Mode of Action of Toxin 6-Hydroxydopamine in SH-SY5Y Using NMR Metabolomics
Abstract
1. Introduction
2. Results
2.1. Multivariate Statistical Analysis of the Metabolic Profiles of Endo Metabolome
2.2. Multivariate Statistical Analysis of the Metabolic Profiles of Exo Metabolome
2.3. Altered Metabolic Pathways
2.4. Pyroglutamyl Alanine
3. Discussion
3.1. Reactive Oxygen Species
3.2. Electron Transport Chain Dysfunction
3.3. Other Research
3.4. Limitations and Future Directions
4. Materials and Methods
4.1. Cell Culture
4.2. IC50 Determination of 6-OHDA
4.3. Treatment of Cells for NMR Metabolomics
4.4. Intracellular Metabolite Extraction
4.5. NMR Sample Preparation of Endo and Exo Metabolome
4.6. NMR Measurements
4.7. NMR Data Preprocessing
4.8. Multivariate Analysis
4.9. Metabolite Identification
4.10. Metabolite Integration and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meissner, W.G.; Frasier, M.; Gasser, T.; Goetz, C.G.; Lozano, A.; Piccini, P.; Obeso, J.A.; Rascol, O.; Schapira, A.; Voon, V.; et al. Priorities in Parkinson’s disease research. Nat. Rev. Drug Discov. 2011, 10, 377–393. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, Y.; Zhang, J.; Yan, R.; Su, D.; Zhao, D.; Wang, A.; Feng, T. Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: A systematic review and meta-analysis. Lancet Healthy Longev. 2024, 5, e464–e479. [Google Scholar] [CrossRef]
- Hernandez-Baltazar, D.; Zavala-Flores, L.M.; Villanueva-Olivo, A. The 6-hydroxydopamine model and parkinsonian pathophysiology Novel findings in an older model. Neurología 2017, 32, 533–539. [Google Scholar] [CrossRef]
- Blandini, F.; Armentero, M.T. Animal models of Parkinson’s disease. FEBS J. 2012, 279, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Chen, H.; Han, J.; Zhou, W.; Tang, Q.; Yu, Q.; Ma, S.; Liu, X.; Huo, S.; Chen, K. Proteomic and Targeted Metabolomic Studies on a Silkworm Model of Parkinson’s Disease. J. Proteome Res. 2022, 21, 2114–2123. [Google Scholar] [CrossRef]
- Simola, N.; Morelli, M.; Carta, A.R. The 6-Hydroxydopamine Model of Parkinson’s Disease. Neurotox. Res. 2007, 11, 151–167. [Google Scholar] [CrossRef]
- Kaczyńska, K.; Andrzejewski, K. 6-hydroxydopamine-induced model of Parkinson’s disease. In Genetics, Neurology, Behavior, and Diet in Parkinson’s Disease; Academic Press: Cambridge, MA, USA, 2020; pp. 627–642. [Google Scholar]
- Galindo, M.F.; Saez-Atienzar, S.; Solesio, M.E.; Jordan, J. 6-Hydroxydopamine as Preclinical Model of Parkinson’s Disease. In Handbook of Neurotoxicity; Kostrzewa, R.M., Ed.; Springer: New York, NY, USA, 2014; pp. 640–648. [Google Scholar]
- Glinka, Y.; Gassen, M.; Youdim, M.B.H. Mechanism of 6-Hydroxydopamine Neurotoxicity; Springer: Vienna, Austria, 1997; pp. 55–66. [Google Scholar]
- Saito, Y.; Nishio, K.; Ogawa, Y.; Kinumi, T.; Yoshida, Y.; Masuo, Y.; Niki, E. Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: Involvement of hydrogen peroxide-dependent and -independent action. Free Radic. Biol. Med. 2007, 42, 675–685. [Google Scholar] [CrossRef]
- Lu, X.; Kim-Han, J.S.; Harmon, S.; Sakiyama-Elbert, S.E.; O’Malley, K.L. The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons. Mol. Neurodegener. 2014, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Glinka, Y.Y.; Youdim, M.B.H. Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur. J. Pharmacol. 1995, 292, 329–332. [Google Scholar] [CrossRef]
- Blum, D.; Torch, S.; Lambeng, N.; Nissou, M.-F.; Benabid, A.-L.; Sadoul, R.; Verna, J.-M. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP-contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol. 2001, 65, 135–172. [Google Scholar] [CrossRef] [PubMed]
- Xicoy, H.; Brouwers, J.F.; Kalnytska, O.; Wieringa, B.; Martens, G.J.M. Lipid Analysis of the 6-Hydroxydopamine-Treated SH-SY5Y Cell Model for Parkinson’s Disease. Mol. Neurobiol. 2020, 57, 848–859. [Google Scholar] [CrossRef]
- Ioghen, O.C.; Ceafalan, L.C.; Popescu, B.O. SH-SY5Y Cell Line In Vitro Models for Parkinson Disease Research-Old Practice for New Trends. J. Integr. Neurosci. 2023, 22, 20. [Google Scholar] [CrossRef]
- Xicoy, H.; Wieringa, B.; Martens, G.J. The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Mol. Neurodegener. 2017, 12, 10. [Google Scholar] [CrossRef]
- La Clair, J.J. Natural product mode of action (MOA) studies: A link between natural and synthetic worlds. Nat. Prod. Rep. 2010, 27, 969–995. [Google Scholar] [CrossRef]
- Moco, S. Studying Metabolism by NMR-Based Metabolomics. Front. Mol. Biosci. 2022, 9, 882487. [Google Scholar] [CrossRef] [PubMed]
- Nagana Gowda, G.A.; Raftery, D. NMR-Based Metabolomics. Adv. Exp. Med. Biol. 2021, 1280, 19–37. [Google Scholar]
- Alwahsh, M.; Nimer, R.M.; Dahabiyeh, L.A.; Hamadneh, L.; Hasan, A.; Alejel, R.; Hergenroder, R. NMR-based metabolomics identification of potential serum biomarkers of disease progression in patients with multiple sclerosis. Sci. Rep. 2024, 14, 14806. [Google Scholar] [CrossRef] [PubMed]
- Gowda, G.A.N.; Raftery, D. NMR-Based Metabolomics Methods and Protocols; Springer Protocols: Berlin, Germany, 2019. [Google Scholar]
- Schirra, H.J.; Ford, P.J. NMR-Based Metabolomics of Oral Biofluids. In Oral Biology: Molecular Techniques and Applications; Seymour, G.J., Cullinan, M.P., Heng, N.C.K., Eds.; Springer: New York, NY, USA, 2017; pp. 79–105. [Google Scholar]
- Kikuchi, J. Practical Aspects of the Analysis of Low- and High-Field NMR Data from Environmental Samples. In NMR-Based Metabolomics: Methods and Protocols; Gowda, G.A.N., Raftery, D., Eds.; Springer: New York, NY, USA, 2019; pp. 315–331. [Google Scholar]
- Selegato, D.M.; Pilon, A.C.; Carnevale Neto, F. Plant Metabolomics Using NMR Spectroscopy. In NMR-Based Metabolomics: Methods and Protocols; Gowda, G.A.N., Raftery, D., Eds.; Springer: New York, NY, USA, 2019; pp. 345–362. [Google Scholar]
- Sundekilde, U.K.; Eggers, N.; Bertram, H.C. NMR-Based Metabolomics of Food. In NMR-Based Metabolomics: Methods and Protocols; Gowda, G.A.N., Raftery, D., Eds.; Springer: New York, NY, USA, 2019; pp. 335–344. [Google Scholar]
- Bhinderwala, F.; Powers, R. NMR Metabolomics Protocols for Drug Discovery. In NMR-Based Metabolomics: Methods and Protocols; Gowda, G.A.N., Raftery, D., Eds.; Springer: New York, NY, USA, 2019; pp. 265–311. [Google Scholar]
- Ji, J.; Sun, J.; Zhang, Y.; Sun, X. Cell-Based Metabolomics Approach for Anticipating and Investigating Cytotoxicity of Gold Nanorods. Foods 2022, 11, 3569. [Google Scholar] [CrossRef] [PubMed]
- Leon, Z.; Garcia-Canaveras, J.C.; Donato, M.T.; Lahoz, A. Mammalian cell metabolomics: Experimental design and sample preparation. Electrophoresis 2013, 34, 2762–2775. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, Y.; Joseph, C.M.L.; Ma, L.; Bisson, L.F.; Liu, Y. Metabolomic analysis reveals the interactions between Chinese indigenous and commercial Saccharomyces cerevisiae strains during wine co-fermentations at low YAN concentration. Food Bioscience 2024, 60, 104362. [Google Scholar] [CrossRef]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Gupta, A.; Gadellaa, M.M.; Maes, D.Y.W. Culture medium for eukaryotic cells. EP2611904A2, 31 August 2011. [Google Scholar]
- Lenaz, G.; Fato, R.; Genova, M.L.; Bergamini, C.; Bianchi, C.; Biondi, A. Mitochondrial Complex I: Structural and functional aspects. Biochim. Biophys. Acta 2006, 1757, 1406–1420. [Google Scholar] [CrossRef]
- Bains, J.S.; Shaw, C.A. Neurodegenerative disorders in humans: The role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Rev. 1997, 25, 335–358. [Google Scholar] [CrossRef]
- Chakravarthi, S.; Jessop, C.E.; Bulleid, N.J. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep. 2006, 7, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Schulz, J.B.; Lindenau, J.; Seyfried, J.; Dichgans, J. Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem. 2000, 267, 4904–4911. [Google Scholar] [CrossRef] [PubMed]
- Mytilineou, C.; Kramer, B.C.; Yabut, J.A. Glutathione depletion and oxidative stress. Park. Relat. Disord. 2002, 8, 385–387. [Google Scholar] [CrossRef]
- Massudi, H.; Grant, R.; Guillemin, G.J.; Braidy, N. NAD+ metabolism and oxidative stress: The golden nucleotide on a crown of thorns. Redox Rep. 2012, 17, 28–46. [Google Scholar] [CrossRef]
- Liu, X.; Cooper, D.E.; Cluntun, A.A.; Warmoes, M.O.; Zhao, S.; Reid, M.A.; Liu, J.; Lund, P.J.; Lopes, M.; Garcia, B.A.; et al. Acetate Production from Glucose and Coupling to Mitochondrial Metabolism in Mammals. Cell 2018, 175, 502–513.e13. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Y.; Wang, X.; Liu, D.; Wu, X.; Xu, C.; Chen, C.; Li, Z. The effects of jolkinolide B on HepG2 cells as revealed by (1)H-NMR-based metabolic profiling. Eur. J. Pharmacol. 2019, 842, 10–19. [Google Scholar] [CrossRef]
- Ramos-Figueroa, J.S.; Palmer, D.R.J. Phosphonate and alpha-Fluorophosphonate Analogues of d-Glucose 6-Phosphate as Active-Site Probes of 1l-myo-Inositol 1-Phosphate Synthase. Biochemistry 2022, 61, 868–878. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S. Glycolysis. Cold Spring Harb. Perspect. Biol. 2021, 13, a040535. [Google Scholar] [CrossRef]
- Jones, B.; Balasubramaniam, M.; Lebowitz, J.J.; Taylor, A.; Villalta, F.; Khoshbouei, H.; Grueter, C.; Grueter, B.; Dash, C.; Pandhare, J. Activation of proline biosynthesis is critical to maintain glutamate homeostasis during acute methamphetamine exposure. Sci. Rep. 2021, 11, 1422. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, P.; Tallarita, E.; Rabattoni, V.; Campomenosi, P.; Sacchi, S.; Pollegioni, L. Proline oxidase controls proline, glutamate, and glutamine cellular concentrations in a U87 glioblastoma cell line. PLoS ONE 2018, 13, e0196283. [Google Scholar] [CrossRef] [PubMed]
- Fato, R.; Bergamini, C.; Bortolus, M.; Maniero, A.L.; Leoni, S.; Ohnishi, T.; Lenaz, G. Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. Biochim. Biophys. Acta 2009, 1787, 384–392. [Google Scholar] [CrossRef]
- Schapira, A.H.V. Complex I-Inhibitors, inhibition and neurodegeneration. Exp. Neurol. 2010, 224, 331–335. [Google Scholar] [CrossRef]
- Bridges, H.R.; Blaza, J.N.; Yin, Z.; Chung, I.; Pollak, M.N.; Hirst, J. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 2023, 379, 351–357. [Google Scholar] [CrossRef]
- Liao, P.C.; Bergamini, C.; Fato, R.; Pon, L.A.; Pallotti, F. Isolation of mitochondria from cells and tissues. Methods Cell Biol. 2020, 155, 3–31. [Google Scholar]
- Kernan, W.N.; Viscoli, C.M.; Makuch, R.W.; Brass, L.M.; Horwitz, R.I. Stratified Randomization for Clinical Trials. Clin. Epidemiol. 1999, 52, 19–26. [Google Scholar] [CrossRef]
- Cloarec, O.; Dumas, M.E.; Trygg, J.; Craig, A.; Barton, R.H.; Lindon, J.C.; Nicholson, J.K.; Holmes, E. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic setabonomic studies. Anal. Chem. 2005, 77, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Currin-Ross, D.; Husdell, L.; Pierens, G.K.; Mok, N.E.; O’Neill, S.L.; Schirra, H.J.; Brownlie, J.C. The Metabolic Response to Infection With Wolbachia Implicates the Insulin/Insulin-Like-Growth Factor and Hypoxia Signaling Pathways in Drosophila melanogaster. Front. Ecol. Evol. 2021, 9, 623561. [Google Scholar] [CrossRef]
- Cloarec, O.; Dumas, M.-E.; Craig, A.; Barton, R.H.; Trygg, J.; Hudson, J.; Blancher, C.; Gauguier, D.; Lindon, J.C.; Holmes, E.; et al. Statistical Total Correlation Spectroscopy: An Exploratory Approach for Latent Biomarker Identification from Metabolic 1 H NMR Data Sets. Anal. Chem. 2005, 77, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
Metabolite | Unpaired t-Test p-Value (<0.05) | Mean Treated (A.U) ± SD | Mean Untreated (A.U) ± SD | Fold Change | Trend (D = Decrease) (I = Increase) |
---|---|---|---|---|---|
Acetate | 0.0001 (***) | 3.35 × 107 ± 2.25 × 107 | 1.65 × 107 ± 2.42 × 107 | 2.03 | I |
Creatine | <0.0001 (****) | 5.16 × 106 ± 4.93 × 106 | 2.14 × 107 ± 5.30 × 106 | 0.24 | D |
Creatine phosphate | <0.0001 (****) | 4.43 × 106 ± 5.60 × 106 | 2.40 × 107 ± 5.93 × 106 | 0.18 | D |
Creatinine | <0.0001 (****) | 3.69 × 106 ± 4.22 × 106 | 2.07 × 107 ± 4.01 × 106 | 0.18 | D |
Formate | <0.0001 (****) | 2.48 × 106 ± 1.28 × 106 | 1.56 × 106 ± 1.38 × 106 | 1.58 | I |
Glucose | 0.0089 (**) | 1.93 × 106 ± 2.74 × 106 | 2.66 × 106 ± 7.63 × 106 | 0.72 | I |
Glutamate | <0.0001 (****) | 1.58 × 107 ± 8.08 × 106 | 3.67 × 107 ± 8.69 × 106 | 0.43 | D |
Glutathione | 0.0001 (***) | 4.25 × 106 ± 1.22 × 106 | 2.65 × 106 ± 1.31 × 106 | 1.60 | I |
Glycine | 0.0001 (***) | 2.40 × 106 ± 1.38 × 106 | 7.24 × 106 ± 1.48 × 106 | 0.33 | D |
Lactate | 0.0001 (***) | 4.38 × 107 ± 3.59 × 107 | 1.06 × 108 ± 3.86 × 107 | 0.41 | D |
Methionine | 0.0026 (**) | 7.33 × 106 ± 2.01 × 106 | 1.96 × 107 ± 3.21 × 106 | 0.37 | D |
Myoinositol | 0.0001 (***) | 7.93 × 106 ± 5.37 × 106 | 1.87 × 107 ± 5.77 × 106 | 0.42 | D |
NAD+ | 0.0001 (***) | 2.62 × 105 ± 1.18 × 105 | 5.31 × 105 ± 1.26 × 105 | 0.49 | D |
o-Phosphocholine | <0.0001 (****) | 8.41 × 106 ± 4.28 × 106 | 2.16 × 107 ± 4.61 × 106 | 0.39 | D |
Proline | 0.0021 (**) | 1.32 × 106 ± 2.55 × 106 | 2.37 × 106 ± 3.35 × 106 | 0.55 | D |
Propionate | 0.0008 (***) | 3.25 × 106 ± 1.75 × 106 | 2.44 × 106 ± 1.88 × 106 | 1.33 | I |
Taurine | 0.0001 (***) | 1.27 × 107 ± 5.85 × 106 | 2.89 × 107 ± 6.29 × 106 | 0.44 | D |
Uridine | 0.0001 (***) | 1.07 × 105 ± 2.36 × 105 | 4.95 × 105 ± 2.54 × 105 | 0.21 | D |
Uridine monophosphate | 0.0014 (**) | 2.36 × 106 ± 9.97 × 105 | 4.16 × 106 ± 1.07 × 106 | 0.56 | D |
Metabolite | Unpaired t-Test p-Value (<0.05) | Mean Treated (A.U) ± SD | Mean Untreated (A.U) ± SD | Fold Change | Trend (D = Decrease) (I = Increase) |
---|---|---|---|---|---|
Acetate | <0.0001 (****) | 1.93 × 107 ± 1.88 × 107 | 1.54 × 107 ± 1.82 × 107 | 1.25 | I |
Alanine | 0.0001 (***) | 6.39 × 107 ± 1.63 × 108 | 6.01 × 107 ± 1.57 × 108 | 1.06 | I |
Formate | 0.0239 (*) | 1.22 × 106 ± 3.60 × 106 | 1.59 × 106 ± 3.49 × 106 | 0.76 | I |
Glutamate | 0.0001 (***) | 6.50 × 106 ± 7.85 × 107 | 2.66 × 106 ± 7.60 × 107 | 2.44 | D |
Glutamine | <0.0001 (****) | 3.51 × 107 ± 8.44 × 107 | 3.08 × 107 ± 8.17 × 107 | 1.14 | I |
Isoleucine | 0.0001 (***) | 5.24 × 106 ± 1.08 × 107 | 5.74 × 106 ± 1.05 × 107 | 0.91 | I |
Leucine | 0.0001 (***) | 6.64 × 106 ± 2.78 × 107 | 7.85 × 106 ± 2.69 × 107 | 0.84 | I |
Lactate | 0.0001 (***) | 1.37 × 108 ± 2.92 × 108 | 1.63 × 108 ± 2.82 × 108 | 0.84 | D |
Pyruvate | 0.0001 (***) | 3.54 × 107 ± 6.55 × 106 | 3.76 × 107 ± 6.33 × 106 | 0.94 | D |
Pyroglutamyl alanine | <0.0001 (****) | 1.17 × 107 ± 5.61 × 107 | 2.13 × 107 ± 5.43 × 107 | 0.545 | D |
Valine | 0.0099 (**) | 3.38 × 107 ± 1.19 × 108 | 8.00 × 107 ± 1.15 × 108 | 0.42 | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamuli, R.; Mellick, G.D.; Schirra, H.J.; Feng, Y. Mode of Action of Toxin 6-Hydroxydopamine in SH-SY5Y Using NMR Metabolomics. Molecules 2025, 30, 3352. https://doi.org/10.3390/molecules30163352
Tamuli R, Mellick GD, Schirra HJ, Feng Y. Mode of Action of Toxin 6-Hydroxydopamine in SH-SY5Y Using NMR Metabolomics. Molecules. 2025; 30(16):3352. https://doi.org/10.3390/molecules30163352
Chicago/Turabian StyleTamuli, Roktima, George D. Mellick, Horst Joachim Schirra, and Yunjiang Feng. 2025. "Mode of Action of Toxin 6-Hydroxydopamine in SH-SY5Y Using NMR Metabolomics" Molecules 30, no. 16: 3352. https://doi.org/10.3390/molecules30163352
APA StyleTamuli, R., Mellick, G. D., Schirra, H. J., & Feng, Y. (2025). Mode of Action of Toxin 6-Hydroxydopamine in SH-SY5Y Using NMR Metabolomics. Molecules, 30(16), 3352. https://doi.org/10.3390/molecules30163352