Low-Temperature Dyeing of Chemically Modified PET/Spandex Blends: A Sustainable Approach for Enhanced Dyeability and Color Fastness †
Abstract
1. Introduction
2. Results and Discussion
2.1. Dyeing Behaviors of Polyesters/Spandex Fabrics in Terms of Color Strength
2.2. Dyeing Behaviors of Polyesters/Spandex Fabrics in Terms of Exhaustion (%)
2.3. Kinetics Analysis of Disperse Dyes on Polyesters (PET or PCP) and Spandex Fabrics
2.4. Comparative Analysis of Disperse Dye Distribution in Polyester/Spandex Blend Fabrics
2.5. Build-Up Properties of Polyesters (PET or PCP) and Spandex Fabrics
2.6. Color Fastness of Polyester/Spandex Blend Fabrics
3. Materials and Methods
3.1. Materials
3.2. Dyeing
3.3. Color Strength Evaluation of Polyester and Spandex Fabrics
3.4. Dyebath Exhaustion (%) Analysis of Disperse Dyes on Polyesters (PET or PCP) and Spandex Fabrics
3.5. Diffusion Coefficient Measurement of Disperse Dyes on Polyesters (PET or PCP) and Spandex Fabrics
3.6. Measurement of Distribution Ratio Between Polyester (PET or PCP) and Spandex Fabrics
3.7. Color Fastness Test
3.8. Observation of Adsorbed State on the Surface of Fibers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, M.M.; Kabir, S.M.; Kim, H.; Koh, J. Disperse dyeing properties of (easy dyeable polyester)/spandex blend. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 082020. [Google Scholar] [CrossRef]
- Alam, S.M.M.; Islam, S.; Ahmed, S. Clothing manufacturing and exporting countries of the World: A review. J. Textile Eng. Fashion Technol. 2020, 6, 179–184. [Google Scholar]
- Zhu, M.; Gao, C.; Wang, S.; Shi, S.; Zhang, M.; Su, Q. Recycling of Spandex: Broadening the Way for a Complete Cycle of Textile Waste. Sustainability 2025, 17, 3319. [Google Scholar] [CrossRef]
- Pan, S.-H.; Qian, H.-F. Ultrasound-Assisted Removal of Unfixed Dyes on Polyurethane Fibers as an Efficient Strategy for Improving the Washing Fastness of Polyester/Spandex Elastic Fabric. Fibers Polym. 2024, 25, 997–1003. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Hou, K.; Yu, Q.; Cai, Z. One-Bath Acid Dyeing of Spandex/Nylon Blended Fibers with Enhanced Dye Utilization and Homogeneity. Fibers Polym. 2025, 26, 1455–1466. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, H.Y.; Kim, S.D. Dyeing properties of mixture of ultrafine nylon and polyurethane with different types of dye. Fibers Polym. 2013, 14, 2020–2026. [Google Scholar] [CrossRef]
- Ding, Y.; Dong, H.; Cao, J.; Zhang, Z.; Chen, R.; Wang, Y.; Li, H.; Yan, J.; Liao, Y. A polyester/spandex blend fabrics-based e-textile for strain sensor, joule heater and energy storage applications. Compos Part A Appl. Sci. Manuf. 2023, 175, 107779. [Google Scholar] [CrossRef]
- Broadbent, A.D. Synthetic fibers. In Basic Principles of Textile Coloration; Society of Dyers and Colorists: Bradford, UK, 2001; pp. 50–69. [Google Scholar]
- Otaigbes, J.U.; Madbouly, A. The processing, structure and properties of elastomeric fibers. In Handbook of Textile Fibre Structure Volume 1: Fundamentals and Manufactured Polymer Fibres; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 325–351. [Google Scholar]
- Khatri, A.; Ali, S.; Jhatial, A.K.; Kim, S.H. Dyeability of polyurethane nanofibres with disperse dyes. Color. Technol. 2015, 131, 374–378. [Google Scholar] [CrossRef]
- Li, H.; Feng, G.; Fang, S.; Qian, H. Dyeing properties on polyurethane fibres of novel azo disperse dyes prepared from a four-component Ugi reaction. Color. Technol. 2020, 136, 485–491. [Google Scholar] [CrossRef]
- Chowdhury, P.; Samanta, K.K.; Basak, S. Recent development in textile for sportswear application. Int. J. Eng. Res. Technol. 2014, 3, 1905–1910. [Google Scholar]
- Senthilkumar, M.; Anbumani, N.; Hayavadana, J. Elastane fabrics–A tool for stretch applications in sports. Indian J. Fibre Text. Res. 2011, 36, 300–307. [Google Scholar]
- Suwanruji, P.; Chuaybamrung, L.; Suesat, J.; Hannongbua, S.; Taylor, J.A.; Phillips, D.A. Study of the removal of a disperse dye stain from a polyester/elastane blend. Color. Technol. 2012, 128, 103–107. [Google Scholar] [CrossRef]
- Feng, G.; Qian, H.F.; Bai, G.; Liu, Y.C.; Hu, L.L. Synthesis, characterization, and application of diester/diurethane tethered azo disperse dyes: A new strategy to improve dye’s fastness properties. Dyes Pigm. 2016, 129, 54–59. [Google Scholar] [CrossRef]
- Choi, J.H.; Towns, A.D. Acetate dyes revisited: High fastness dyeing of cellulose diacetate and polyester—Polyurethane. Color. Technol. 2001, 117, 127–133. [Google Scholar] [CrossRef]
- Qian, H.F.; Song, X.Y. The structure of azo disperse dyes and its distribution on polyurethane fiber blend with polyester, or polyamide fiber. Dyes Pigm. 2007, 74, 672–676. [Google Scholar] [CrossRef]
- Jagwani, Y.; Abate, M.T.; Rauch, M.; Friedrich, A. Investigation of the Dyeing Behavior and Color Performance Properties of New Biodegradable/Compostable Poly(ethylene terephthalate) (PET) Fibers. Fibers Polym. 2025, 26, 1587–1598. [Google Scholar] [CrossRef]
- Hadfield, H.R.; Broadhurst, R. The high-temperature disperse dyeing of Terylene polyester fibre. J. Soc. Dyers Colour. 1958, 74, 387–390. [Google Scholar] [CrossRef]
- Shamey, R.; Shim, W.S. Assessment of key issues in the coloration of polyester material. Text. Prog. 2011, 43, 97–153. [Google Scholar] [CrossRef]
- Broadbent, A.D. Disperse dyes. In Basic Principles of Textile Coloration; Society of Dyers and Colorists: Bradford, UK, 2001; pp. 307–331. [Google Scholar]
- Qian, H.F.; Song, X.Y. Adsorption behaviour of azo disperse dyes on polyurethane fibre. Color. Technol. 2009, 125, 141–145. [Google Scholar] [CrossRef]
- Qian, H.F.; Song, X.Y. Structure–property relationships for azo disperse dyes on polyurethane fibre. Color. Technol. 2009, 125, 146–150. [Google Scholar] [CrossRef]
- Choi, J.Y.; Choi, J.H. Dyeing Properties of Polyurethane Fiber by Novel Phthalimidyl Azo Disperse Dyes. J. Korean Soc. Dye. Finish. 2009, 21, 46–55. [Google Scholar]
- Qian, H.F.; Feng, G.; Bai, G.; Liu, Y.C.; Hu, L.L. A contrastive study of adsorption behaviors on polyurethane fiber with diester/diurethane tethered and non-tethered azo disperse dyes. Dyes Pigm. 2017, 145, 301–306. [Google Scholar] [CrossRef]
- Nahar, N.; Heng, Q.; Sadi, M.S. Surface Modification of Non-Ionic Polyester Fabric into an Anionic Platform for Low Temperature Cationic Basic Dyeing with Improved Colorfastness Properties. Fibers Polym. 2023, 24, 1345–1357. [Google Scholar] [CrossRef]
- Kabir, S.M.M.; Rahman, M.M.; Hong, I.; Byun, H.; Choi, Y.; Hsan, N.; Kumar, S.; Koh, J. Comparative characterization and dyeing properties of poly (ethylene terephthalate-co-polyethylene glycol) fibers and poly (ethylene terephthalate) fibers. Polymer 2024, 311, 127488. [Google Scholar] [CrossRef]
- Gulrajani, M.L. Advances in coloration of polyester textiles. In Polyesters and Polyamides; Deopura, B.L., Alagirusamy, R., Joshi, M., Gupta, B., Eds.; Woodhead Publishing: Cambridge, UK, 2008; pp. 279–298. [Google Scholar]
- Kabir, S.M.M.; Rahman, M.M.; Hong, I.; Koh, J. Thermodynamic and Kinetic Study on Eco-friendly Atmospheric Pressure Dyeing of Poly (Ethylene Terephthalate-co-Polyethylene Glycol) Fibers. Fibers Polym. 2025, 26, 723–737. [Google Scholar] [CrossRef]
- Cardamone, J.M.; Damert, W.C. Low-temperature dyeing of wool processed for shrinkage control. Text Res. J. 2006, 76, 78–85. [Google Scholar] [CrossRef]
- Correia, N.M.; Araújo, L.D.S.; Bueno Júnior, R.A. First report of multiple resistance of goosegrass to herbicides in Brazil. Adv. Weed Sci. 2022, 40, e020220007. [Google Scholar] [CrossRef]
- Kumar, S.; Rahman, M.M.; Yoon, S.; Kim, S.; Oh, N.; Hong, K.H.; Koh, J. Synthesis, characterization, and functional properties of ZnO-based polyurethane nanocomposite for textile applications. Fibers Polym. 2021, 22, 2227–2237. [Google Scholar] [CrossRef]
- Koh, J. Dyeing with disperse dyes. In Textile Dyeing; Hauser, P.J., Ed.; IntechOpen: London, UK, 2011; pp. 195–220. [Google Scholar]
- Rabiei, N.; Kish, M.H.; Amirshahi, S.H.; Radjabian, M. The kinetic and thermodynamic parameters of dyeing of polypropylene/Clay composite fibers using disperse dye. Dyes Pigm. 2012, 94, 386–392. [Google Scholar] [CrossRef]
- Mahar, F.K.; Mehdi, M.; Qureshi, U.A.; Brohi, K.M.; Zahid, B.; Ahmed, F.; Khatri, Z. Dyeability of recycled electrospun polyethylene terephthalate (PET) nanofibers: Kinetics and thermodynamic study. J. Mol. Liq. 2017, 248, 911–919. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; He, J.; Gu, X.; Qin, K. A comparative study on dyeing properties of iterative polyester and ordinary polyester dyed with disperse dyes. J. Text. Inst. 2023, 114, 774–781. [Google Scholar] [CrossRef]
- Yoon, S.; Choi, B.; Rahman, M.M.; Kumar, S.; Mamun Kabir, S.M.; Koh, J. Dyeing of polyester with 4-fluorosulfonylphenylazo-5-pyrazolone disperse dyes and application of environment-friendly aftertreatment for their high color fastness. Materials 2019, 12, 4209. [Google Scholar] [CrossRef]
- Kabir, S.M.M.; Koh, J. Effect of chelating agent in disperse dye dyeing on polyester fabric. Fibers Polym. 2017, 18, 2315–2321. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, H.; Chen, L.; Wang, Z.; Pei, L.; Yang, Q.; Wang, J. Improved dyeing performance of blue disperse dyes with N-acetoxyethyl groups in D5 non-aqueous media system. Fibers Polym. 2024, 25, 1005–1014. [Google Scholar] [CrossRef]
- Baumann, B.-T.W.; Krayer, H.-P.G.M.; Oesch, R.; Brossman, N.; Kleinemefer, A.T.L. Determination of relative colour strength and residual colour difference by means of reflectance measurements. J. Soc. Dyers Colour. 1978, 103, 100–105. [Google Scholar]
- ISO 7724-1:1984; Paints and Varnishes—Colorimetry—Part 1: Principles. International Organization for Standardization: Geneva, Switzerland, 1984.
- Wang, J.; Li, X.; Cai, Z.; Gu, L. Absorption kinetics and thermodynamics of cationic dyeing on easily dyeable copolyester modified by 2-methyl-1,3-propanediol. Fibers Polym. 2015, 16, 2384–2390. [Google Scholar] [CrossRef]
- Guan, Y.; Mao, Y.H.; Wei, D.; Wang, X.X.; Zhu, P.X. Adsorption thermodynamics and kinetics of disperse dye on poly (p-phenylene benzobisoxazole) fiber pretreated with polyphosphoric acid. Korean J. Chem. Eng. 2013, 30, 1810–1818. [Google Scholar] [CrossRef]
- ISO 105:C06 (A2S); Textiles—Tests for Colour Fastness—Part C06: Colour Fastness to Domestic and Commercial Laundering. International Organization for Standardization: Geneva, Switzerland, 1987.
- ISO 105-E04:2013; Textiles—Tests for Colour Fastness—Part E04: Colour Fastness to Perspiration. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 105-A04:1989; Textiles—Tests for Colour Fastness—Part A04: Method for the Instrumental Assessment of the Degree of Staining of Adjacent Fabrics. International Organization for Standardization: Geneva, Switzerland, 1989.
- ISO 105-A05:1996; Textiles—Tests for Colour Fastness—Part A05: Instrumental Assessment of Change in Colour for Determination of Grey Scale Rating. International Organization for Standardization: Geneva, Switzerland, 1996.
Samples | Temperature (°C) | Half Dyeing Time, t1/2 (min) | Diffusion Coefficient, D × 10−9 (cm2/min) | ||
---|---|---|---|---|---|
Red 60 | Red 167 | Red 60 | Red 167 | ||
PET | 100 | 102.42 | 33.01 | 0.16 | 0.51 |
110 | 100.89 | 37.14 | 0.17 | 0.45 | |
120 | 26.24 | 25.90 | 0.64 | 0.65 | |
130 | 1.69 | 6.87 | 9.85 | 2.40 | |
PCP | 100 | 37.39 | 47.68 | 0.45 | 0.37 |
110 | 16.01 | 3.67 | 1.05 | 3.67 | |
120 | 2.03 | 0.83 | 8.31 | 20.20 | |
130 | 0.31 | N/A | 54.85 | N/A | |
Spandex | 100 | 192.54 | 113.73 | 1.35 | 2.28 |
110 | 135.91 | 25.21 | 1.91 | 10.29 | |
120 | 38.29 | 10.85 | 6.78 | 23.92 | |
130 | 33.16 | 6.85 | 7.83 | 37.90 |
Blends | Temp. | Change | Staining | ||||||
---|---|---|---|---|---|---|---|---|---|
Polyester | Spandex | W | A | P | N | C | A | ||
PCP/spandex | 90 °C | 5 | 2 | 4–5 | 3–4 | 3 | 2–3 | 3–4 | 3–4 |
100 °C | 4–5 | 3 | 4 | 3–4 | 3 | 2–3 | 3–4 | 3–4 | |
110 °C | 5 | 3–4 | 4 | 3–4 | 3 | 2–3 | 3–4 | 3–4 | |
120 °C | 5 | 3 | 4–5 | 3–4 | 3 | 2–3 | 3–4 | 3–4 | |
130 °C | 4–5 | 4–5 | 4–5 | 3–4 | 3 | 2–3 | 3–4 | 3–4 | |
PET/spandex | 120 °C | 4 | 3–4 | 3–4 | 3–4 | 3 | 2 | 3 | 3 |
130 °C | 4–5 | 2 | 4 | 3–4 | 3 | 2 | 3 | 3 |
Blends | Temp. | Change | Staining | ||||||
---|---|---|---|---|---|---|---|---|---|
Polyester | Spandex | W | A | P | N | C | A | ||
PCP/spandex | 90 °C | 5 | 2 | 3 | 3 | 2–3 | 1–2 | 2–3 | 3 |
100 °C | 4–5 | 2 | 3–4 | 3–4 | 2–3 | 2 | 3–4 | 3–4 | |
110 °C | 4 | 3–4 | 4 | 4 | 3 | 2–3 | 3 | 3–4 | |
120 °C | 4–5 | 2 | 4 | 4 | 3 | 2–3 | 3 | 3–4 | |
130 °C | 4–5 | 2 | 4 | 4 | 3 | 2 | 3 | 3–4 | |
PET/spandex | 120 °C | 3–4 | 1–2 | 2–3 | 2–3 | 2 | 1–2 | 2–3 | 2–3 |
130 °C | 5 | 2 | 3 | 3 | 2 | 1–2 | 2–3 | 2–3 |
Dye (Code) | Chemical Structure | Molecular Weight (g/mol) |
---|---|---|
C.I. Disperse Red 60 (Red 60) | 331.32 | |
C.I. Disperse Red 67 (Red 167) | 505.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Hsan, N.; Hong, I.; Kabir, S.M.M.; Choi, S.; Kim, Y.; Kim, S.; Koh, J. Low-Temperature Dyeing of Chemically Modified PET/Spandex Blends: A Sustainable Approach for Enhanced Dyeability and Color Fastness. Molecules 2025, 30, 3578. https://doi.org/10.3390/molecules30173578
Rahman MM, Hsan N, Hong I, Kabir SMM, Choi S, Kim Y, Kim S, Koh J. Low-Temperature Dyeing of Chemically Modified PET/Spandex Blends: A Sustainable Approach for Enhanced Dyeability and Color Fastness. Molecules. 2025; 30(17):3578. https://doi.org/10.3390/molecules30173578
Chicago/Turabian StyleRahman, Md Morshedur, Nazrul Hsan, Ingi Hong, Shekh Md Mamun Kabir, Seunga Choi, Youngdae Kim, Soohyun Kim, and Joonseok Koh. 2025. "Low-Temperature Dyeing of Chemically Modified PET/Spandex Blends: A Sustainable Approach for Enhanced Dyeability and Color Fastness" Molecules 30, no. 17: 3578. https://doi.org/10.3390/molecules30173578
APA StyleRahman, M. M., Hsan, N., Hong, I., Kabir, S. M. M., Choi, S., Kim, Y., Kim, S., & Koh, J. (2025). Low-Temperature Dyeing of Chemically Modified PET/Spandex Blends: A Sustainable Approach for Enhanced Dyeability and Color Fastness. Molecules, 30(17), 3578. https://doi.org/10.3390/molecules30173578