 nm Non-Ablative Fractional Laser: A Retrospective Photographic Review Analysis. Lasers Surg. Med. 2020, 52, 7–12. [Google Scholar] [CrossRef]
- Smit, N.; Vicanova, J.; Pavel, S. The hunt for natural skin whitening agents. Int. J. Mol. Sci. 2009, 10, 5326–5349. [Google Scholar] [CrossRef]
- Hashimoto, A.; Ichihashi, M.; Mishima, Y. The mechanism of depigmentation by hydroquinone: A study on suppression and recovery processes of tyrosinase activity in the pigment cells in vivo and in vitro. Nihon Hifuka Gakkai zasshi. Jpn. J. Dermatol. 1984, 94, 797–804. [Google Scholar]
- Huang, C.H.; Sung, H.C.; Hsiao, C.Y.; Hu, S.; Ko, Y.S. Transdermal delivery of three vitamin C derivatives by Er:YAG and carbon dioxide laser pretreatment. Lasers Med. Sci. 2013, 28, 807–814. [Google Scholar] [CrossRef]
- Goncalez, M.L.; Correa, M.A.; Chorilli, M. Skin delivery of kojic acid-loaded nanotechnology-based drug delivery systems for the treatment of skin aging. BioMed Res. Int. 2013, 2013, 271276. [Google Scholar] [CrossRef]
- Maeda, K.; Fukuda, M. Arbutin: Mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther. 1996, 276, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Breathnach, A.C.; Nazzaro-Porro, M.; Passi, S.; Zina, G. Azelaic acid therapy in disorders of pigmentation. Clin. Dermatol. 1989, 7, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Ruiz, C.V.; Berna, J.; Tudela, J.; Varon, R.; Garcia-Canovas, F. Action of ellagic acid on the melanin biosynthesis pathway. J. Dermatol. Sci. 2016, 82, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Tse, T.W.; Hui, E. Tranexamic acid: An important adjuvant in the treatment of melasma. J. Cosmet. Dermatol. 2013, 12, 57–66. [Google Scholar] [CrossRef]
- Stratford, M.R.; Ramsden, C.A.; Riley, P.A. Mechanistic studies of the inactivation of tyrosinase by resorcinol. Bioorganic Med. Chem. 2013, 21, 1166–1173. [Google Scholar] [CrossRef]
- Seiberg, M.; Paine, C.; Sharlow, E.; Andrade-Gordon, P.; Costanzo, M.; Eisinger, M.; Shapiro, S.S. The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp. Cell Res. 2000, 254, 25–32. [Google Scholar] [CrossRef]
- Hakozaki, T.; Minwalla, L.; Zhuang, J.; Chhoa, M.; Matsubara, A.; Miyamoto, K.; Greatens, A.; Hillebrand, G.G.; Bissett, D.L.; Boissy, R.E. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br. J. Dermatol. 2002, 147, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Diwakar, G.; Klump, V.; Lazova, R.; Pawelek, J. Evidence for glycosylation as a regulator of the pigmentary system: Key roles of sialyl(alpha2-6)gal/GalNAc-terminated glycans in melanin synthesis and transfer. Glycoconj. J. 2015, 32, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Iris ×germanica var. florentina (L.) Dykes in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist Dataset. 2023. Available online: https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c (accessed on 20 August 2025).
- Martini, G.; Viciani, D. What happened to Linnaeus’s Iris florentina? Re-evaluation of this taxon at species level. Taxon 2018, 67, 395–400. [Google Scholar] [CrossRef]
- Bicchi, C.; Joulain, D. A comprehensive review on essential oils and extracts from Iris rhizomes. Phytochem. Rev. 2025, 24, 1629–1665. [Google Scholar] [CrossRef]
- Cheraghi Niroumand, M.; Farzaei, M.H.; Karimpour Razkenari, E.; Amin, G.; Khanavi, M.; Akbarzadeh, T.; Shams-Ardekani, M.R. An Evidence-Based Review on Medicinal Plants Used as Insecticide and Insect Repellent in Traditional Iranian Medicine. Iran. Red Crescent Med. J. 2016, 18, e22361. [Google Scholar] [CrossRef]
- Tsukida, K.; Saiki, K.; Ito, M. New isoflavone glycosides from Iris florentina. Phytochemistry 1973, 12, 2318–2319. [Google Scholar] [CrossRef]
- Yokosuka, A.; Koyama, Y.; Mimaki, Y. Chemical Constituents of the Underground Parts of Iris florentina and their Cytotoxic Activity. Nat. Prod. Commun. 2015, 10, 955–958. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Fujita, N.; Yokosuka, A.; Mimaki, Y. Isoflavone Constituents of the Underground Parts of Iris florentina and Their Inhibitory Activity on the Formation of Advanced Glycation End Products. Chem. Pharm. Bull. 2025, 73, 168–172. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, J.; Xiao, K.; Pointer, M.; Li, C.; Wuerger, S. Skin coloration is a culturally-specific cue for attractiveness, healthiness, and youthfulness in observers of Chinese and western European descent. PLoS ONE 2021, 16, e0259276. [Google Scholar] [CrossRef]
- Hoang, L.; Benes, F.; Fenclova, M.; Kronusova, O.; Svarcova, V.; Rehorova, K.; Svecova, E.B.; Vosatka, M.; Hajslova, J.; Kastanek, P.; et al. Phytochemical Composition and In Vitro Biological Activity of Iris spp. (Iridaceae): A New Source of Bioactive Constituents for the Inhibition of Oral Bacterial Biofilms. Antibiotics 2020, 9, 403. [Google Scholar] [CrossRef]
- Ibrahim, S.; Al-Ahdal, A.; Khedr, A.; Mohamed, G. Antioxidant α-amylase inhibitors flavonoids from Iris germanica rhizomes. Rev. Bras. Farmacogn. 2017, 27, 170–174. [Google Scholar] [CrossRef]
- Amin, H.I.M.; Hussain, F.H.S.; Najmaldin, S.K.; Thu, Z.M.; Ibrahim, M.F.; Gilardoni, G.; Vidari, G. Phytochemistry and Biological Activities of Iris Species Growing in Iraqi Kurdistan and Phenolic Constituents of the Traditional Plant Iris postii. Molecules 2021, 26, 264. [Google Scholar] [CrossRef]
- Khatib, S.; Faraloni, C.; Bouissane, L. Exploring the Use of Iris Species: Antioxidant Properties, Phytochemistry, Medicinal and Industrial Applications. Antioxidants 2022, 11, 526. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, J.; Son, S.R.; Kim, J.Y.; Choi, J.H.; Jang, D.S. Chemical Constituents of the Flowers of Pueraria lobata and Their Cytotoxic Properties. Plants 2022, 11, 1651. [Google Scholar] [CrossRef]
- Miyake, Y.; Ito, H.; Yoshida, T. Identification of iridals as piscicidal components of Iridaceous plants and their conformations associated with CD spectra. Can. J. Chem. 2011, 75, 734–741. [Google Scholar] [CrossRef]
- Koul, N.; Sharma, V.; Dixit, D.; Ghosh, S.; Sen, E. Bicyclic triterpenoid Iripallidal induces apoptosis and inhibits Akt/mTOR pathway in glioma cells. BMC Cancer 2010, 10, 328. [Google Scholar] [CrossRef]
- Schutz, C.; Quitschau, M.; Hamburger, M.; Potterat, O. Profiling of isoflavonoids in Iris germanica rhizome extracts by microprobe NMR and HPLC-PDA-MS analysis. Fitoterapia 2011, 82, 1021–1026. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef]
- Chang, N.F.; Chen, Y.S.; Lin, Y.J.; Tai, T.H.; Chen, A.N.; Huang, C.H.; Lin, C.C. Study of Hydroquinone Mediated Cytotoxicity and Hypopigmentation Effects from UVB-Irradiated Arbutin and DeoxyArbutin. Int. J. Mol. Sci. 2017, 18, 969. [Google Scholar] [CrossRef]
- Yim, S.; Lee, J.; Jo, H.; Scholten, J.; Willingham, R.; Nicoll, J.; Baswan, S.M. Chrysanthemum Morifolium Extract And Ascorbic Acid-2-Glucoside (AA2G) Blend Inhibits UVA-Induced Delayed Cyclobutane Pyrimidine Dimer (CPD) Production In Melanocytes. Clin. Cosmet. Investig. Dermatol. 2019, 12, 823–832. [Google Scholar] [CrossRef]
- Fotakis, G.; Timbrell, J.A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 2006, 160, 171–177. [Google Scholar] [CrossRef]
- Ni-Komatsu, L.; Tong, C.; Chen, G.; Brindzei, N.; Orlow, S.J. Identification of quinolines that inhibit melanogenesis by altering tyrosinase family trafficking. Mol. Pharmacol. 2008, 74, 1576–1586. [Google Scholar] [CrossRef]
- Ashour, A.; Elbermawi, A.; Amen, Y.; Allam, A.E.; Ikeda, H.; Nagata, M.; Kumagae, K.; Azuma, T.; Taguchi, A.; Takemoto, T.; et al. Melanin Synthesis Inhibition Activity of Compounds Isolated from Bamboo Shoot Skin (Phyllostachys pubescens). Molecules 2022, 28, 23. [Google Scholar] [CrossRef]
- Takeyama, R.; Takekoshi, S.; Nagata, H.; Osamura, R.Y.; Kawana, S. Quercetin-induced melanogenesis in a reconstituted three-dimensional human epidermal model. J. Mol. Histol. 2004, 35, 157–165. [Google Scholar] [CrossRef]
Peak No. | Compound | CAS No. | tR (min) | Molecular Formula | Measured [M+H]+ | Calculated [M+H]+ | Mass Error (ppm) | Activities |
---|---|---|---|---|---|---|---|---|
1 | Irisolone 4′-O-diglucoside | 50938-05-1 | 3.36 | C29H32O16 | 637.1769 | 637.1763 | 0.9 | - |
2 | Iridin | 491-74-7 | 3.49 | C24H26O13 | 523.1449 | 523.1452 | −0.6 | Anti-inflammatory [43], α-amylase inhibitory [42] |
3 | Germanaism B | 123648-56-6 | 3.65 | C23H22O11 | 475.1237 | 475.1240 | −0.6 | Antioxidant, antimicrobial [41,44] |
4 | Germanaism A | 471271-89-3 | 3.69 | C24H24O12 | 505.1343 | 505.1346 | −0.6 | Cytotoxic [43] |
5 | Irilone 4′-O-glucoside | 50868-47-8 | 3.95 | C22H20O11 | 461.1073 | 461.1084 | −2.4 | - |
6 | Irisolidone 7-O-glucoside | 126308-74-5 | 4.11 | C23H24O11 | 477.1398 | 477.1397 | 0.2 | Antiproliferative [45] |
7 | Irigenin | 548-76-5 | 4.57 | C18H16O8 | 361.0914 | 361.0923 | −2.5 | Anti-inflammatory, α-amylase inhibitory, antioxidant, CYP1A-inhibitory [44] |
8 | Irisolidone | 2345-17-7 | 5.4 | C17H14O6 | 315.0868 | 315.0869 | −0.3 | Antioxidant, anti-inflammatory, antidiabetic, CYP1A-inhibitory [44] |
9 | Iriflorental | 86293-26-7 | 7.52 | C31H50O4 | 487.3780 | 487.3787 | −1.4 | Piscicidal [46] |
10 | Iripallidal | 86293-27-8 | 7.68 | C31H50O4 | 487.3779 | 487.3787 | −1.6 | Antiproliferative [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yim, S.; Rozga, L.; Missler, S.; Sitnikov, D.; Liu, X.; Baswan, S. Dual Modulatory Effects of Phytochemicals from Iris ×germanica L. var. florentina Dykes. Rhizome Extract on Melanogenesis. Molecules 2025, 30, 3626. https://doi.org/10.3390/molecules30173626
Yim S, Rozga L, Missler S, Sitnikov D, Liu X, Baswan S. Dual Modulatory Effects of Phytochemicals from Iris ×germanica L. var. florentina Dykes. Rhizome Extract on Melanogenesis. Molecules. 2025; 30(17):3626. https://doi.org/10.3390/molecules30173626
Chicago/Turabian StyleYim, Sunghan, Lisa Rozga, Steve Missler, Dmitri Sitnikov, Xiaozhong Liu, and Sudhir Baswan. 2025. "Dual Modulatory Effects of Phytochemicals from Iris ×germanica L. var. florentina Dykes. Rhizome Extract on Melanogenesis" Molecules 30, no. 17: 3626. https://doi.org/10.3390/molecules30173626
APA StyleYim, S., Rozga, L., Missler, S., Sitnikov, D., Liu, X., & Baswan, S. (2025). Dual Modulatory Effects of Phytochemicals from Iris ×germanica L. var. florentina Dykes. Rhizome Extract on Melanogenesis. Molecules, 30(17), 3626. https://doi.org/10.3390/molecules30173626