Wetting Properties of a Saponin-Rich Aqueous Soapwort Extract
Abstract
1. Introduction
2. Theory
2.1. Relation Between the Contact Angle and the Liquid-Air, Solid-Air, and Solid-Liquid Interface Tension
2.2. Adsorption of Surfactants at the Solid-Air and Solid-Liquid Interfaces
2.3. The Standard Gibbs Free Energy of Adsorption
3. Results and Discussion
3.1. Wetting Properties of the Soapwort Extract (SE)
3.2. Components and Parameters of SE Surface Tension and Their Applicability
3.3. SE Concentration at the Solid-Air, Solid-Solution, and Solution-Air Interfaces
3.4. Standard Gibbs Free Energy of SE Component Adsorption
4. Materials and Methods
4.1. Materials
4.2. Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moghimipour, E.; Handali, S. Saponin: Properties, Methods of evaluation and applications. Ann. Res. Rev. Biol. 2015, 5, 207. [Google Scholar] [CrossRef]
- Man, S.; Gao, W.; Zhang, Y.; Huang, L.; Liu, C. Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia 2010, 81, 703. [Google Scholar] [CrossRef]
- Xiang, Y.-Z.; Shang, H.-C.; Gao, X.-M.; Zhang, B.-L. A Comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother. Res. 2008, 22, 851. [Google Scholar] [CrossRef]
- Augustin, J.M.; Kuzina, V.; Andersen, S.B.; Bak, S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 2011, 72, 435. [Google Scholar] [CrossRef] [PubMed]
- Nizioł-Łukaszewska, Z.; Bujak, T. Saponins as natural raw materials for increasing the safety of bodywash cosmetic use. J. Surfactants Deterg. 2018, 21, 767. [Google Scholar] [CrossRef]
- Tamura, Y.; Miyakoshi, M.; Yamamoto, M. Application of saponin-containing plants in foods and cosmetics. In Alternative Medicine; Sakagami, H., Ed.; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Schreiner, T.B.; Colucci, G.; Santamaria-Echart, A.; Fernandes, I.P.; Dias, M.M.; Pinho, S.P.; Barreiro, M.F. Evaluation of saponin-rich extracts as natural alternative emulsifiers: A comparative study with pure Quillaja Bark saponin. Colloids Surf. A Physicochem. Eng. Asp. 2021, 623, 126748. [Google Scholar] [CrossRef]
- Piacente, S.; Pizza, C.; Oleszek, W. Saponins and phenolics of Yucca schidigera Roezl: Chemistry and bioactivity. Phytochem. Rev. 2005, 4, 177. [Google Scholar] [CrossRef]
- Tapondjou, L.A.; Ponou, K.B.; Teponno, R.B.; Mbiantcha, M.; Djoukeng, J.D.; Nguelefack, T.B.; Watcho, P.; Cadenas, A.G.; Park, H.-J. In vivo anti-inflammatory effect of a new steroidal saponin, mannioside A, and its derivatives isolated from Dracaena mannii. Arch. Pharm. Res. 2008, 31, 653. [Google Scholar] [CrossRef]
- Sharma, K.; Kaur, R.; Kumar, S.; Saini, R.K.; Sharma, S.; Pawde, S.V.; Kumar, V. Saponins: A concise review on food related aspects, applications and health implications. Food Chem. Adv. 2023, 2, 100191. [Google Scholar] [CrossRef]
- Saleem, M.; Nazir, M.; Ali, M.S.; Hussain, H.; Lee, Y.S.; Riaz, N.; Jabbar, A. Antimicrobial natural products: An update on future antibiotic drug candidates. Nat. Prod. Rep. 2010, 27, 238. [Google Scholar] [CrossRef]
- Zhang, J.-D.; Cao, Y.-B.; Xu, Z.; Sun, H.-H.; An, M.-M.; Yan, L.; Chen, H.-S.; Gao, P.-H.; Wang, Y.; Jia, X.-M.; et al. In Vitro and in Vivo antifungal activities of the eight steroid saponins from Tribulus terrestris L. with potent activity against fluconazole-resistant fungal. Biol. Pharm. Bull. 2005, 28, 2211–2215. [Google Scholar] [CrossRef]
- Zhao, Y.-L.; Cai, G.-M.; Hong, X.; Shan, L.-M.; Xiao, X.-H. Anti-hepatitis B virus activities of triterpenoid saponin compound from Potentilla anserine L. Phytomedicine 2008, 15, 253. [Google Scholar] [CrossRef]
- Rai, S.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Characterization of saponins from the leaves and stem bark of Jatropha curcas L. for surface-active properties. Heliyon 2023, 9, e15807. [Google Scholar] [CrossRef]
- Güçlü-Üstündağ, O.; Mazza, G. Saponins: Properties, applications and processing. Crit. Rev. Food Sci. Nutr. 2007, 47, 231. [Google Scholar] [CrossRef]
- Kora, A.J. Chapter 22—Plant saponin biosurfactants used as soap, hair cleanser, and detergent in India. In Applications of Next Generation Biosurfactants in the Food Sector; Inamuddin, C.O.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 459–477. [Google Scholar] [CrossRef]
- Jolly, A.; Kim, H.; Moon, J.-Y.; Mohan, A.; Lee, Y.-C. Exploring the imminent trends of saponins in personal care product development: A review. Ind Crops Prod. 2023, 205, 117489. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Mersni, D.; Lourith, N. Plant-derived saponins and their prospective for cosmetic and personal care products. Bot. Stud. 2024, 65, 32. [Google Scholar] [CrossRef] [PubMed]
- Sochacki, M.; Vogt, O. Triterpenoid Saponins from Washnut (Sapindus mukorossi Gaertn.)—A Source of Natural Surfactants and Other Active Components. Plants 2022, 11, 2355. [Google Scholar] [CrossRef]
- Yekeen, N.; Malik, A.A.; Idris, A.K.; Reepei, N.I.; Ganie, K. Foaming properties, wettability alteration and interfacial tension reduction by saponin extracted from soapnut (Sapindus Mukorossi) at room and reservoir conditions. J. Pet. Sci. Eng. 2020, 195, 107591. [Google Scholar] [CrossRef] [PubMed]
- Nowrouzi, I.; Mohammadi, A.H.; Manshad, A.K. Water-oil interfacial tension (IFT) reduction and wettability alteration in surfactant flooding process using extracted saponin from Anabasis Setifera plant. J. Petrol. Sci. Eng. 2020, 189, 106901. [Google Scholar] [CrossRef]
- Rosen, M.J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley-Interscience: New York, NY, USA, 2004. [Google Scholar]
- Zisman, A.W. Relation of the equilibrium contact angle to liquid and solid constitution. In Contact Angle, Wettability, and Adhesion; Fowkes, F.M., Ed.; Advances in Chemistry; ACS: Washington, DC, USA, 1964; Volume 1, pp. 1–51. [Google Scholar] [CrossRef]
- Zisman, W.A. Constitutional effects in adhesion and abhesion. In Symposium on Adhesion and Cohesion; Weiss, P., Ed.; Elsevier: New York, NY, USA, 1962. [Google Scholar]
- Bernett, M.K.; Zisman, W.A. Relation of wettability by aqueous solutions to the surface constitution of low-energy solids. J. Phys. Chem. 1959, 63, 1241. [Google Scholar] [CrossRef]
- Bernett, M.K.; Zisman, W.A. Wetting of low-energy solids by aqueous solutions of highly fluorinated acid and salts. J. Phys. Chem. 1959, 63, 1911. [Google Scholar] [CrossRef]
- Bargeman, D.; van Voorst Vader, F. Effect of surfactants on contact angles at nonpolar solids. J. Colloid Interface Sci. 1973, 42, 467. [Google Scholar] [CrossRef]
- Szymczyk, K.; Zdziennicka, A.; Jańczuk, B. Properties of some nonionic fluorocarbon surfactants and their mixtures with hydrocarbon ones. Adv. Colloid Interface Sci. 2021, 292, 102421. [Google Scholar] [CrossRef] [PubMed]
- Szymczyk, K. Wettability of polymeric solids by ternary mixtures composed of hydrocarbon and fluorocarbon nonionic surfactants. J. Colloid Interface Sci. 2011, 363, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Białopiotrowicz, T.; Jańczuk, B. Surface properties of gelatin films. Langmuir 2002, 18, 9462–9468. [Google Scholar] [CrossRef]
- Szymczyk, K.; Podkościelna, B. Synthesis and wettability of cellulose based composites by aqueous solutions of nonionic surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2021, 623, 126709. [Google Scholar] [CrossRef]
- Fila, K.; Podkościelna, B.; Szymczyk, K. The application of chitosan as an eco-filler of polymeric composite. Adsorption 2024, 30, 157. [Google Scholar] [CrossRef]
- Peng, W.; Peng, Z.; Tang, P.; Sun, H.; Lei, H.; Li, Z.; Hui, D.; Du, C.; Zhou, C.; Wang, Y. Review of Plastic Surgery Biomaterials and Current Progress in Their 3D Manufacturing Technology. Materials 2020, 13, 4108. [Google Scholar] [CrossRef]
- Ramanathan, S.; Lin, Y.-C.; Thirumurugan, S.; Hu, C.-C.; Duann, Y.-F.; Chung, R.-J. Poly(methyl methacrylate) in Orthopedics: Strategies, Challenges, and Prospects in Bone Tissue Engineering. Polymers 2024, 16, 367. [Google Scholar] [CrossRef]
- Young, T. Miscellaneous Works; Peacock, G., Ed.; Murray: London, UK, 1855; Volume 1. [Google Scholar]
- Adamson, A.W.; Gast, A.P. Physical Chemistry of Surfaces, 6th ed.; Wiley-Interscience: New York, NY, USA, 1997. [Google Scholar]
- Neumann, A.W.; Good, R.J.; Hope, C.J.; Sejpal, M. An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J. Colloid Interface Sci. 1974, 49, 291. [Google Scholar] [CrossRef]
- Neumann, A.W. Contact angles and their temperature dependence. Thermodynamic status, measurements, interpretation and application. Adv. Colloid Interface Sci. 1974, 4, 105. [Google Scholar] [CrossRef]
- Li, D.; Neumann, A.W. Equation of state for interfacial tensions of solid-liquid systems. Adv. Colloid Interface Sci. 1992, 39, 299–345. [Google Scholar] [CrossRef]
- van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Monopolar surfaces. Adv. Colloid Interface Sci. 1987, 28, 35. [Google Scholar] [CrossRef] [PubMed]
- van Oss, C.J. Interfacial Forces in Aqueous Media, 1st ed.; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
- van Oss, C.J.; Good, R.J. Surface tension and the solubility of polymers and biopolymers: The role of polar and apolar interfacial free energies. J. Macromol. Sci.—Chem. 1989, 26, 1183. [Google Scholar] [CrossRef]
- van Oss, C.J.; Constanzo, P.M. Adhesion of anionic surfactants to polymer surfaces and low-energy materials. J. Adhes. Sci. Technol. 1992, 4, 477–487. [Google Scholar] [CrossRef]
- Fowkes, F.M. Attractive forces at interfaces. Ind. Eng. Chem. 1964, 56, 40. [Google Scholar] [CrossRef]
- Fowkes, F.M. Calculation of work of adhesion by pair potential suummation. J. Colloid Interface Sci. 1968, 28, 493–505. [Google Scholar] [CrossRef]
- Fowkes, F.M.; McCarthy, D.C.; Mostafa, A. Contact angles and the equilibrium spreading pressures of liquids on hydrophobic solids. J. Colloid Interface Sci. 1980, 78, 200–206. [Google Scholar] [CrossRef]
- Lucassen-Reynders, E.H. Contact angles and adsorption on solids. J. Phys. Chem. 1963, 167, 969–972. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Szymczyk, K.; Jańczuk, B.; Wojciechowski, K.; Kobylska, E. Surface and volumetric properties of a saponin-rich aqueous soapwort extract. J. Mol. Liq. 2025, 435, 128148. [Google Scholar] [CrossRef]
- Boer, J.H. The Dynamical Character of Adsorption, 1st ed.; Oxford University Press: London, UK, 1953. [Google Scholar]
- Gu, T.; Zhu, B.-Y. The S-type isotherm equation for adsorption of nonionic surfactants at the silica gel-water interface. Colloids Surf. 1990, 44, 81. [Google Scholar] [CrossRef]
- Zhu, B.-Y.; Gu, T. Reverse hemimicelle formation of 1-decanol from heptane at the solution/graphite interface. Colloids Surf. 1990, 46, 339. [Google Scholar] [CrossRef]
- Gu, T.; Zhu, B.-Y.; Rupprecht, H. Surfactant adsorption and surface micellization. Prog. Colloid Polym. Sci. 1992, 88, 74. [Google Scholar] [CrossRef]
- Jańczuk, B.; Zdziennicka, A.; Wójcik, W. Relationship between wetting of Teflon by cetyltrimethylammonium bromide solution and adsorption. Eur. Polym. J. 1997, 33, 1093. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Krawczyk, J.; Szymczyk, K.; Jańczuk, B. Components and parameters of liquids and some polymers surface tension at different temperature. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 864. [Google Scholar] [CrossRef]
- Kitazaki, Y.; Hata, T. Surface-chemical criteria for optimum adhesion. II. The ariability of critical surface tension (γc) and its choice. J. Adhesion. 1972, 4, 123. [Google Scholar] [CrossRef]
- Hata, T. Surface chemistry of adhesion. J. Soc. Chem. Ind. 1970, 73, 10–15. [Google Scholar] [CrossRef]
- Hata, T.; Kitazaki, Y.; Saito, T. Estimation of the surface energy of polymer solids. J. Adhesion. 1987, 21, 177. [Google Scholar] [CrossRef]
- Rekiel, E.; Smułek, W.; Zdziennicka, A.; Kaczorek, E.; Jańczuk, B. Wetting properties of Saponaria officinalis saponins. Colloids Surf. A Physicochem. Eng. Asp. 2020, 584, 123980. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Jańczuk, B. Adsorption and wetting properties of biosurfactants, Trtions and their mixtures in aqueous and water-ethanol environment. Adv. Colloid Interface Sci. 2025, 337, 103379. [Google Scholar] [CrossRef]
- McCafferly, E.; Pravdic, V.; Zettlemoyer, A.C. Dielectric behaviour of adsorbed water films on the α-Fe2O3. Trans Faraday Soc. 1970, 66, 1720. [Google Scholar] [CrossRef]
- McCafferly, E.; Zettlemoyer, A.C. Entropy of adsorption and the mobility of water vapor on α-Fe2O3. J. Colloid Interface Sci. 1970, 34, 452. [Google Scholar] [CrossRef]
- McCafferly, E.; Zettlemoyer, A.C. Calculation of the molar polarization of adsorbed water vapour on Fe2O3. Trans Faraday Soc. 1970, 66, 1732. [Google Scholar] [CrossRef]
- Eversole, W.G.; Lahr, P.H. The Thickness of the rigid water film at a quartz-water interface from a measurement of Newton’s rings. J. Chem. Phys. 1941, 9, 686. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Szymczyk, K.; Krawczyk, J.; Jańczuk, B. Some remarks on the solid surface tension determination from contact angle measurements. Appl. Surf. Sci. 2017, 405, 88. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Szymczyk, K.; Jańczuk, B.; Longwic, R.; Sander, P. Adhesion of canola and diesel oils to some parts of diesel engine in the light of surface tension components and parameters of these substrates. Int. J. Adhes. Adhes. 2015, 60, 23. [Google Scholar] [CrossRef]
Solid | [mN/m] | |
---|---|---|
PTFE | 23.01 | 23.70 |
PMMA | 27.10 | 30.80 |
Quartz | 37.35 | 46.57 |
38.46 | ||
BPA.DA+NVP | 34.61 | 34.23 |
5CEL | 33.10 | 33.24 |
10CEL | 32.97 | 32.85 |
15CEL | 30.80 | 30.65 |
20CEL | 25.72 | 23.20 |
5CHI | 36.58 | 35.67 |
10CHI | 36.44 | 35.20 |
15CHI | 35.12 | 33.80 |
Solid | [mN/m] | [mN/m] | [mN/m] | [mN/m] | [mN/m] |
---|---|---|---|---|---|
PTFE | 20.24 | 0.00 | 0.00 | 0.00 | 20.24 |
PMMA | 41.28 | 0.00 | 0.00 | 7.28 | 41.28 |
Quartz | 39.07 | 9.63 | 1.61 | 14.36 | 47.70 |
Hederagenin | 29.38 | 0.00 | 0.00 | 6.34 | 29.38 |
Saccharose | 39.10 | 3.54 | 0.1450 | 21.55 | 42.63 |
Saponins head | 38.33 | 3.63 | 0.1910 | 20.51 | 42.29 |
BPA.DA+NVP | 38.4912 | 2.5695 | 0.3078 | 5.3625 | 41.0607 |
5CEL | 34.8634 | 0.6922 | 2.1734 | 0.0551 | 35.5556 |
10CEL | 31.0466 | 0.0319 | 2.4345 | 0.0001 | 31.0785 |
15CEL | 26.8489 | 0.1644 | 2.7946 | 0.0024 | 27.0133 |
20CEL | 21.2119 | 0.3231 | 0.0075 | 3.4847 | 21.5350 |
5CHI | 37.1495 | 1.9447 | 0.2682 | 3.5253 | 39.0942 |
10CHI | 35.3437 | 1.4580 | 0.3168 | 1.6776 | 36.8017 |
15CHI | 32.9765 | 0.9502 | 0.2858 | 0.7896 | 33.9267 |
Solid | (kJ/mol) | |||||
---|---|---|---|---|---|---|
Solid-Air Interface (S-A) | Solid-Liquid Interface (S-Sol) | |||||
Equation (17) | Equation (18) | Equation (20) | Equation (17) | Equation (18) | Equation (20) | |
PTFE | - | - | - | −39.22 ± 0.37 | −40.00 ± 0.38 | −39.29 ± 0.42 |
PMMA | −37.00 ± 0.38 | −41.05 ± 0.39 | −39.92 ± 0.42 | −38.52 ± 0.38 | −41.98 ± 0.40 | −43.18 ± 0.43 |
Quartz | −36.56 ± 0.37 | −40.10 ± 0.40 | −39.37 ± 0.43 | −38.04 ± 0.37 | −42.17 ± 0.40 | −43.38 ± 0.42 |
BPA.DA+NVP | −36.86 ± 0.37 | −40.89 ± 0.38 | −41.73 ± 0.41 | −38.64 ± 0.37 | −41.76 ± 0.39 | −42.52 ± 0.41 |
5CEL | −35.12 ± 0.39 | −40.98 ± 0.39 | −41.68 ± 0.42 | −39.42 ± 0.38 | −41.84 ± 0.38 | −42.65 ± 0.44 |
10CEL | - | - | - | −39.45 ± 0.39 | −41.61 ± 0.39 | −42.24 ± 0.42 |
15CEL | −35.85 ± 0.38 | −42.18 ± 0.41 | −43.23 ± 0.43 | −39.75 ± 0.37 | −41.58 ± 0.39 | −42.18 ± 0.42 |
20CEL | −36.85 ± 0.37 | −40.96 ± 0.39 | −41.51 ± 0.43 | −39.38 ± 0.38 | −41.57 ± 0.41 | −42.16 ± 0.41 |
5CHI | −36.66 ± 0.38 | −42.42 ± 0.40 | −43.29 ± 0.42 | −39.29 ± 0.39 | −41.62 ± 0.40 | −42.26 ± 0.42 |
10CHI | - | - | - | −39.50 ± 0.38 | −41.58 ± 0.40 | −42.19 ± 0.43 |
20CHI | - | - | - | −39.70 ± 0.39 | −41.53 ± 0.41 | −42.10 ± 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdziennicka, A.; Szymczyk, K.; Jańczuk, B.; Wojciechowski, K.; Kobylska, E. Wetting Properties of a Saponin-Rich Aqueous Soapwort Extract. Molecules 2025, 30, 3413. https://doi.org/10.3390/molecules30163413
Zdziennicka A, Szymczyk K, Jańczuk B, Wojciechowski K, Kobylska E. Wetting Properties of a Saponin-Rich Aqueous Soapwort Extract. Molecules. 2025; 30(16):3413. https://doi.org/10.3390/molecules30163413
Chicago/Turabian StyleZdziennicka, Anna, Katarzyna Szymczyk, Bronisław Jańczuk, Kamil Wojciechowski, and Ewa Kobylska. 2025. "Wetting Properties of a Saponin-Rich Aqueous Soapwort Extract" Molecules 30, no. 16: 3413. https://doi.org/10.3390/molecules30163413
APA StyleZdziennicka, A., Szymczyk, K., Jańczuk, B., Wojciechowski, K., & Kobylska, E. (2025). Wetting Properties of a Saponin-Rich Aqueous Soapwort Extract. Molecules, 30(16), 3413. https://doi.org/10.3390/molecules30163413