Extraction of Ficus carica Polysaccharide by Ultrasound-Assisted Deep Eutectic Solvent-Based Three-Phase Partitioning System: Process Optimization, Partial Structure Characterization, and Antioxidant Properties
Abstract
1. Introduction
2. Results and Discussion
2.1. Single Factor Experimental Analysis
2.2. Optimization of TPP Extraction Process
2.2.1. RSM Model Fitting
+ 0.742A2 − 1.590B2 − 0.752C2
2.2.2. Interactive Effects of Factors
2.3. Polysaccharide Yield and Purity Analysis
2.4. Recycling and Reusing of DESs
2.5. Structural Characterization
2.5.1. Scanning Electron Microscope Analysis
2.5.2. Fourier Transform Infrared Spectrum Analysis
2.5.3. Monosaccharide Composition Analysis
2.6. Functional Properties
2.6.1. Thermal Analysis
2.6.2. Antioxidant Potentials
3. Materials and Methods
3.1. Materials and Reagents
3.2. Ultrasound-Assisted Deep Eutectic Solvents-Based Three-Phase Partitioning (UA-DES-TPP) for FCP Extraction
3.2.1. Pretreatment of Freeze-Dried F. carica
3.2.2. Preparation of DESs
3.2.3. FCP Extraction
3.3. Single-Factor Experiments of FCP Extraction
3.4. Response Surface Optimization of FCP Extraction
3.5. Yield and Purity
3.5.1. Standard Curve Establishment
3.5.2. Polysaccharide Yield and Purity
3.6. Recycling and Reusing of DESs
3.7. Structural Characterization
3.7.1. Scanning Electron Microscope (SEM)
3.7.2. Fourier Transform Infrared Spectrum (FT-IR)
3.7.3. Monosaccharide Composition
3.8. Functional Properties
3.8.1. Thermal Stability
3.8.2. Evaluation of Antioxidant Activity
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hajam, T.A.; Saleem, H. Phytochemistry, biological activities, industrial and traditional uses of fig (Ficus carica): A review. Chem. Interact. 2022, 368, 110237. [Google Scholar] [CrossRef]
- Dogara, A.M.; Hama, H.A.; Ozdemir, D. Taxonomy, traditional uses and biological activity of Ficus carica L. (Moraceae): A review. Plant Sci. Today 2024, 11, 385–400. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Anuar, N.; Yaakob, Z.; Islam, A.K.M.A.; Al-Khayri, J.M. Performance evaluation of seventeen common fig (Ficus carica L.) cultivars introduced to a tropical climate. Hortic. Environ. Biotechnol. 2020, 61, 795–806. [Google Scholar] [CrossRef]
- Mijit, M.; Li, S.F.; Zhang, S.; Zhang, Z.X. First Report of Fig mosaic virus Infecting Common Fig (Ficus carica) in China. Plant Dis. 2015, 99, 422–423. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Liu, L.; Wang, W.; Liu, Y.; Deng, Q.; Zhang, H.; Wang, X.; Xia, H. Evaluation of the comparative morphological and quality in fig (Sichuan, China) with different colors under different ripening stages. Sci. Hortic. 2020, 265, 109256. [Google Scholar] [CrossRef]
- Yang, Q.; Guo, Y.; Zhu, H.; Jiang, Y.; Yang, B. Bioactive compound composition and cellular antioxidant activity of fig (Ficus carica L.). J. Sci. Food Agric. 2023, 104, 3275–3293. [Google Scholar] [CrossRef]
- Walia, A.; Kumar, N.; Singh, R.; Kumar, H.; Kumar, V.; Kaushik, R.; Kumar, A.P.; Stankovic, M. Bioactive Compounds in Ficus Fruits, Their Bioactivities, and Associated Health Benefits: A Review. J. Food Qual. 2022, 2022, 6597092. [Google Scholar] [CrossRef]
- Saghazadeh, A. Exploring the pharmacological versatility of Ficus carica: Modulating classical immunometabolism and beyond. Pharmacol. Res. 2023, 198, 107010. [Google Scholar] [CrossRef] [PubMed]
- Rasool, I.F.U.; Aziz, A.; Khalid, W.; Koraqi, H.; Siddiqui, S.A.; Al-Farga, A.; Lai, W.-F.; Ali, A. Industrial Application and Health Prospective of Fig (Ficus carica) By-Products. Molecules 2023, 28, 960. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Rao, G. Characterization of a pectin in fig fruit: Structure and anti-inflammatory activity. Carbohydr. Res. 2024, 544, 109226. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhang, Q.-Q.; Lin, S.; Zhang, Q.; Yan, J.; Wu, D.-T.; Liu, S.-X.; Qin, W. A Polysaccharide from Ficus carica L. Exerts Immunomodulatory Activity in Both In Vitro and In Vivo Experimental Models. Foods 2024, 13, 195. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Wang, L.; Song, G.; Jiang, W.; Mu, L.; Li, J. Ficus carica polysaccharide extraction via ultrasound-assisted technique: Structure characterization, antioxidant, hypoglycemic and immunomodulatory activities. Ultrason. Sonochem. 2023, 101, 106680. [Google Scholar] [CrossRef]
- Khalil, A.S.E.; Lukasiewicz, M. The Optimization of the Hot Water Extraction of the Polysaccharide-Rich Fraction from Agaricus bisporus. Molecules 2024, 29, 4783. [Google Scholar] [CrossRef]
- Yang, M.; Efehi, N.; Jin, Y.; Zhang, Q.; Ebadi, A.G.; Toughani, M. Hot Water Extraction of Crude Polysaccharide from Codonopsis pilosula and Determination of the Rheological Properties. Rev. Chim. 2020, 71, 441–449. [Google Scholar] [CrossRef]
- Zhou, B.; Jiang, J.; Huo, Y.; Lin, J.; Shang, C. Extraction, purification and antioxidant activity of Chlorella polysaccharide. Algal Res. 2025, 89. [Google Scholar] [CrossRef]
- Mao, B.; Lu, W.; Huang, G. Ultrasound-assisted enzymatic extraction, process optimization, and antioxidant activity of polysaccharides from sugarcane peel. Sci. Rep. 2025, 15, 5009. [Google Scholar] [CrossRef]
- Kumar, A.; Nirmal, P.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; Sneha, K.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, M.; Li, D.; Zheng, J.; Sun, Y.; Liu, R.; Sun, T. Review of the recent advances in polysaccharides from Ficus carica: Extraction, purification, structural characteristics, bioactivities and potential applications. Int. J. Biol. Macromol. 2024, 281, 136430. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Chen, G.; Kan, J. Comparison on characterization and biological activities of Mentha haplocalyx polysaccharides at different solvent extractions. Int. J. Biol. Macromol. 2020, 154, 916–928. [Google Scholar] [CrossRef]
- Yi, K.; Miao, S.; Yang, B.; Li, S.; Lu, Y. Harnessing the Potential of Chitosan and Its Derivatives for Enhanced Functionalities in Food Applications. Foods 2024, 13, 439. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, X.; Zhang, J. Optimization of enzyme assisted extraction of polysaccharides from Astragalus membranaceus. Carbohydr. Polym. 2014, 111, 567–575. [Google Scholar] [CrossRef]
- Ben Aoun, R.; Trabelsi, N.; Abdallah, M.; Mourtzinos, I.; Mhamdi, R. Towards a greener future: Exploring the challenges of extraction of chitin and chitosan as bioactive polysaccharides. Mater. Today Commun. 2024, 39. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Rajendran, D.S.; Chidambaram, A.; Kumar, P.S.; Venkataraman, S.; Muthusamy, S.; Vo, D.-V.N.; Rangasamy, G.; Vaithyanathan, V.K.; Vaidyanathan, V.K. Three-phase partitioning for the separation of proteins, enzymes, biopolymers, oils and pigments: A review. Environ. Chem. Lett. 2022, 21, 911–934. [Google Scholar] [CrossRef]
- Antunes, E.C.; Temmink, H.; Schuur, B. Polymer and alcohol-based three-phase partitioning systems for separation of polysaccharide and protein. J. Chem. Technol. Biotechnol. 2023, 99, 259–269. [Google Scholar] [CrossRef]
- Hoang, N.M.-H.; Park, K. Estrogenic and androgenic activity of tert-butyl phenolic antioxidants assessed by in vitro receptor transcriptional activation and their association with in silico molecular docking analysis. Toxicol. Appl. Pharmacol. 2025, 499, 117344. [Google Scholar] [CrossRef] [PubMed]
- Prabhune, A.; Dey, R. Green and sustainable solvents of the future: Deep eutectic solvents. J. Mol. Liq. 2023, 379. [Google Scholar] [CrossRef]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and properties of deep eutectic solvents: A review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Wu, Z.; Li, C.; Li, J.; Wang, T.; Li, M.; Zhao, L.; Ye, H.; Chen, J.; Zan, J.; Song, L.; et al. Extraction of American ginseng polysaccharide by ultrasound-assisted deep eutectic solvents-based three-phase partitioning: Process optimization, structural characterization, and anti-ulcerative colitis study. Ultrason. Sonochem. 2025, 112, 107206. [Google Scholar] [CrossRef]
- Airouyuwa, J.O.; Sivapragasam, N.; Redha, A.A.; Maqsood, S. Sustainable green extraction of anthocyanins and carotenoids using deep eutectic solvents (DES): A review of recent developments. Food Chem. 2024, 448, 139061. [Google Scholar] [CrossRef]
- Li, X.; Row, K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 2016, 39, 3505–3520. [Google Scholar] [CrossRef]
- Zhou, K.; Dai, X.; Li, P.; Zhang, L.; Zhang, X.; Wang, C.; Wen, J.; Huang, G.; Xu, S. Recent advances in deep eutectic solvents for next-generation lithium batteries: Safer and greener. Prog. Mater. Sci. 2024, 146, 101338. [Google Scholar] [CrossRef]
- Sugiarto, S.; Weerasinghe, U.A.; Muiruri, J.K.; Chai, A.Y.Q.; Yeo, J.C.C.; Wang, G.; Zhu, Q.; Loh, X.J.; Li, Z.; Kai, D. Nanomaterial synthesis in deep eutectic solvents. Chem. Eng. J. 2024, 499, 156177. [Google Scholar] [CrossRef]
- Mero, A.; Mezzetta, A.; De Leo, M.; Braca, A.; Guazzelli, L. Sustainable valorization of cherry (Prunus avium L.) pomace waste via the combined use of (NA)DESs and bio-ILs. Green Chem. 2024, 26, 6109–6123. [Google Scholar] [CrossRef]
- Morais, E.S.; Lopes, A.M.d.C.; Freire, M.G.; Freire, C.S.R.; Coutinho, J.A.P.; Silvestre, A.J.D. Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules 2020, 25, 3652. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2018, 48, 962–982. [Google Scholar] [CrossRef]
- Liu, X.; Liu, K.; Yao, C.; Deng, D.; Tian, C. Density, apparent viscosity, electrical conductivity, interfacial tension, and intermolecular interactions of PEG-ZnCl2-EG solution. J. Mol. Liq. 2025, 430, 127634. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, Q.; Yao, C.; Yang, L.; Chen, G. Ultrasonic-assisted emulsification process in micro-packed bed reactor and its application on nano-emulsion preparation. Chem. Eng. Sci. 2025, 307, 121366. [Google Scholar] [CrossRef]
- Jia, Y.; Li, Q.; Jiang, F.; Huang, X.; Zeng, L.; Zhang, Y.; Xu, L. Ultrasonic degradation of mulberry twigs polysaccharides: Effect on in vitro hypoglycemic activity and prebiotic potential. Int. J. Biol. Macromol. 2025, 310, 143356. [Google Scholar] [CrossRef]
- Wang, Q.; Wen, H.; Wang, Y.; Li, Z.; Hao, J.; Wei, L.; Zhai, S.; Xiao, Z.; An, Q. Pyridine derivatives as hydrogen bond acceptors to prepare deep eutectic solvents for ammonia storage. Int. J. Hydrogen Energy 2023, 50, 1489–1501. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Sadeghi, R. Carbohydrate-based aqueous biphasic systems for biomolecules extraction. Sep. Purif. Technol. 2021, 277, 119460. [Google Scholar] [CrossRef]
- Khamparia, A.; Pandey, B.; Pandey, D.K.; Gupta, D.; Khanna, A.; de Albuquerque, V.H.C. Comparison of RSM, ANN and Fuzzy Logic for extraction of Oleonolic Acid from Ocimum sanctum. Comput. Ind. 2020, 117, 103200. [Google Scholar] [CrossRef]
- Yadav, H.; Maiti, S. Poly(allylamine)-adorned heptylcarboxymethyl galactomannan nanocarriers of canagliflozin for controlling type-2 diabetes: Optimization by Box-Behnken design and in vivo performance. Int. J. Biol. Macromol. 2024, 277, 134253. [Google Scholar] [CrossRef]
- Boulahbal, M.; Malouki, M.A.; Canle, M.; Redouane-Salah, Z.; Devanesan, S.; AlSalhi, M.S.; Berkani, M. Removal of the industrial azo dye crystal violet using a natural clay: Characterization, kinetic modeling, and RSM optimization. Chemosphere 2022, 306, 135516. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Ribe, N.M.; Zhang, Y.; Pan, Y.; Cao, Y.; Shum, H.C. Generation of Fermat’s spiral patterns by solutal Marangoni-driven coiling in an aqueous two-phase system. Nat. Commun. 2022, 13, 7206. [Google Scholar] [CrossRef]
- Luo, D.; Li, L. Rolling discrete grey periodic power model with interaction effect under dual processing and its application. Expert Syst. Appl. 2024, 254, 124487. [Google Scholar] [CrossRef]
- Punthi, F.; Mulyani, R.; Chang, C.-K.; Adi, P.; Gavahian, M.; Yudhistira, B.; Listyaningrum, R.S.; Cheng, K.-C.; Hou, C.-Y.; Hsieh, C.-W. Enhanced extraction of Pleurotus ostreatus polysaccharides via plasma-ultrasound synergy: Kinetics modeling and functional characterization. Innov. Food Sci. Emerg. Technol. 2025, 103, 104046. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Cui, H.-N.; Zheng, J.-J.; Qing, X.-D.; Yang, K.-L.; Zhang, Y.-Q.; Ren, L.-M.; Pan, L.-Y.; Yin, X.-L. Discrimination of the harvesting season of green tea by alcohol/salt-based aqueous two-phase systems combined with chemometric analysis. Food Res. Int. 2022, 163, 112278. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, Q.; Ye, L.; Wu, D.; Lin, S.; Li, F.; Xu, Y.; Yu, J.; Lv, J.; Qin, W. Extraction, characterization, and biological activity in vitro of polysaccharides from discarded young fig fruits based on various extraction methods. J. Food Sci. 2025, 90, e70096. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Zhou, P.; Li, X.; Lu, Y.; Wang, Y.; Yuan, H.; Yang, Y. Ultrasound-assisted deep eutectic solvent extraction of flavonol glycosides from Ginkgo biloba: Optimization of efficiency and mechanism. Ultrason. Sonochem. 2025, 114, 107254. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Du, J.; Zhang, Y.; Gu, Z.; Li, Z.; Cheng, L.; Li, C.; Hong, Y. Polysaccharide-coated porous starch-based oral carrier for paclitaxel: Adsorption and sustained release in colon. Carbohydr. Polym. 2022, 291, 119571. [Google Scholar] [CrossRef] [PubMed]
- Smink, D.; Kersten, S.R.; Schuur, B. Recovery of lignin from deep eutectic solvents by liquid-liquid extraction. Sep. Purif. Technol. 2020, 235, 116127. [Google Scholar] [CrossRef]
- McReynolds, C.; Adrien, A.; Castejon, N.; Fernandes, S.C.M. Green in the deep blue: Deep eutectic solvents as versatile systems for the processing of marine biomass. Green Chem. Lett. Rev. 2022, 15, 383–404. [Google Scholar] [CrossRef]
- Yan, M.-M.; Liu, W.; Fu, Y.-J.; Zu, Y.-G.; Chen, C.-Y.; Luo, M. Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali. Food Chem. 2010, 119, 1663–1670. [Google Scholar] [CrossRef]
- Hussain, A. Extraction methods, structural diversity and potential biological activities of Artemisia L. polysaccharides (APs): A review. Int. J. Biol. Macromol. 2025, 309, 142802. [Google Scholar] [CrossRef] [PubMed]
- Lama-Muñoz, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Fernández-Bolaños, J. Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocoll. 2012, 28, 92–104. [Google Scholar] [CrossRef]
- Chen, X.; Sun-Waterhouse, D.; Yao, W.; Li, X.; Zhao, M.; You, L. Free radical-mediated degradation of polysaccharides: Mechanism of free radical formation and degradation, influence factors and product properties. Food Chem. 2021, 365, 130524. [Google Scholar] [CrossRef]
- Ando, D.; Kurimoto, Y.; Takata, K. Pulverization and Chemical Modification of Wood in One Pod: Acetylation Behavior of Wood by Mechanochemical Processing with Rod-Milling Treatment. ACS Sustain. Chem. Eng. 2022, 10, 17198–17206. [Google Scholar] [CrossRef]
- Hubble, A.H.; Goldfarb, J.L. Synergistic effects of biomass building blocks on pyrolysis gas and bio-oil formation. J. Anal. Appl. Pyrolysis 2021, 156, 105100. [Google Scholar] [CrossRef]
- Wang, L.; Ma, M.; Yu, Z.; Du, S.-K. Preparation and identification of antioxidant peptides from cottonseed proteins. Food Chem. 2021, 352, 129399. [Google Scholar] [CrossRef] [PubMed]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Mekinić, I.G. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, F.; Heo, J.W.; Kim, J.W.; Kim, M.S.; Xia, Q.; Kim, Y.S. Facile synthesis of phenolic hydroxyl-rich modified lignin: Evaluation of their applications as an antioxidant and for Cr(VI) removal. Ind. Crop. Prod. 2023, 205, 117403. [Google Scholar] [CrossRef]
- Chen, X.; Wang, R.; Tan, Z. Extraction and purification of grape seed polysaccharides using pH-switchable deep eutectic solvents-based three-phase partitioning. Food Chem. 2023, 412, 135557. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zheng, K. Extraction of mucilage polysaccharides from chia seed by hydrophobic deep eutectic solvents-based three-phase partitioning system: A phase behavior-driven approach. Int. J. Biol. Macromol. 2024, 280, 135913. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.-J.; Qiu, B.; Zhou, L.; Liu, R.-Y.; Huang, J.-F.; He, Y.; Xie, Q. Optimization of ultrasound-assisted deep eutectic solvents extraction of rutin from Ilex asprella using response surface methodology. Sci. Rep. 2025, 15, 6205. [Google Scholar] [CrossRef]
- Shen, X.; Lu, Y.; Zhu, Q.; Zhang, Y.; Zeng, L. Response surface optimization reveals monthly total flavonoid peaks in Ginkgo biloba leaves with corresponding DPPH scavenging activity. Sci. Rep. 2025, 15, 16613. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Zhang, H. Ultrasound-assisted extraction and antioxidant activity of polysaccharides from Tenebrio molitor. Sci. Rep. 2024, 14, 28526. [Google Scholar] [CrossRef]
- Arachchi, M.P.; Subhash, A.; Bamigbade, G.; Hamed, F.; Abu-Jdayil, B.; Adhikari, B.; Esposito, G.; Ali, A.; Kamal-Eldin, A.; Ayyash, M. Physicochemical properties and biofunctional activities of polysaccharides from carob (ceratonia siliqua) pod by microwave-assisted deep eutectic solvent extraction and its effects on human gut microbiota. Food Hydrocoll. 2024, 162, 110999. [Google Scholar] [CrossRef]
- Firuzeh, M.; Labbaf, S.; Enayati, M.H.; Dinari, M.; Mirhaj, M. Enhanced wound healing with a bilayered multifunctional quaternized chitosan-dextran-curcumin construct. Carbohydr. Polym. 2024, 352, 123195. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, H.; Shi, Z.; Xu, Y.; Lian, Q.; Zhong, Q.; Liu, Q.; Chen, Y.; Pan, X.; Chen, R.; et al. Long-term antibacterial and biofilm dispersion activity of an injectable in situ crosslinked co-delivery hydrogel/microgel for treatment of implant infection. Chem. Eng. J. 2022, 433, 134451. [Google Scholar] [CrossRef]
- Wang, B.; Yan, L.; Guo, S.; Wen, L.; Yu, M.; Feng, L.; Jia, X. Structural Elucidation, Modification, and Structure-Activity Relationship of Polysaccharides in Chinese Herbs: A Review. Front. Nutr. 2022, 9, 908175. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Lin, X.; Chang, C.; Duan, B. Chitinous Bioplastic Enabled by Noncovalent Assembly. ACS Nano 2024, 18, 8906–8918. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, R.; Zhao, J.; Zhang, S.; Hu, X.; Wang, X.; Gao, Z.; Yuan, Y.; Yue, T.; Cai, R.; et al. Enzymatically green-produced bacterial cellulose nanoparticle-stabilized Pickering emulsion for enhancing anthocyanin colorimetric performance of versatile films. Food Chem. 2024, 453, 139700. [Google Scholar] [CrossRef] [PubMed]
Run | Liquid–Solid Ratio (g/mL) | Top Phase to the Bottom Phase Ratio (v/v) | Mass Fraction of (NH4)2SO4 (wt%) | Yield (%) |
---|---|---|---|---|
1 | 25 | 1 | 25 | 9.14 |
2 | 25 | 1.5 | 20 | 7.58 |
3 | 20 | 1 | 20 | 6.34 |
4 | 25 | 1 | 25 | 8.89 |
5 | 30 | 1.5 | 30 | 7.77 |
6 | 25 | 1.5 | 25 | 6.22 |
7 | 30 | 0.5 | 30 | 7.43 |
8 | 25 | 1 | 25 | 8.96 |
9 | 25 | 1 | 25 | 8.93 |
10 | 25 | 1 | 25 | 9.09 |
11 | 20 | 1 | 20 | 6.94 |
12 | 30 | 1 | 30 | 6.52 |
13 | 25 | 0.5 | 25 | 6.13 |
14 | 20 | 0.5 | 20 | 7.25 |
15 | 30 | 1 | 30 | 6.88 |
16 | 25 | 1.5 | 25 | 7.55 |
17 | 25 | 0.5 | 25 | 6.74 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 18.3500 | 9 | 2.0400 | 78.9500 | < 0.0001 | ** |
A | 0.0300 | 1 | 0.0300 | 1.1600 | 0.3167 | ns |
B | 1.0500 | 1 | 1.0500 | 40.7100 | 0.0004 | ** |
C | 0.3081 | 1 | 0.3081 | 11.9300 | 0.0106 | * |
AB | 0.0144 | 1 | 0.0144 | 0.5577 | 0.4795 | ns |
AC | 0.0000 | 1 | 0.0000 | 0.0010 | 0.9760 | ns |
BC | 0.1296 | 1 | 0.1296 | 5.0200 | 0.0601 | ns |
A2 | 2.3200 | 1 | 2.3200 | 89.8300 | < 0.0001 | ** |
B2 | 10.6400 | 1 | 10.6400 | 412.1000 | < 0.0001 | ** |
C2 | 2.3800 | 1 | 2.3800 | 92.2700 | < 0.0001 | ** |
Residual | 0.1808 | 7 | 0.0258 | |||
Lack of | 0.1345 | 3 | 0.0448 | 3.8700 | 0.1119 | ns |
fit | ||||||
Pure | 0.0463 | 4 | 0.0116 | |||
error | ||||||
Cor. total | 18.5300 | 16 | ||||
R2 | 0.9902 | |||||
R2Adj | 0.9777 | |||||
Pred. R2 | 0.8800 |
Testing Value (%) | RSD (n = 3) | |
---|---|---|
FCP extraction yield | 9.22 ± 0.20 | 2.27% |
Sugar content | 89.50 ± 0.50 | 0.56% |
Protein content | 1.80 ± 0.10 | 5.56% |
Parameter | 15% | 20% | 25% | 30% | 35% |
---|---|---|---|---|---|
Density (g/cm3) | 1.103 | 1.124 | 1.148 | 1.168 | 1.193 |
Theoretical total mass (g) | 55.150 | 56.200 | 57.400 | 58.400 | 59.650 |
Mass of ammonium sulfate (g) | 8.273 | 11.240 | 14.350 | 17.520 | 20.878 |
Ultra-pure water quality (g) | 46.877 | 44.960 | 43.050 | 40.880 | 38.772 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Song, Z.; Li, F.; Zhu, X.; Zhang, X.; Chen, H. Extraction of Ficus carica Polysaccharide by Ultrasound-Assisted Deep Eutectic Solvent-Based Three-Phase Partitioning System: Process Optimization, Partial Structure Characterization, and Antioxidant Properties. Molecules 2025, 30, 3469. https://doi.org/10.3390/molecules30173469
Sun Q, Song Z, Li F, Zhu X, Zhang X, Chen H. Extraction of Ficus carica Polysaccharide by Ultrasound-Assisted Deep Eutectic Solvent-Based Three-Phase Partitioning System: Process Optimization, Partial Structure Characterization, and Antioxidant Properties. Molecules. 2025; 30(17):3469. https://doi.org/10.3390/molecules30173469
Chicago/Turabian StyleSun, Qisen, Zhubin Song, Fanghao Li, Xinyu Zhu, Xinyu Zhang, and Hao Chen. 2025. "Extraction of Ficus carica Polysaccharide by Ultrasound-Assisted Deep Eutectic Solvent-Based Three-Phase Partitioning System: Process Optimization, Partial Structure Characterization, and Antioxidant Properties" Molecules 30, no. 17: 3469. https://doi.org/10.3390/molecules30173469
APA StyleSun, Q., Song, Z., Li, F., Zhu, X., Zhang, X., & Chen, H. (2025). Extraction of Ficus carica Polysaccharide by Ultrasound-Assisted Deep Eutectic Solvent-Based Three-Phase Partitioning System: Process Optimization, Partial Structure Characterization, and Antioxidant Properties. Molecules, 30(17), 3469. https://doi.org/10.3390/molecules30173469