GABAergic and α-Glucosidase-Inhibitory Potentials of Fractions and Isolated Xanthones from Hypericum revolutum Vahl subsp. revolutum
Abstract
1. Introduction
2. Results and Discussion
2.1. Yield and Qualitative Phytochemical Analyses
2.2. Fractions and Isolated Compounds
2.2.1. Compound 1 (4-Hydroxy-2,3-dimethoxy-9H-xanthen-9-one)
2.2.2. Compound 2 (3-Hydroxy-2,4-dimethoxy-9H-xanthen-9-one)
2.2.3. Compound 3 [trans-3-(4-Hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2,3-dihydro-7H-[1,4]dioxino[2,3-c]xanthen-7-one or kielcorin)]
2.3. Bioactivities
2.3.1. α-Glucosidase-Inhibitory Action of Solvent Fractions and Isolated Compounds
2.3.2. Effects on GABAA Receptor Activity
3. Materials and Methods
3.1. Materials
3.2. Solvent Extraction and Qualitative Phytochemical Analyses
3.3. Fractionation and Isolation of Compounds
3.4. Spectroscopic and Spezctrometric Characterisation of the Isolated Compounds
3.5. Function GABAA Receptor Assay
3.6. In Vitro α-Glucosidase-Inhibitory Assay
3.7. Data and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DCM | dichloromethane |
EtOAc | ethyl acetate |
FTIR | Fourier transform infrared spectrometry |
GABA | gamma-aminobutyric acid |
Hx | hexane |
IGABA | GABA-induced chloride currents |
MeOH | methanol |
NMR | nuclear magnetic resonance |
PL | plant leaves |
PS | plant stem |
TLC | thin layer chromatography |
References
- Holt, R.I.G.; de Groot, M.; Golden, S.H. Diabetes and Depression. Curr. Diab. Rep. 2014, 14, 491. [Google Scholar] [CrossRef] [PubMed]
- Snoek, F.J. Mental health in diabetes care. Time to step up. Front. Clin. Diabetes Healthc. 2022, 3, 1039192. [Google Scholar] [CrossRef] [PubMed]
- Banday, M.Z.; Sameer, A.S.; Nissar, S. Pathophysiology of diabetes: An overview. Avicenna J. Med. 2020, 10, 174–188. [Google Scholar] [CrossRef]
- Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 2022, 21, 1049–1079. [Google Scholar] [CrossRef]
- Akhaury, K.; Chaware, S. Relation Between Diabetes and Psychiatric Disorders. Cureus 2022, 14, e30733. [Google Scholar] [CrossRef] [PubMed]
- Petersen, I.; Fairall, L.; Bhana, A.; Kathree, T.; Selohilwe, O.; Brooke-Sumner, C.; Faris, G.; Breuer, E.; Sibanyoni, N.; Lund, C.; et al. Integrating mental health into chronic care in South Africa: The development of a district mental healthcare plan. Br. J. Psychiatry 2016, 208 (Suppl. 56), S29–S39. [Google Scholar] [CrossRef]
- Sieghart, W. Structure, pharmacology, and function of GABAA receptor subtypes. Adv. Pharmacol. 2006, 54, 231–263. [Google Scholar]
- Möhler, H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacol. 2012, 62, 42–53. [Google Scholar] [CrossRef]
- Sigel, E.; Steinmann, M.E. Structure, function, and modulation of GABA(A) receptors. J. Biol. Chem. 2012, 287, 40224–40231. [Google Scholar] [CrossRef]
- Engin, E. GABAA receptor subtypes and benzodiazepine use, misuse, and abuse. Front. Psychiatry 2023, 13, 1060949. [Google Scholar] [CrossRef]
- Barrientos-Ávalos, J.R.; Morel-Cerda, E.C.; Félix-Téllez, F.A.; Vidrio-Huerta, B.E.; Aceves-Ayala, A.R.; Flo-res-Rendón, Á.R.; Velarde-Ruiz Velasco, J.A. Gastrointestinal adverse effects of old and new anti-diabetics: How do we deal with them in real life? Rev. Gastroenterol. Mex. 2024, 89, 521–532. [Google Scholar]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T.; International Natural Product Sciences Taskforce. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Kenda, M.; Kočevar Glavač, N.; Nagy, M.; Sollner Dolenc, M. Medicinal Plants Used for Anxiety, De-pression, or Stress Treatment: An Update. Molecules 2022, 27, 6021. [Google Scholar] [CrossRef]
- Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron. Physician 2016, 8, 1832–1842. [Google Scholar] [CrossRef]
- Frimpong, E.K.; Thembane, N.; Hlatshwayo, S.; Ngcobo, M.; Gqaleni, N. Indigenous Medicinal Plants Used in the Management of Diabetes in Africa: 5 Years (2019–2024) in Perspective. Plants 2024, 13, 1898. [Google Scholar] [CrossRef]
- Cakir, A.; Mavi, A.; Yıldırım, A.; Duru, M.E.; Harmandar, M.; Kazaz, C. Isolation and characterisa-tion of antioxidant phenolic compounds from the aerial parts of Hypericum hyssopifolium L. by activity-guided fractionation. J. Ethnopharmacol. 2003, 87, 73–83. [Google Scholar] [CrossRef]
- Ersoy, E.; Eroglu Ozkan, E.; Boga, M.; Mat, A. Evaluation of in vitro biological activities of three Hypericum species (H. calycinum, H. confertum, and H. perforatum) from Turkey. S. Afr. J. Bot. 2020, 130, 141–147. [Google Scholar] [CrossRef]
- Ruifei, Z.; Yuanyuan, J.; Xinbo, Z.; Zhanga, E.; Kennellya, J.; Chunlin, L. Ethnopharmacology of Hypericum species in China: A comprehensive review on ethnobotany, phytochemistry, and pharmacology. J. Ethnopharmacol. 2020, 254, 112686. [Google Scholar] [CrossRef]
- Decosterd, L.A.; Stoeckli-Evans, H.; Msonthic, J.D.; Hostettmann, K. New antifungal chromenyl ketones and their pentacyclic dimers from Hypericum revolutum Vahl. Helv. Chim. Acta 1987, 70, 1694–1702. [Google Scholar] [CrossRef]
- Decosterd, L.A.; Stoeckli-Evans, H.; Msonthic, J.D.; Hostettmann, K. New hyperforin derivatives from Hypericum revolutum Vahl with growth-inhibitory activity against a human colon carcinoma cell line. Helv. Chim. Acta 1989, 72, 464–471. [Google Scholar] [CrossRef]
- Abdallah, H.M.; Timraz, N.Z.; Ibrahim, S.R.M.; El-Halawany, A.M.; Malebari, A.M.; Shehata, I.A.; El-Bassossy, H.M. Nitric-oxide-mediated vasodilation of bioactive compounds isolated from Hypericum revolutum in Rat Aorta. Biology 2021, 10, 541. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.D.; Sandager, M.; Stafford, G.I.; Van Staden, J.; Jäger, A.K. Screening of indigenous plants from South Africa for affinity to the serotonin reuptake transport protein. J. Ethnopharmacol. 2004, 94, 159–163. [Google Scholar] [CrossRef]
- Ng, Q.X.; Venkatanarayanan, N.; Ho, C.Y.X. Clinical use of Hypericum perforatum (St John’s Wort) in depression: A mental analysis. J. Affect. Disord. 2017, 210, 211–222. [Google Scholar] [CrossRef]
- Müller, W.E. Current St John’s wort research from mode of action to clinical efficacy. Pharmacol. Res. 2003, 47, 101–109. [Google Scholar] [CrossRef]
- van Staden, A.B.; De Canha, M.; Nqephe, M.; Rademan, S.; Kumar, V.; Lall, N. Potential medicinal plants for progressive macular hypomelanosis. S. Afr. J. Bot. 2017, 111, 346–357. [Google Scholar] [CrossRef]
- Velembo, S.; Viljoen, C. Hypericum revolutum Vahl subsp. Revolutum. SANBI. 2014. Available online: http://www.plantzafrica.com/planthij/hypericumrevol.htm (accessed on 20 September 2024).
- Tabuti, J.R.; Kukunda, C.B.; Waako, P.J. Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda. J. Ethnopharmacol. 2010, 127, 130–136. [Google Scholar] [CrossRef]
- Orhan, I.E.; Kartal, M.; Gulpinar, A.R.; Cos, P.; Matheeussen, A.; Maes, L.; Tasdemir, D. Assessment of antimicrobial and antiprotozoal activity of the olive oil macerate samples of Hypericum perforatum and their LCeDADeMS analyses. Food Chem. 2013, 138, 870–875. [Google Scholar] [CrossRef]
- Yineger, H.; Kelbessa, E.; Bekele, T.; Lulekal, E. Plants used in the traditional management of human ailments at Bale Mountains National Park, Southeastern Ethiopia. J. Med. Plants Res. 2013, 2, 132–153. [Google Scholar]
- Ejigu, A.; Engidawork, E. Screening of the antidepressant like activity of two Hypericum species found in Ethiopia. Ethiop. Med. J. 2014, 30, 21–32. [Google Scholar] [CrossRef]
- Demissie, S.; Shibeshi, W.; Engidawork, E. Evaluation of the antidepressant-like activity of solvent fractions of the aerial parts of Hypericum revolutum (Hypericaceae) in rodent models. Ethiop. Med. J. 2017, 33, 95–106. [Google Scholar] [CrossRef]
- Abiye, A.A.; Tadesse, W.T.; Assefa, S.; Hailu, A.E. Evaluation of analgesis and anti-inflammatory ac-tivities of hydro-alcoholic leaf extract of Hypericum revolutum in Mice. Int. J. Biomed. Res. 2019, 10, e5071. [Google Scholar]
- Andualem, G.; Umar, S.; Getnet, F.; Tekewe, A.; Alemayehu, H.; Nigatu, K. Antimicrobial and phytochemical screening of methanol extracts of three medicinal plants in Ethiopia. Adv. Biol. Res. 2014, 8, 101–106. [Google Scholar]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Crockett, S.L.; Poller, B.; Tabanca, N.; Pferschy-Wenzig, E.M.; Kunert, O.; Wedge, D.E.; Bucar, F. Bioactive xanthones from the roots of Hypericum perforatum (common St John’s wort). J. Sci. Food Agric. 2011, 91, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Castelão, J.F., Jr.; Gottlieb, O.R.; De Lima, R.A.; Mesquita, A.A.L.; Gottliebb, H.E.; Wenkert, E. Xanthonlignoids from Kielmeyera and Caraipa species—13C NMR spectroscopy of xanthones. Phytochemistry 1977, 16, 735–740. [Google Scholar] [CrossRef]
- Mesquita, A.A.L.; Gottlieb, O.R.; Pinto, M.M.D. Xanthonolignoids from Kielmeyera coriacea. Phytochemistry 1987, 26, 2045–2048. [Google Scholar] [CrossRef]
- Ali, M.; Arfan, M.; Ahmad, M.; Singh, K.; Anis, I.; Ahmad, H.; Choudhary, M.I.; Shah, M.R. Anti-inflammatory xanthones from the twigs of Hypericum oblongifolium Wall. Planta Med. 2011, 77, 2013–2018. [Google Scholar] [CrossRef]
- Coqueiro, A.; Choi, Y.H.; Verpoorte, R.; Gupta, K.B.; De Mieri, M.; Hamburger, M.; Young, M.C.; Stapleton, P.; Gibbons, S.; Bolzani, V.D. Antistaphylococcal Prenylated Acylphoroglucinol and Xanthones from Kielmeyera variabilis. J. Nat. Prod. 2016, 79, 470–476. [Google Scholar] [CrossRef]
- Shiu, W.K.P.; Gibbons, S. Dibenzofuran and pyranone metabolites from Hypericum revolutum ssp. revolutum and Hypericum choisianum. Phytochemistry 2009, 70, 403–406. [Google Scholar] [CrossRef]
- Zofou, D.; Kowa, D.T.K.; Wabo, H.K.; Ngemenya, M.N.; Tane, P.; Titanji, V.P. Hypericum lanceolatum (Hypericaceae) as a potential source of new anti-malarial agents: A bioassay-guided fractionation of the stem bark. Malar. J. 2011, 10, 167. [Google Scholar] [CrossRef] [PubMed]
- Cardona, M.L.; Fernandez, I.; Pedro, J.R.; Serrano, A. Xanthones from Hypericum reflexum. Phytochemistry 1990, 29, 3003–3006. [Google Scholar] [CrossRef]
- Mandrone, M.; Scognamiglio, M.; Fiorentino, A.; Sanna, C.; Cornioli, L.; Antognoni, F.; Bonvicini, F.; Poli, F. Phytochemical profile and α-glucosidase inhibitory activity of Sardinian Hypericum scruglii and Hypericum hircinum. Fitoterapia 2017, 120, 184–193. [Google Scholar] [CrossRef]
- Jin, D.X.; He, J.F.; Zhang, K.Q.; Luo, X.G.; Zhang, T.C. α-Glucosidase Inhibition Action of Major Flavonoids Identified from Hypericum attenuatum Choisy and Their Synergistic Effects. Chem. Biodivers. 2021, 18, e2100244. [Google Scholar] [CrossRef]
- Dong, Q.; Hu, N.; Yue, H.; Wang, H.; Wei, Y. Rapid screening of α-glucosidase inhibitors in Hypericum perforatum L. using bio-affinity chromatography coupled with UPLC/MS. Biomed. Chromatogr. 2023, 37, e5536. [Google Scholar] [CrossRef]
- Wang, L.; Ai, C.; Jin, C.; Mou, J.; Deng, Y. Xanthones as potential α-glucosidase non-competition inhibitors: Synthesis, inhibitory activities, and in silico studies. Chem. Biol. Drug Des. 2023, 102, 547–556. [Google Scholar] [CrossRef]
- Cicek, S.S.; Khom, S.; Taferner, B.; Hering, S.; Stuppner, H. Bioactivity-guided isolation of GABA(A) receptor modulating constituents from the rhizomes of Actaea racemosa. J. Nat. Prod. 2010, 7312, 2024–2028. [Google Scholar] [CrossRef] [PubMed]
- Pytka, K.; Żmudzka, E.; Lustyk, K.; Rapacz, A.; Olczyk, A.; Gałuszka, A.; Waszkielewicz, A.; Marona, H.; Sapa, J.; Barbara, F. The antidepressant- and anxiolytic-like activities of new xanthone derivative with a pi-perazine moiety in behavioral tests in mice. Indian J. Pharmacol. 2016, 48, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Do, H.T.T.; Cho, J. Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer’s Disease, Parkinson’s Disease, and Depression with Pharmacokinetic and Safety Pro-files. Int. J. Mol. Sci. 2020, 21, 6211. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Liu, X.; Liu, J.; Cai, E.; Zhao, Y.; Li, H.; Zhang, L.; Li, P.; Gao, Y. α-Mangostin exhibits antidepressant-like effects mediated by the modification of GABAergic, serotonergic and dopaminergic systems. Nat. Prod. Res. 2020, 34, 868–871. [Google Scholar] [CrossRef]
- Njanje, I.; Bagla, V.P.; Beseni, B.K.; Mbazima, V.; Lebogo, K.W.; Mampuru, L.; Matlou, P.; Mokgotho, M.P. Defatting of acetone leaf extract of Acacia karroo (Hayne) enhances its hypoglycaemic potential. BMC Complem. Med. Ther. 2017, 17, 482. [Google Scholar] [CrossRef]
- Royani, A.; Hanafi, M.; Lotulung, P.D.N.; Prastya, M.E.; Verma, C.; Manaf, A.; Alfantazi, A. Isolation and identification of bioactive compounds from Tinospora cordifolia stem extracts as antibacterial materials in seawater environments. Arab. J. Chem. 2023, 16, 105014. [Google Scholar] [CrossRef]
- Claeson, P.; Göransson, U.; Johansson, S.; Luijendijk, T.; Bohlin, L. Fractionation protocol for the isolation of polypeptides from plant biomass. J. Nat. Prod. 1998, 61, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Vimalkumar, C.S.; Hosagaudar, V.B.; Suja, S.R.; Vilash, V.; Krishnakumar, N.M.; Latha, P.G. Comparative preliminary phytochemical analysis of ethanolic extracts of leaves of Olea dioica Roxb. Infected with the rust fungus Zaghouania oleae (E.J. Butler) cummins and non-infected plants. J. Pharmacogn. Phytochem. 2014, 3, 69–72. [Google Scholar]
- Ekwueme, F.N.; Nwodo, O.F.C.; Joshua, P.E.; Nkwocha, C.; Eluka, P.E. Qualitative and quantitative phytochemical screening of the aqueous leaf extract of Senna mimosoides: Its effect in vivo leukocyte mobilisation induced by inflammatory stimulus. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 1176–1188. [Google Scholar]
- Roghini, R.; Vijayalakshmi, K. Phytochemical screening, quantitative analysis of flavonoids and minerals in ethanolic extract of citrus paradisi. Int. J. Pharm. Sci. Res. 2018, 9, 4859–4864. [Google Scholar]
- Hossain, M.A.; AL-Raqmi, K.A.S.; AL-Mijizy, Z.H.; Weli, A.M.; Al-Riyami, Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vul-garis. Asian Pac. J. Trop. Biomed. 2013, 3, 705–710. [Google Scholar] [CrossRef]
- Ayoola, G.A.; Coker, H.A.B.; Adesegun, S.A.; Adepoju-Bello, A.A.; Obaweya, K.; Ezennia, C.; Atangbayila, T.O. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop. J. Med. Res. 2008, 7, 1019–1024. [Google Scholar]
- Khom, S.; Strommer, B.; Ramharter, J.; Schwarz, T.; Schwarzer, C.; Erker, T.; Ecker, G.F.; Mulzer, J.; Hering, S. Valerenic acid derivatives as novel subunit-selective GABAA receptor ligands—In vitro and in vivo characterisation. Br. J. Pharmacol. 2010, 161, 65–78. [Google Scholar] [CrossRef]
- Stadler, M.; Monticelli, S.; Seidel, T.; Luger, D.; Salzer, I.; Boehm, S.; Holzer, W.; Schwarzer, C.; Urban, E.; Khom, S.; et al. Design, Synthesis, and Pharmacological Evaluation of Novel β2/3 Subunit-Selective γ-Aminobutyric Acid Type A (GABAA) Receptor Modulators. J. Med. Chem. 2019, 62, 317–341. [Google Scholar] [CrossRef]
- Lackner, J.; Alberti, C.; Bock, T.; Neßmerak, K.; Urban, E.; Khom, S.; Schützenmeister, N. Total Synthesis of (15R)- and (15S)-Prostaglandin A2. Chemistry 2024, 30, e202401921. [Google Scholar] [CrossRef]
- Trauner, G.; Khom, S.; Baburin, I.; Benedek, B.; Hering, S.; Kopp, B. Modulation of GABAA receptors by valerian extracts is related to the content of valerenic acid. Planta Med. 2008, 74, 19–24. [Google Scholar] [CrossRef]
- Schramm, A.; Ebrahimi, S.N.; Raith, M.; Zaugg, J.; Rueda, D.C.; Hering, S.; Hamburger, M. Phytochemical profiling of Curcuma kwangsiensis rhizome extract, and identification of labdane diterpenoids as positive GABAA receptor modulators. Phytochemistry 2013, 96, 318–329. [Google Scholar] [CrossRef]
- Chukwuma, C.I.; Mashele, S.S.; Akuru, E.A. Evaluation of the in vitro α-amylase inhibitory, antiglycation, and antioxidant properties of Punica granatum L. (pomegranate) fruit peel acetone extract and its effect on glucose uptake and oxidative stress in hepatocytes. J. Food Biochem. 2020, 44, e13175. [Google Scholar] [CrossRef] [PubMed]
- Mashile, B.; Setlhodi, R.; Izu, G.O.; Erukainure, O.L.; Mashele, S.S.; Makhafola, T.J.; Eze, K.C.; Chukwuma, C.I. Temperature-dependent extraction and chromatographic recovery and characterisation of ellagitannins with potent antioxidant and glycaemic control properties from ‘Wonderful’ pomegranate peel. Int. J. Food Sci. Technol. 2024, 59, 408–424. [Google Scholar] [CrossRef]
- Oke, I.M.; Ramorobi, L.M.; Mashele, S.S.; Bonnet, S.L.; Makhafola, T.J.; Eze, K.C.; Noreljaleel, A.; Chukwuma, C.I. Vanillic acid-Zn(II) complex: A novel complex with antihyperglycaemic and antioxidative activity. J. Pharm. Pharmacol. 2021, 73, 1703–1714. [Google Scholar] [CrossRef] [PubMed]
Fractions from MeOH Extract of PS | Glucosidase-Inhibitory Activity (%) | Fractions from DCM Extract of PS | Glucosidase-Inhibitory Activity (%) | Fractions from MeOH Extract of PL | Glucosidase-Inhibitory Activity (%) | Fractions from DCM Extract of PL | Glucosidase-Inhibitory Activity (%) |
---|---|---|---|---|---|---|---|
F1 | 36.6 ± 6.35 | F1 | 51.07 ± 8.08 | F1 | 9.89 ± 0.42 | F1 | 39.7 ± 2.47 |
F2 | 63.5 ± 3.74 | F4 | 32.0 ± 4.64 | F2 | 20.5 ± 1.92 | F6 | 122 ± 9.55 |
F3 | NAD | F5 | 34.3 ± 6.09 | F3 | 19.8 ± 2.00 | F7 | NAD |
F4 | 10.8 ± 2.64 | F6 | 17.4 ± 3.07 | F4 | 22.2 ± 9.76 | F8 | 6.76 ± 1.46 |
F10a | NAD | F7 | 17.3 ± 5.38 | F9 | NAD | ||
F11 | NAD | F9 | 20.1 ± 5.40 | F10 | 22.1 ± 3.65 | ||
F12 | NAD | F11 | 2.44 ± 0.18 | F11 | 8.90 ± 3.44 | ||
F13 | NAD | F12 | 23.4 ± 6.97 | ||||
F14 | NAD | F13 | NAD | ||||
F15 | 8.63 ± 0.18 | F14 | 21.5 ± 4.41 | ||||
F16 | 80.8 ± 14.1 | ||||||
F18 | NAD | ||||||
F19 | NAD | ||||||
F20 | 22.6 ± 10.5 | ||||||
F21 | NAD | ||||||
F22 | 25.3 ± 6.77 | ||||||
F23 | 21.3 ± 0.18 | ||||||
F24 | 21.5 ± 5.43 | ||||||
F25 | 12.2 ± 4.05 | ||||||
F26 | 9.99 ± 3.85 | ||||||
Acarbose | 94.3 ± 1.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chukwuma, M.S.; Bertaina, L.; Khom, S.; Chukwuma, C.I.; Zietsman, P.C.; Wilhelm, A.; Bonnet, S.L. GABAergic and α-Glucosidase-Inhibitory Potentials of Fractions and Isolated Xanthones from Hypericum revolutum Vahl subsp. revolutum. Molecules 2025, 30, 3530. https://doi.org/10.3390/molecules30173530
Chukwuma MS, Bertaina L, Khom S, Chukwuma CI, Zietsman PC, Wilhelm A, Bonnet SL. GABAergic and α-Glucosidase-Inhibitory Potentials of Fractions and Isolated Xanthones from Hypericum revolutum Vahl subsp. revolutum. Molecules. 2025; 30(17):3530. https://doi.org/10.3390/molecules30173530
Chicago/Turabian StyleChukwuma, Maria S., Lorenza Bertaina, Sophia Khom, Chika I. Chukwuma, Pieter C. Zietsman, Anke Wilhelm, and Susanna L. Bonnet. 2025. "GABAergic and α-Glucosidase-Inhibitory Potentials of Fractions and Isolated Xanthones from Hypericum revolutum Vahl subsp. revolutum" Molecules 30, no. 17: 3530. https://doi.org/10.3390/molecules30173530
APA StyleChukwuma, M. S., Bertaina, L., Khom, S., Chukwuma, C. I., Zietsman, P. C., Wilhelm, A., & Bonnet, S. L. (2025). GABAergic and α-Glucosidase-Inhibitory Potentials of Fractions and Isolated Xanthones from Hypericum revolutum Vahl subsp. revolutum. Molecules, 30(17), 3530. https://doi.org/10.3390/molecules30173530