Application of Isotachophoresis to Differentiate Organic Matter in Environmental Samples
Abstract
1. Introduction
- -
- Fulvic acids (FAs), which are water-soluble, have a mobile nature and are of low persistence (half-life period 10–15 years).
- -
- Humic acids (HAs), which are soluble in NaOH and alcohol, and precipitate after adding HCl; they are active, have high sorption ability, and have a half-life of more than 1000 years.
- -
- Humines, insoluble, chemically inactive, very persistent [2].
2. Results and Discussion
3. Materials and Methods
3.1. Instrumentation
3.2. Chemicals
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kosobucki, P.; Buszewski, B. Natural organic matter in ecosystems: A review. Nova Biotechnol. Chim. 2014, 2, 109–129. [Google Scholar] [CrossRef]
- Stevenson, F.J.; Butler, J.H.A. Chemistry of Humic Acids and Related Pigments. In Organic Geochemistry; Eglinton, G., Murphy, M.T.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1969. [Google Scholar] [CrossRef]
- Khil’ko, S.L.; Kovtun, A.I.; Rybachenko, V.I. Potentiometric titration of humic acids. Solid Fuel Chem. 2011, 45, 337–348. [Google Scholar] [CrossRef]
- Shin, H.-S.; Monsalier, J.M.; Choppin, G.R. Spectroscopic and chemical characterizations of molecular size fractionated humic acid. Talanta 1999, 50, 641–647. [Google Scholar] [CrossRef]
- Enev, V.; Pospíšilová, L.; Klučáková, M.; Liptaj, T.; Doskočil, L. Spectral characterization of selected humic substances. Soil Water Res. 2014, 9, 9–17. [Google Scholar] [CrossRef]
- Jiménez-González, M.A.; Álvarez, A.M.; Carral, P.; Almendros, G. Chemometric assessment of soil organic matter storage and quality from humic acid infrared spectra. Sci. Total Environ. 2019, 685, 1160–1168. [Google Scholar] [CrossRef]
- Mao, J.-D.; Hu, W.-G.; Schmidt-Rohr, K.; Davies, G.; Ghabbour, E.A.; Xing, B. Quantitative Characterization of Humic Substances by Solid-State Carbon-13 Nuclear Magnetic Resonance. Soil Sci. Soc. Am. J. 2000, 64, 873–884. [Google Scholar] [CrossRef]
- Michalska, J.; Turek-Szytow, J.; Dudło, A.; Kowalska, K.; Surmacz-Górska, J. Evaluation of the applicability of selected analytical techniques for determining the characteristics of humic substances sourced from by-products of the wastewater treatment process. Sci. Total Environ. 2023, 888, 164237. [Google Scholar] [CrossRef]
- Saito, T.; Motokawa, R.; Ohkubo, R.; Miura, D.; Kumada, T. Heterogeneous Aggregation of Humic Acids Studied by Small-Angle Neutron and X-ray Scattering. Environ. Sci. Technol. 2023, 57, 9802–9810. [Google Scholar] [CrossRef]
- Remucal, C.K.; Cory, R.M.; Sander, M.; McNeill, K. Low Molecular Weight Components in an Aquatic Humic Substance As Characterized by Membrane Dialysis and Orbitrap Mass Spectrometry. Environ. Sci. Technol. 2012, 46, 9350–9359. [Google Scholar] [CrossRef]
- Faixo, S.; Capdeville, R.; Mazeghrane, S.; Haddad, M.; Gaval, G.; Paul, E.; Benoit-Marquié, F.; Garrigues, J.-C. Study of humic-like substances of dissolved organic matter using size exclusion chromatography and chemometrics. J. Environ. Manag. 2024, 366, 121750. [Google Scholar] [CrossRef]
- Hutta, M.; Gora, R. Novel stepwise gradient reversed-phase liquid chromatography separations of humic substances, air particulate humic-like substances and lignins. J. Chromatogr. A 2003, 1012, 67–79. [Google Scholar] [CrossRef]
- Suwanpetch, R.; Shiowatana, J.; Siripinyanond, A. Using flow field-flow fractionation (Fl-FFF) for observation of salinity effect on the size distribution of humic acid aggregate. Int. J. Environ. Anal. Chem. 2017, 97, 217–229. [Google Scholar] [CrossRef]
- Radicova, Z.; Bodor, R.; Gora, R.; Hutta, M.; Masar, M. Off-line combination of preparative isotachophoresis and size-exclusion chromatography in analysis of humic acids. Chem. Listy 2013, 107, S432–S434. [Google Scholar]
- Law, C.-H.; Chan, L.-Y.; Chan, T.-Y.; Ku, Y.-S.; Lam, H.-M. The Application of Electrophoresis in Soil Research. In Electrophoresis—Recent Advances, New Perspectives and Applications; Ku, Y.-S., Ed.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Peña-Méndez, E.M.; Gajdošová, D.; Novotná, K.; Prošek, P.; Havel, J. Mass spectrometry of humic substances of different origin including those from Antarctica: A comparative study. Talanta 2005, 67, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Amir, S.; Hafidi, M.; Merlina, G.; Hamdi, H.; Revel, J.-C. Elemental analysis, FTIR and 13C-NMR of humic acids from sewage sludge composting. Agronomie 2004, 24, 13–18. [Google Scholar] [CrossRef]
- Kosobucki, P.; Buszewski, B. Selected imidazolium ionic liquids as a terminating electrolyte in isotachophoresis. Anal. Lett. 2010, 16, 2631–2639. [Google Scholar] [CrossRef]
- Mala, Z.; Gebauer, P. Recent progress in analytical capillary isotachophoresis (2018—March 2022). J. Chromatogr. A 2022, 1677, 463337. [Google Scholar] [CrossRef]
- Ramachandran, A.; Santiago, J.G. Isotachophoresis: Theory and Microfluidic Applications. Chem. Rev. 2022, 122, 12904–12976. [Google Scholar] [CrossRef]
- Dobrowolska-Iwanek, J.; Jamka-Kasprzyk, M.; Rusin, M.; Paśko, P.; Grekh, S.; Jurczak, A. Developed and Validated Capillary Isotachophoresis Method for the Rapid Determining Organic Acids in Children’s Saliva. Molecules 2023, 28, 1092. [Google Scholar] [CrossRef]
- Bocek, P.; Pavelka, S.; Grigelova, K.; Deml, M.; Janak, J. Determination of lactic and acetic acids in silage extracts by analytical isotachophoresis. J. Chromatogr. A 1978, 154, 356–359. [Google Scholar] [CrossRef]
- Dusek, M.; Kvasnicka, F.; Moravcova, J. Determination of Organic Acids in Alfalfa Silage by Capillary Isotachophoresis and Capillary Zone Electrophoresis. Chem. Listy 2004, 98, 418–422. [Google Scholar]
- Holloway, C.J.; Trautschold, I. Principles of isotachophoresis. Z. Für Anal. Chem. 1982, 311, 81–93. [Google Scholar] [CrossRef]
- Nieweś, D.; Marecka, K.; Braun-Giwerska, M.; Huculak-Mączka, M. Application of a modified method of humic acids extraction as an efficient process in the production of formulations for agricultural purposes. Pol. J. Chem. Technol. 2023, 25, 31–39. [Google Scholar] [CrossRef]
- Nagyova, I.; Kaniansky, D. Discrete spacers for photometric characterization of humic acids separated by capillary isotachophoresis. J. Chromatogr. A 2001, 916, 191–200. [Google Scholar] [CrossRef]
Set no. 1 | Set no. 2 | Set no. 3 | Set no. 4 | |
---|---|---|---|---|
Solvent | Water | Water | Water | Water |
Leading anion (LE) | Cl- | Cl- | Cl- | Cl- |
Concentration [mM] | 10 | 10 | 10 | 10 |
Counter ion | β-alanine | β-alanine | β-alanine | β-alanine |
Additive to the LE | 0.1% (w/v) HEC | 0.1% (w/v) HEC | 0.1% (w/v) HEC | 0.1% (w/v) HEC |
Co-additive to the LE | 0.2% (w/v) PVP | - | - | 0.2% (w/v) PVP |
pH of the LE | 3.5 | 3.5 | 3.5 | 3.5 |
Terminating anion (TE) | EACA | Caproic acid | EACA | Caproic acid |
Concentration [mM] | 5 | 5 | 10 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosobucki, P. Application of Isotachophoresis to Differentiate Organic Matter in Environmental Samples. Molecules 2025, 30, 3347. https://doi.org/10.3390/molecules30163347
Kosobucki P. Application of Isotachophoresis to Differentiate Organic Matter in Environmental Samples. Molecules. 2025; 30(16):3347. https://doi.org/10.3390/molecules30163347
Chicago/Turabian StyleKosobucki, Przemysław. 2025. "Application of Isotachophoresis to Differentiate Organic Matter in Environmental Samples" Molecules 30, no. 16: 3347. https://doi.org/10.3390/molecules30163347
APA StyleKosobucki, P. (2025). Application of Isotachophoresis to Differentiate Organic Matter in Environmental Samples. Molecules, 30(16), 3347. https://doi.org/10.3390/molecules30163347