A Pre-Formulation Study for Delivering Nucleic Acids as a Possible Gene Therapy Approach for Spinocerebellar Ataxia Disorders
Abstract
1. Introduction
2. Results and Discussion
2.1. Liposomes
2.1.1. Group I Liposomes
2.1.2. Group II Liposomes
2.1.3. Group III Liposomes
3. Materials and Methods
3.1. Materials
3.2. Liposomes Preparation
3.3. Dimensional Analysis
3.4. ζ-Potential Analysis
3.5. Electrophoretic Run of DNA/Liposomes Complexes (Lipoplex)
3.6. Cell Culture and Cytotoxicity Study (MTT)
3.7. Transfection Studies: pCMV-GFP and mRNA-GFP
3.8. eGFP Transfection
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CH | Cholesterol |
DDAC | Dioctadecyl-dimethylammonium chloride |
DSPE-PEG | Pegylated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine |
PC | Phosphatidylcholine |
GFP | Green fluorescent protein |
PE | Phosphatidylethanolamine |
SCAs | Spinocerebellar ataxia disorders |
References
- Lombardo, D.; Kiselev, M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022, 14, 543. [Google Scholar] [CrossRef]
- Thirumal, V.; Aravindhan, V.; Ac, N. Liposomal carriers: Development, evaluation, applications with its regulatory aspects. World J. Adv. Res. Rev. 2023, 20, 324–344. [Google Scholar] [CrossRef]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Cullis, P.R.; Felgner, P.L. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat. Rev. Drug Discov. 2024, 23, 709–722. [Google Scholar] [CrossRef]
- Zhi, D.; Zhang, S.; Wang, B.; Zhao, Y.; Yang, B.; Yu, S. Transfection efficiency of cationic lipids with different hydrophobic domains in gene delivery. Bioconjug. Chem. 2010, 21, 563–577. [Google Scholar] [CrossRef]
- Majzoub, R.N.; Ewert, K.K.; Safinya, C.R. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150129. [Google Scholar] [CrossRef]
- Le Bihan, O.; Chèvre, R.; Mornet, S.; Garnier, B.; Pitard, B.; Lambert, O. Probing the in vitro mechanism of action of cationic lipid/DNA lipoplexes at a nanometric scale. Nucleic Acids Res. 2011, 39, 1595–1609. [Google Scholar] [CrossRef]
- Pal Singh, P.; Vithalapuram, V.; Metre, S.; Kodipyaka, R. Lipoplex-based therapeutics for effective oligonucleotide delivery: A compendious review. J. Liposome Res. 2020, 30, 313–335. [Google Scholar] [CrossRef]
- Hu, D.; Fumoto, S.; Yoshikawa, N.; Peng, J.; Miyamoto, H.; Tanaka, M.; Nishida, K. Diffusion coefficient of cationic liposomes during lipoplex formation determines transfection efficiency in HepG2 cells. Int. J. Pharm. 2023, 637, 122881. [Google Scholar] [CrossRef]
- Hoekstra, D.; Rejman, J.; Wasungu, L.; Shi, F.; Zuhorn, I. Gene delivery by cationic lipids: In and out of an endosome. Biochem. Soc. Trans. 2007, 35, 68–71. [Google Scholar] [CrossRef]
- Magalhães, S.; Duarte, S.; Monteiro, G.A.; Fernandes, F. Quantitative Evaluation of DNA Dissociation from Liposome Carriers and DNA Escape from Endosomes during Lipid-Mediated Gene Delivery. Hum. Gene Ther. Methods 2014, 25, 303–313. [Google Scholar] [CrossRef]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef]
- Tenchov, R.; Sasso, J.M.; Zhou, Q.A. PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjug. Chem. 2023, 34, 941–960. [Google Scholar] [CrossRef]
- Mengstie, M.A.; Wondimu, B.Z. Mechanism and applications of crispr/cas-9-mediated genome editing. Biol. Targets Ther. 2021, 15, 353–361. [Google Scholar] [CrossRef]
- Pellerin, D.; Iruzubieta, P.; Xu, I.R.L.; Danzi, M.C.; Cortese, A.; Synofzik, M.; Houlden, H.; Zuchner, S.; Brais, B. Recent Advances in the Genetics of Ataxias: An Update on Novel Autosomal Dominant Repeat Expansions. Curr. Neurol. Neurosci. Rep. 2025, 25, 16. [Google Scholar] [CrossRef]
- Sousa, D.A.; Gaspar, R.; Ferreira, C.J.O.; Baltazar, F.; Rodrigues, L.R.; Silva, B.F.B. In Vitro CRISPR/Cas9 Transfection and Gene-Editing Mediated by Multivalent Cationic Liposome–DNA Complexes. Pharmaceutics 2022, 14, 1087. [Google Scholar] [CrossRef]
- Walther, J.; Porenta, D.; Wilbie, D.; Seinen, C.; Benne, N.; Yang, Q.; de Jong, O.G.; Lei, Z.; Mastrobattista, E. Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo. Eur. J. Pharm. Biopharm. 2024, 196, 114207. [Google Scholar] [CrossRef]
- Pappadà, M.; Bonuccelli, O.; Buratto, M.; Fontana, R.; Sicurella, M.; Caproni, A.; Fuselli, S.; Benazzo, A.; Bertorelli, R.; De Sanctis, V.; et al. Suppressing gain-of-function proteins via CRISPR/Cas9 system in SCA1 cells. Sci. Rep. 2022, 12, 20285. [Google Scholar] [CrossRef]
- Wang, T.; Larcher, L.M.; Ma, L.; Veedu, R.N. Systematic screening of commonly used commercial transfection reagents towards efficient transfection of single-stranded oligonucleotides. Molecules 2018, 23, 2564. [Google Scholar] [CrossRef]
- Maitani, Y.; Igarashi, S.; Sato, M.; Hattori, Y. Cationic liposome (DC-Chol/DOPE = 1:2) and a modified ethanol injection method to prepare liposomes, increased gene expression. Int. J. Pharm. 2007, 342, 33–39. [Google Scholar] [CrossRef]
- Tang, M.; Sagawa, A.; Inoue, N.; Torii, S.; Tomita, K.; Hattori, Y. Efficient mRNA Delivery with mRNA Lipoplexes Prepared Using a Modified Ethanol Injection Method. Pharmaceutics 2023, 15, 1141. [Google Scholar] [CrossRef]
- Marques, B.F.; Schneider, J.W. Effect of electrostatic interactions on binding and retention of DNA oligomers to PNA liposomes assessed by FRET measurements. Colloids Surf. B Biointerfaces 2006, 53, 1–8. [Google Scholar] [CrossRef]
- Wong, F.M.P.; Bally, M.B.; Brooks, D.E. Electrostatically mediated interactions between cationic lipid-DNA particles and an anionic surface. Arch. Biochem. Biophys. 1999, 366, 31–39. [Google Scholar] [CrossRef]
- Erel-Akbaba, G.; Akbaba, H. A comparative study of cationic liposomes for gene delivery. J. Res. Pharm. 2021, 25, 398–406. [Google Scholar] [CrossRef]
- Hallan, S.S.; Marchetti, P.; Bortolotti, D.; Sguizzato, M.; Esposito, E.; Mariani, P.; Trapella, C.; Rizzo, R.; Cortesi, R. Design of nanosystems for the delivery of quorum sensing inhibitors: A preliminary study. Molecules 2020, 25, 5655. [Google Scholar] [CrossRef]
- Hodzic, A.; Zoumpoulakis, P.; Pabst, G.; Mavromoustakos, T.; Rappolt, M. Losartan’s affinity to fluid bilayers modulates lipid-cholesterol interactions. Phys. Chem. Chem. Phys. 2012, 14, 4780–4788. [Google Scholar] [CrossRef]
- Kuo, A.T.; Chang, C.H. Recent strategies in the development of catanionic vesicles. J. Oleo Sci. 2016, 65, 377–384. [Google Scholar] [CrossRef]
- Ramezani, M.; Khoshhamdam, M.; Dehshahri, A.; Malaekeh-Nikouei, B. The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes. Colloids Surf. B Biointerfaces 2009, 72, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Blasche, S.; Wuchty, S.; Rajagopala, S.V.; Uetz, P. The Protein Interaction Network of Bacteriophage Lambda with Its Host, Escherichia coli. J. Virol. 2013, 87, 12745–12755. [Google Scholar] [CrossRef]
- Gutmann, S.; Faschingeder, F.; Tauer, C.; Koch, K.; Cserjan-Puschmann, M.; Striedner, G.; Grabherr, R. Site-Directed Genome Integration via Recombinase-Mediated Cassette Exchange (RMCE) in Escherichia coli. ACS Synth. Biol. 2025, 14, 1667–1676. [Google Scholar] [CrossRef]
- Barichello, J.M.; Ishida, T.; Kiwada, H. Complexation of siRNA and pDNA with cationic liposomes: The important aspects in lipoplex preparation. Methods Mol. Biol. 2010, 605, 461–472. [Google Scholar] [CrossRef]
- Hattori, Y.; Tang, M.; Aoki, A.; Ezaki, M.; Sakai, H.; Oza, K.I. Effect of the combination of cationic lipid and phospholipid on gene-knockdown using siRNA lipoplexes in breast tumor cells and mouse lungs. Mol. Med. Rep. 2023, 28, 180. [Google Scholar] [CrossRef]
- Sabin, J.; Alatorre-Meda, M.; Miñones, J.; Domínguez-Arca, V.; Prieto, G. New insights on the mechanism of polyethylenimine transfection and their implications on gene therapy and DNA vaccines. Colloids Surf. B Biointerfaces 2022, 210, 112219. [Google Scholar] [CrossRef] [PubMed]
- Dawaliby, R.; Trubbia, C.; Delporte, C.; Noyon, C.; Ruysschaert, J.M.; Van Antwerpen, P.; Govaerts, C. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J. Biol. Chem. 2016, 291, 3658–3667. [Google Scholar] [CrossRef] [PubMed]
- Joardar, A.; Pattnaik, G.P.; Chakraborty, H. Effect of Phosphatidylethanolamine and Oleic Acid on Membrane Fusion: Phosphatidylethanolamine Circumvents the Classical Stalk Model. J. Phys. Chem. B 2021, 125, 13192–13202. [Google Scholar] [CrossRef] [PubMed]
- Inglut, C.T.; Sorrin, A.J.; Kuruppu, T.; Vig, S.; Cicalo, J.; Ahmad, H.; Huang, H.C. Immunological and toxicological considerations for the design of liposomes. Nanomaterials 2020, 10, 190. [Google Scholar] [CrossRef]
- Filion, M.C.; Phillips, N.C. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim. Biophys. Acta—Biomembr. 1997, 1329, 345–356. [Google Scholar] [CrossRef]
- Chen, Y.L.; Xie, X.X.; Zhong, N.; Sun, L.C.; Lin, D.; Zhang, L.J.; Weng, L.; Jin, T.; Cao, M.J. Research Progresses and Applications of Fluorescent Protein Antibodies: A Review Focusing on Nanobodies. Int. J. Mol. Sci. 2023, 24, 4307. [Google Scholar] [CrossRef]
- Morris, M.C. Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes. Cell Biochem. Biophys. 2010, 56, 19–37. [Google Scholar] [CrossRef]
- Mao, H.; Li, J.; Gao, M.; Liu, X.; Zhang, H.; Zhuang, Y.; He, T.; Zuo, W.; Bai, L.; Bao, J. Targeted Integration of siRNA against Porcine Cytomegalovirus (PCMV) Enhances the Resistance of Porcine Cells to PCMV. Microorganisms 2024, 12, 837. [Google Scholar] [CrossRef]
- Doskocz, J.; Dałek, P.; Przybyło, M.; Trzebicka, B.; Foryś, A.; Kobyliukh, A.; Iglič, A.; Langner, M. The Elucidation of the Molecular Mechanism of the Extrusion Process. Materials 2021, 14, 4278. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Tang, M.; Torii, S.; Tomita, K.; Sagawa, A.; Inoue, N.; Yamagishi, R.; Ozaki, K.I. Optimal combination of cationic lipid and phospholipid in cationic liposomes for gene knockdown in breast cancer cells and mouse lung using siRNA lipoplexes. Mol. Med. Rep. 2022, 26, 253. [Google Scholar] [CrossRef]
- Gorzkiewicz, M.; Kopeć, O.; Janaszewska, A.; Konopka, M.; Pędziwiatr-Werbicka, E.; Tarasenko, I.I.; Bezrodnyi, V.V.; Neelov, I.M.; Klajnert-Maculewicz, B. Poly(Lysine) dendrimers form complexes with sirna and provide its effcient uptake by myeloid cells: Model studies for therapeutic nucleic acid delivery. Int. J. Mol. Sci. 2020, 21, 3138. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, S.; Dolman, E.M.; Wieriks, R.; Sparidans, R.W.; Hennink, W.E.; Kok, R.J. Anti-GD2 Immunoliposomes for Targeted Delivery of the Survivin Inhibitor Sepantronium Bromide (YM155) to Neuroblastoma Tumor Cells. Pharm. Res. 2018, 35, 85. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Pen, R.; Zuo, W.; Chen, Y.; Sun, X.; Gou, J.; Guo, Q.; Wen, M.; Li, W.; et al. Targeted delivery of irinotecan to colon cancer cells using epidermal growth factor receptor-conjugated liposomes. Biomed. Eng. Online 2022, 21, 53. [Google Scholar] [CrossRef]
- dos Santos Rodrigues, B.; Oue, H.; Banerjee, A.; Kanekiyo, T.; Singh, J. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J. Control. Release 2018, 286, 264–278. [Google Scholar] [CrossRef]
- Muolokwu, C.E.; Gothwal, A.; Kanekiyo, T.; Singh, J. Synthesis and Characterization of Transferrin and Cell-Penetrating Peptide-Functionalized Liposomal Nanoparticles to Deliver Plasmid ApoE2 In Vitro and In Vivo in Mice. Mol. Pharm. 2025, 22, 229–241. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, M.; Li, M.; Long, J.; Zhang, J.; Yu, F.; Xu, F.; Sun, L. Single-Molecule Detection of Nucleic Acids via Liposome Signal Amplification in Mass Spectrometry. Sensors 2022, 22, 1346. [Google Scholar] [CrossRef] [PubMed]
- Lee, H. Molecular simulations of pegylated biomolecules, liposomes, and nanoparticles for drug delivery applications. Pharmaceutics 2020, 12, 533. [Google Scholar] [CrossRef]
- Brgles, M.; Šantak, M.; Halassy, B.; Forcic, D.; Tomašić, J. Influence of charge ratio of liposome/DNA complexes on their size after extrusion and transfection efficiency. Int. J. Nanomed. 2012, 7, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Gouda, A.; Sakr, O.S.; Nasr, M.; Sammour, O. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J. Drug Deliv. Sci. Technol. 2021, 61, 102174. [Google Scholar] [CrossRef]
Group | Formulation Acronym | Composition | Molar Ratio (mol/mol) | Final Lipid Concentration (mg/mL) | Injection Flow Rate (µL/mL) |
---|---|---|---|---|---|
I | PC | PC:CH | 4:1 | 10 | 300 |
PCD1 | PC:CH:DDAC | 4.2:1 | 10 | 100 | |
PCD2 | PC:CH:DDAC | 4:2:2 | 10 | 100 | |
II | PE1 | PC:PE:CH:DDAC | 3:1:2:2 | 10 | 100 |
PE2 | PC:PE:CH:DDAC | 1:3:2:2 | 10 | 100 | |
III | PED1 | PC:PE:DSPE-PEG:CH:DDAC | 1:2:1:2:2 | 10 | 100 |
PED2 | PC:PE:DSPE-PEG:CH:DDAC | 2:4:1:4:4 | 10 | 100 |
Group I Formulation | Z-Average ± s.d. (nm) | PdI ± s.d. | ζ-Potential ± s.d. (mV) |
---|---|---|---|
PC | 131.65 ± 1.91 | 0.232 ± 0.03 | +26.24 ± 6.54 |
PCD1 | 54.62 ± 7.93 | 0.485 ± 0.04 | +65.16 ± 4.25 |
PCD2 | 55.22 ± 6.90 | 0.432 ± 0.09 | +67.75 ± 7.29 |
Group II Formulation | Z-Average ± s.d. (nm) | PdI ± s.d. | ζ-Potential ± s.d. (mV) |
---|---|---|---|
PE1 | 341.85 ± 13.08 | 0.570 ± 0.08 | +62.01 ± 2.72 |
PE1 EXTR | 203.35 ± 0.08 | 0.129 ± 0.03 | +59.14 ± 1.23 |
PE2 | 145.57 ± 3.58 | 0.172 ± 0.01 | +91.07 ± 4.65 |
Group III Formulation | Z-Average ± s.d. (nm) | PdI ± s.d. | ζ-Potential ± s.d. (mV) |
---|---|---|---|
PED1 | 709.70 ± 300.04 | 0.219 ± 0.09 | +62.67 ± 3.48 |
PED1-EXTR | 149.85 ± 37.11 | 0.169 ± 0.01 | +74.66 ± 2.16 |
PED2 | 1101.00 ± 428.99 | 0.290 ± 0.05 | +48.76 ± 1.53 |
PED2-EXTR | 106.83 ± 9.12 | 0.368 ± 0.05 | +53.99 ± 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, F.; Sepe, A.; Sguizzato, M.; Marconi, P.; Cortesi, R. A Pre-Formulation Study for Delivering Nucleic Acids as a Possible Gene Therapy Approach for Spinocerebellar Ataxia Disorders. Molecules 2025, 30, 3585. https://doi.org/10.3390/molecules30173585
Ferrara F, Sepe A, Sguizzato M, Marconi P, Cortesi R. A Pre-Formulation Study for Delivering Nucleic Acids as a Possible Gene Therapy Approach for Spinocerebellar Ataxia Disorders. Molecules. 2025; 30(17):3585. https://doi.org/10.3390/molecules30173585
Chicago/Turabian StyleFerrara, Francesca, Alfredo Sepe, Maddalena Sguizzato, Peggy Marconi, and Rita Cortesi. 2025. "A Pre-Formulation Study for Delivering Nucleic Acids as a Possible Gene Therapy Approach for Spinocerebellar Ataxia Disorders" Molecules 30, no. 17: 3585. https://doi.org/10.3390/molecules30173585
APA StyleFerrara, F., Sepe, A., Sguizzato, M., Marconi, P., & Cortesi, R. (2025). A Pre-Formulation Study for Delivering Nucleic Acids as a Possible Gene Therapy Approach for Spinocerebellar Ataxia Disorders. Molecules, 30(17), 3585. https://doi.org/10.3390/molecules30173585