Applying Compost Biochar for Gas Adsorption—Effects of Pyrolysis Conditions
Abstract
1. Introduction
2. Results and Discussion
2.1. Biochar Properties
2.1.1. BET and Sorption Isotherms
2.1.2. FTIR-ATR Spectroscopy
2.2. Energy Balance of Compost Biochar
2.3. Sorption Tests
2.3.1. CO2
2.3.2. CO
2.3.3. H2S
2.3.4. NH3
2.3.5. CH4
2.4. Sorption Mechanism
3. Materials and Methods
3.1. Materials, Biochar Production, and Determination of Material Properties
3.2. Thermogravimetric and Differential Scanning Calorimetry Analyses
3.3. Mass and Energy Balance of the Pyrolysis Process
3.4. Adsorption Tests
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Sethupathi, S.; Zhang, M.; Rajapaksha, A.U.; Lee, S.R.; Nor, N.M.; Mohamed, A.R.; Al-Wabel, M.; Lee, S.S.; Ok, Y.S. Biochars as Potential Adsorbers of CH4, CO2 and H2S. Sustainability 2017, 9, 121. [Google Scholar] [CrossRef]
- Bamdad, H.; Hawboldt, K.; MacQuarrie, S. A Review on Common Adsorbents for Acid Gases Removal: Focus on Biochar. Renew. Sustain. Energy Rev. 2018, 81, 1705–1720. [Google Scholar] [CrossRef]
- Li, S.; Harris, S.; Anandhi, A.; Chen, G. Predicting Biochar Properties and Functions Based on Feedstock and Pyrolysis Temperature: A Review and Data Syntheses. J. Clean. Prod. 2019, 215, 890–902. [Google Scholar] [CrossRef]
- Godlewska, P.; Schmidt, H.P.; Ok, Y.S.; Oleszczuk, P. Biochar for Composting Improvement and Contaminants Reduction. A Review. Bioresour. Technol. 2017, 246, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bhattacharya, T. Biochar: A Sustainable Solution. Environ. Dev. Sustain. 2021, 23, 6642–6680. [Google Scholar] [CrossRef]
- Chormare, R.; Moradeeya, P.G.; Sahoo, T.P.; Seenuvasan, M.; Baskar, G.; Saravaia, H.T.; Kumar, M.A. Conversion of Solid Wastes and Natural Biomass for Deciphering the Valorization of Biochar in Pollution Abatement: A Review on the Thermo-Chemical Processes. Chemosphere 2023, 339, 139760. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Wenga, T.; Mtisi, M. Biochars as Media for Air Pollution Control Systems: Contaminant Removal, Applications and Future Research Directions. Sci. Total Environ. 2021, 753, 142249. [Google Scholar] [CrossRef]
- Li, L.; Long, A.; Fossum, B.; Kaiser, M. Effects of Pyrolysis Temperature and Feedstock Type on Biochar Characteristics Pertinent to Soil Carbon and Soil Health: A Meta-Analysis. Soil Use Manag. 2023, 39, 43–52. [Google Scholar] [CrossRef]
- Rosik, J.; Łyczko, J.; Marzec, Ł.; Stegenta-Dąbrowska, S. Application of Composts’ Biochar as Potential Sorbent to Reduce VOCs Emission during Kitchen Waste Storage. Materials 2023, 16, 6413. [Google Scholar] [CrossRef]
- Stegenta-Dąbrowska, S.; Syguła, E.; Bednik, M.; Rosik, J. Effective Carbon Dioxide Mitigation and Improvement of Compost Nutrients with the Use of Composts’ Biochar. Materials 2024, 17, 563. [Google Scholar] [CrossRef]
- Walling, E.; Trémier, A.; Vaneeckhaute, C. A Review of Mathematical Models for Composting. Waste Manag. 2020, 113, 379–394. [Google Scholar] [CrossRef]
- Silva, A.C.; Rocha, P.; Antelo, J.; Valderrama, P.; López, R.; Geraldo, D.; Proença, M.F.; Pinheiro, J.P.; Fiol, S.; Bento, F. Comparison of a Variety of Physico-Chemical Techniques in the Chronological Characterization of a Compost from Municipal Wastes. Process Saf. Environ. Prot. 2022, 164, 781–793. [Google Scholar] [CrossRef]
- Ghanbarpour Mamaghani, Z.; Hawboldt, K.A.; MacQuarrie, S. Adsorption of CO2 Using Biochar-Review of the Impact of Gas Mixtures and Water on Adsorption. J. Environ. Chem. Eng. 2023, 11, 109643. [Google Scholar] [CrossRef]
- Stegenta-Dąbrowska, S.; Randerson, P.F.; Białowiec, A. Aerobic Biostabilization of the Organic Fraction of Municipal Solid Waste—Monitoring Hot and Cold Spots in the Reactor as a Novel Tool for Process Optimization. Materials 2022, 15, 3300. [Google Scholar] [CrossRef]
- Kah, M.; Sigmund, G.; Chavez, P.L.M.; Bielská, L.; Hofmann, T. Sorption to Soil, Biochar and Compost: Is Prediction to Multicomponent Mixtures Possible Based on Single Sorbent Measurements? PeerJ 2018, 2018, e4996. [Google Scholar] [CrossRef]
- Francis, J.C.; Nighojkar, A.; Kandasubramanian, B. Relevance of Wood Biochar on CO2 Adsorption: A Review. Hybrid Adv. 2023, 3, 100056. [Google Scholar] [CrossRef]
- Oshins, C.; Michel, F.; Louis, P.; Richard, T.L.; Rynk, R. The Composting Process. In The Composting Handbook: A How-to and Why Manual for Farm, Municipal, Institutional and Commercial Composters; Academic Press: Cambridge, MA, USA, 2021; pp. 51–101. ISBN 9780323856027. [Google Scholar]
- Wang, S.; Gao, B.; Zimmerman, A.R.; Li, Y.; Ma, L.; Harris, W.G.; Migliaccio, K.W. Physicochemical and Sorptive Properties of Biochars Derived from Woody and Herbaceous Biomass. Chemosphere 2015, 134, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Świechowski, K.; Matyjewicz, B.; Telega, P.; Białowiec, A. The Influence of Low-Temperature Food Waste Biochars on Anaerobic Digestion of Food Waste. Materials 2022, 15, 945. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P.; Charmas, B.; Skubiszewska-Zięba, J.; Pasieczna-Patkowska, S. Effect of Sewage Sludge Properties on the Biochar Characteristic. J. Anal. Appl. Pyrolysis 2015, 112, 201–213. [Google Scholar] [CrossRef]
- Bednik, M.; Medyńska-Juraszek, A.; Ćwieląg-Piasecka, I. Effect of Six Different Feedstocks on Biochar’s Properties and Expected Stability. Agronomy 2022, 12, 1525. [Google Scholar] [CrossRef]
- IBI. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; International Biochar Initiative: Washington, DC, USA, 2015; pp. 1–47. [Google Scholar]
- Wang, Q.; Li, R. Natural Gas from Shale Formation: A Research Profile. Renew. Sustain. Energy Rev. 2016, 57, 1–6. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of Pyrolysis Temperature and Manure Source on Physicochemical Characteristics of Biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E.; Neugschwandtner, R.W.; Konvalina, P.; Kopecký, M.; Moudrý, J.; Perná, K.; Murindangabo, Y.T. The Impact of Pyrolysis Temperature on Biochar Properties and Its Effects on Soil Hydrological Properties. Sustainability 2022, 14, 14722. [Google Scholar] [CrossRef]
- Silva, C.; Valle Do Nascimento, F.; Lemes, A.C.; Machado De Castro, A.; Secchi, A.R.; Alice, M.; Coelho, Z. A Temporal Evolution Perspective of Lipase Production by Yarrowia Lipolytica in Solid-State Fermentation. Processes 2022, 10, 381. [Google Scholar] [CrossRef]
- Cole, E.J.; Zandvakili, O.R.; Xing, B.; Hashemi, M.; Herbert, S.; Mashayekhi, H.H. Dataset on the Effect of Hardwood Biochar on Soil Gravimetric Moisture Content and Nitrate Dynamics at Different Soil Depths with FTIR Analysis of Fresh and Aged Biochar. Data Brief 2019, 25, 104073. [Google Scholar] [CrossRef]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; De Melo, I.C.N.A.; Melo, L.C.A.; Magriotis, Z.M.; Sánchez-Monedero, M.A. Properties of Biochar Derived from Wood and High-Nutrient Biomasses with the Aim of Agronomic and Environmental Benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef]
- Rueda, M.P.; Comino, F.; Aranda, V.; José Ayora-Cañada, M.; Domínguez-Vidal, A. Understanding the Compositional Changes of Organic Matter in Torrefied Olive Mill Pomace Compost Using Infrared Spectroscopy and Chemometrics. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2023, 293, 122450. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, M.K.; Bachmann, R.T.; Rafiq, M.T.; Shang, Z.; Joseph, S.; Long, R.L. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance. PLoS ONE 2016, 11, e0156894. [Google Scholar] [CrossRef]
- Ganesapillai, M.; Mehta, R.; Tiwari, A.; Sinha, A.; Bakshi, H.S.; Chellappa, V.; Drewnowski, J. Waste to Energy: A Review of Biochar Production with Emphasis on Mathematical Modelling and Its Applications. Heliyon 2023, 9, e14873. [Google Scholar] [CrossRef]
- Ro, K.S.; Lima, I.M.; Reddy, G.B.; Jackson, M.A.; Gao, B. Removing Gaseous NH3 Using Biochar as an Adsorbent. Agriculture 2015, 5, 991–1002. [Google Scholar] [CrossRef]
- Jung, S.; Park, Y.K.; Kwon, E.E. Strategic Use of Biochar for CO2 Capture and Sequestration. J. CO2 Util. 2019, 32, 128–139. [Google Scholar] [CrossRef]
- Guo, S.; Li, Y.; Wang, Y.; Wang, L.; Sun, Y.; Liu, L. Recent Advances in Biochar-Based Adsorbents for CO2 Capture. Carbon Capture Sci. Technol. 2022, 4, 100059. [Google Scholar] [CrossRef]
- Chen, J.; Lin, J.; Luo, J.; Tian, Z.; Zhang, J.; Sun, S.; Shen, Y.; Ma, R. Enhanced CO2 Capture Performance of N, S Co-Doped Biochar Prepared by Microwave Pyrolysis: Synergistic Modulation of Microporous Structure and Functional Groups. Fuel 2025, 379, 132987. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Juang, R.S. Surface Modifications of Carbonaceous Materials for Carbon Dioxide Adsorption: A Review. J. Taiwan Inst. Chem. Eng. 2017, 71, 214–234. [Google Scholar] [CrossRef]
- Georgiadis, A.G.; Charisiou, N.D.; Goula, M.A. Removal of Hydrogen Sulfide from Various Industrial Gases: A Review of the Most Promising Adsorbing Materials. Catalysts 2020, 10, 521. [Google Scholar] [CrossRef]
- Pahnila, M.; Koskela, A.; Sulasalmi, P.; Fabritius, T. A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties. Energies 2023, 16, 6936. [Google Scholar] [CrossRef]
- Ghanbarpour Mamaghani, Z.; Hawboldt, K.A.; MacQuarrie, S.; Katz, M.J. Impact Evaluation of Coexisting Gas CO on CO2 Adsorption on Biochar Derived from Softwood Shavings. Sep. Purif. Technol. 2024, 338, 126529. [Google Scholar] [CrossRef]
- Gunathilake, C.; Jaroniec, M. Mesoporous Calcium Oxide-Silica and Magnesium Oxide-Silica Composites for CO2 Capture at Ambient and Elevated Temperatures. J. Mater. Chem. A 2016, 4, 10914–10924. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Sun, X.; Gao, Y.; Kong, X.; Zhang, L.; Zhong, X.; Zhai, S.; Yao, Z.; Wang, J. Unravelling the Functional Complexity of Oxygen-Containing Groups on Carbon for the Reduction of NO with NH3. J. Taiwan Inst. Chem. Eng. 2022, 133, 104261. [Google Scholar] [CrossRef]
- De Oliveira Paiva, I.; Geraldo de Morais, E.; Jindo, K.; Alberto Silva, C. Biochar N Content, Pools and Aromaticity as Affected by Feedstock and Pyrolysis Temperature Statement of Novelty. Waste Biomass Valoriz. 2024, 15, 3599–3619. [Google Scholar] [CrossRef]
- Mishra, R.K.; Misra, M.; Mohanty, A.K. Value-Added Biocarbon Production through Slow Pyrolysis of Mixed Bio-Oil Wastes: Studies on Their Physicochemical Characteristics and Structure–Property–Processing Co-Relation. Biomass Convers. Biorefinery 2024, 14, 7887–7901. [Google Scholar] [CrossRef]
- Mogaji, T.S.; Moses, E.O.; Idowu, E.T.; Jen, T.-C. Thermal Degradation Conditions Effects on Selected Biomass Wastes and Characterization of Their Produced Biochar. J. Energy Res. Rev. 2020, 4, 46–59. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, L.; Li, H.; Westholm, L.J.; Carvalho, L.; Thorin, E.; Yu, Z.; Yu, X.; Skreiberg, Ø. A Critical Review on Production, Modification and Utilization of Biochar. J. Anal. Appl. Pyrolysis 2022, 161, 105405. [Google Scholar] [CrossRef]
- Bian, P.; Liu, Y.; Zheng, X.; Shen, W. Removal and Mechanism of Cadmium, Lead and Copper in Water by Functional Modification of Silkworm Excrement Biochar. Polymers 2022, 14, 2889. [Google Scholar] [CrossRef] [PubMed]
- Kalina, M.; Sovova, S.; Svec, J.; Trudicova, M.; Hajzler, J.; Kubikova, L.; Enev, V. The Effect of Pyrolysis Temperature and the Source Biomass on the Properties of Biochar Produced for the Agronomical Applications as the Soil Conditioner. Materials 2022, 15, 8855. [Google Scholar] [CrossRef] [PubMed]
- Syguła, E.; Koziel, J.A.; Białowiec, A. Proof-of-Concept of Spent Mushrooms Compost Torrefaction-Studying the Process Kinetics and the Influence of Temperature and Duration on the Calorific Value of the Produced Biocoal. Energies 2019, 12, 3060. [Google Scholar] [CrossRef]
- Kwon, E.E.; Kim, S.; Lee, J. Pyrolysis of Waste Feedstocks in CO2 for Effective Energy Recovery and Waste Treatment. J. CO2 Util. 2019, 31, 173–180. [Google Scholar] [CrossRef]
- Świechowski, K.; Hnat, M.; Stȩpień, P.; Stegenta-Dąbrowska, S.; Kugler, S.; Koziel, J.A.; Białowiec, A. Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance. Energies 2020, 13, 3161. [Google Scholar] [CrossRef]
Variant | pH | Ash Content (AC) | Volatile Solids (VS) | Ca | K | Mg | Na | Total | P | C | H | N | S | O |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
- | % d.m. | mg/kg d.m. | mg/kg | % | ||||||||||
400/15 | 8.4 ± 0.0 | 78.5 ± 0.1 | 21.5 ± 0.1 | 17,125 ± 145 | 6345 ± 45 | 2707 ± 10 | 1803 ± 3.0 | 27,980 | 5969 ± 1194 | 15.0 ± 3.0 | 1.0 ± 0.2 | 1.1 ± 0.2 | 0.3 ± 0.1 | 3.8 ± 0.8 |
400/20 | 8.6 ± 0.1 | 80.0 ± 0.0 | 20.0 ± 0.0 | 19,530 ± 120 | 6605 ± 35 | 3077 ± 5 | 1898 ± 1.0 | 31,110 | 5220 ± 1044 | 11.0 ± 2.0 | 0.5 ± 0.1 | 0.8 ± 0.2 | 0.3 ± 0.1 | 7.4 ± 1.5 |
400/40 | 8.5 ± 0.1 | 82.0 ± 0.1 | 18.0 ± 0.1 | 16,890 ± 165 | 6860 ± 30 | 2947 ± 15 | 1958 ± 2.0 | 28,655 | 5659 ± 1132 | 15.0 ± 3.0 | 0.8 ± 0.2 | 1.0 ± 0.2 | 0.3 ± 0.1 | 2.7 ± 0.5 |
450/10 | 9.0 ± 0.0 | 84.4 ± 0.0 | 15.6 ± 0.0 | 21,420 ± 225 | 6315 ± 55 | 5092 ± 30 | 1873 ± 1.5 | 34,700 | 5747 ± 1150 | 12.0 ± 2.0 | 0.8 ± 0.2 | 1.0 ± 0.2 | 0.3 ± 0.1 | 2.1 ± 0.4 |
450/15 | 9.5 ± 0.0 | 86.3 ± 0.2 | 13.7 ± 0.2 | 17,765 ± 25 | 6830 ± 150 | 3002 ± 20 | 1873 ± 2.5 | 29,470 | 5839 ± 1168 | 9.8 ± 1.2 | 0.4 ± 0.1 | 0.7 ± 0.1 | 0.3 ± 0.1 | 2.4 ± 0.4 |
450/20 | 9.3 ± 0.0 | 81.4 ± 0.1 | 18.6 ± 0.1 | 18,355 ± 195 | 6615 ± 15 | 3337 ± 40 | 2148 ± 2.0 | 30,455 | 5678 ± 1136 | 15.0 ± 3.0 | 0.9 ± 0.2 | 1.0 ± 0.2 | 0.3 ± 0.1 | 1.6 ± 0.3 |
500/10 | 9.4 ± 0.0 | 85.3 ± 0.1 | 14.7 ± 0.1 | 17,410 ± 275 | 6365 ± 25 | 3367 ± 45 | 1868 ± 1.5 | 29,010 | 5598 ± 1120 | 13.0 ± 3.0 | 0.5 ± 0.1 | 0.8 ± 0.2 | 0.3 ± 0.1 | 0.4 ± 0.1 |
500/15 | 9.6 ± 0.0 | 88.0 ± 0.2 | 12.0 ± 0.2 | 16,120 ± 220 | 5985 ± 10 | 2877 ± 5 | 1733 ± 2.5 | 26,715 | 5197 ± 1040 | 10.0 ± 2.0 | 0.4 ± 0.1 | 0.7 ± 0.1 | 0.3 ± 0.1 | 0.9 ± 0.2 |
500/20 | 9.6 ± 0.1 | 85.4 ± 0.0 | 14.6 ± 0.0 | 16,390 ± 115 | 6360 ± 5 | 2877 ± 10 | 1808 ± 2.5 | 27,435 | 5776 ± 1155 | 10.0 ± 2.0 | 0.3 ± 0.1 | 0.6 ± 0.1 | 0.3 ± 0.1 | 3.4 ± 0.7 |
550/10 | 8.6 ± 0.0 | 89.0 ± 0.0 | 11.0 ± 0.0 | 19,795 ± 175 | 7865 ± 65 | 3417 ± 35 | 2263 ± 1.5 | 33,340 | 6865 ± 1373 | 8.3 ± 1.7 | 0.2 ± 0.0 | 0.5 ± 0.1 | 0.3 ± 0.1 | 1.7 ± 0.3 |
550/15 | 9.1 ± 0.0 | 90.8 ± 0.0 | 9.2 ± 0.0 | 20,235 ± 330 | 7890 ± 65 | 3577 ± 35 | 2263 ± 0.5 | 33,965 | 7246 ± 1449 | 8.8 ± 1.8 | 0.1 ± 0.0 | 0.5 ± 0.1 | 0.3 ± 0.1 | 3.3 ± 0.7 |
550/20 | 9.3 ± 0.1 | 88.8 ± 0.1 | 11.2 ± 0.1 | 18,060 ± 105 | 7095 ± 10 | 3177 ± 15 | 2053 ± 1.5 | 30,385 | 6557 ± 1312 | 10.0 ± 2.0 | 0.1 ± 0.0 | 0.7 ± 0.1 | 0.3 ± 0.1 | 1.0 ± 0.2 |
600/10 | 9.1 ± 0.0 | 88.1 ± 0.2 | 11.9 ± 0.2 | 18,460 ± 105 | 7665 ± 60 | 3382 ± 35 | 2168 ± 1.0 | 31,675 | 6953 ± 1391 | 9.3 ± 1.8 | 0.2 ± 0.1 | 0.6 ± 0.1 | 0.3 ± 0.1 | 0.8 ± 0.2 |
600/15 | 9.1 ± 0.0 | 86.6 ± 0.0 | 13.4 ± 0.0 | 18,915 ± 305 | 7405 ± 105 | 3217 ± 20 | 2013 ± 1.0 | 31,550 | 6266 ± 1253 | 8.5 ± 1.8 | 0.2 ± 0.0 | 0.5 ± 0.1 | 0.3 ± 0.1 | 2.3 ± 0.5 |
600/20 | 8.8 ± 0.1 | 87.7 ± 0.1 | 12.3 ± 0.1 | 19,120 ± 130 | 7005 ± 80 | 3157 ± 30 | 1963 ± 1.5 | 31,245 | 5843 ± 1169 | 11.0 ± 2.0 | 0.3 ± 0.1 | 0.6 ± 0.12 | 0.3 ± 0.1 | 1.5 ± 0.3 |
650/10 | 9.4 ± 0.0 | 90.1 ± 0.0 | 9.9 ± 0.0 | 18,165 ± 80 | 7785 ± 65 | 3242 ± 10 | 2148 ± 1.0 | 31,340 | 6749 ± 1350 | 9.2 ± 1.8 | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.1 ± 0.0 |
650/15 | 9.5 ± 0.1 | 90.7 ± 0.1 | 9.3 ± 0.1 | 15,975 ± 45 | 7390 ± 125 | 2967 ± 15 | 2143 ± 2.0 | 28,475 | 5991 ± 1198 | 10.0 ± 2.0 | 0.1 ± 0.0 | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.1 |
650/20 | 9.4 ± 0.1 | 89.5 ± 0.0 | 10.5 ± 0.0 | 18,050 ± 125 | 8005 ± 170 | 3257 ± 25 | 2228 ± 0.5 | 31,540 | 6355 ± 1271 | 9.1 ± 1.8 | 0.1 ± 0.0 | 0.4 ± 0.1 | 0.3 ± 0.1 | 1.3 ± 0.3 |
Compost | 7.3 ± 0.1 | 75.2 ± 0.2 | 24.8 ± 0.2 | 17,760 ± 135 | 6155 ± 30 | 2697 ± 10 | 1793 ± 2.5 | 28,405 | 5835 ± 1167 | 13.0 ± 3.00 | 1.2 ± 0.2 | 1.1 ± 0.2 | 0.4 ± 0.1 | 8.7 ± 0.4 |
Temperature °C | Heating Rates °C min−1 | Substrate | External Energy | Biochar | Gas | ||
---|---|---|---|---|---|---|---|
Mass of Substrate Used to Produce 1 g of Biochar, g | Energy Contained in Raw Material Used to Produce 1 g of Biochar, J | External Energy Needed to Produce 1 g of Biochar, J | Energy Contained in 1 g of Biochar, J | Mass of Gas Generated During the Production of 1 g of Biochar, g | Energy Contained in Gas After Production of 1 g of Biochar, J | ||
550 | 10 | 1.197 | 6567 | 287 | 5655 | 0.197 | 1199 |
600 | 10 | 1.207 | 6625 | 296 | 5731 | 0.207 | 1190 |
650 | 10 | 1.211 | 6645 | 411 | 4452 | 0.211 | 2604 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stegenta-Dąbrowska, S.; Galik, M.; Bednik-Dudek, M.; Syguła, E.; Kosiorowska, K.E. Applying Compost Biochar for Gas Adsorption—Effects of Pyrolysis Conditions. Molecules 2025, 30, 3365. https://doi.org/10.3390/molecules30163365
Stegenta-Dąbrowska S, Galik M, Bednik-Dudek M, Syguła E, Kosiorowska KE. Applying Compost Biochar for Gas Adsorption—Effects of Pyrolysis Conditions. Molecules. 2025; 30(16):3365. https://doi.org/10.3390/molecules30163365
Chicago/Turabian StyleStegenta-Dąbrowska, Sylwia, Marta Galik, Magdalena Bednik-Dudek, Ewa Syguła, and Katarzyna Ewa Kosiorowska. 2025. "Applying Compost Biochar for Gas Adsorption—Effects of Pyrolysis Conditions" Molecules 30, no. 16: 3365. https://doi.org/10.3390/molecules30163365
APA StyleStegenta-Dąbrowska, S., Galik, M., Bednik-Dudek, M., Syguła, E., & Kosiorowska, K. E. (2025). Applying Compost Biochar for Gas Adsorption—Effects of Pyrolysis Conditions. Molecules, 30(16), 3365. https://doi.org/10.3390/molecules30163365