Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges
Abstract
1. Introduction
2. Pathophysiology of Diabetic Retinopathy
3. Molecular Mechanisms of Resveratrol in Diabetic Retinopathy
3.1. Antioxidant and Cytoprotective Effects
3.2. Anti-Inflammatory Mechanisms
3.3. Neuroprotection and Retinal Cell Survival
3.4. Anti-Angiogenic Properties
3.5. Broader Relevance in Retinal Vascular Pathology
3.6. Structural Activity Relationship (SAR) of Resveratrol: Structural Domains and Functional Implications
4. Challenges in the Clinical Translation of Resveratrol
4.1. Poor Bioavailability and Rapid Metabolism
4.2. Innovations to Enhance Bioavailability
4.3. Precision Dosing and Pharmacokinetic Variability
4.4. Limitations in Clinical Evidence
4.5. Safety Considerations and Systemic Implications
5. Advances in Resveratrol Drug Delivery for Ocular Use
5.1. Resveratrol Delivery Strategies and Routes of Administration in Ocular Use
5.2. Challenges of Topical Delivery and Novel Resveratrol-Based Ophthalmic Formulations
5.3. Nanoformulations for Improved Bioavailability
5.4. Sustained-Release Intravitreal Implants
5.5. Combination Therapies with Existing DR Treatments
5.6. Need for Well-Designed Randomised Clinical Trials
5.7. Personalised Medicine Approaches
5.8. Exploring Synthetic Analogues and Prodrugs of Resveratrol
6. Future Directions and Clinical Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Wong, T.Y.; Tan, T.E. The Diabetic Retinopathy “Pandemic” and Evolving Global Strategies: The 2023 Friedenwald Lecture. Investig. Ophthalmol. Vis. Sci. 2023, 64, 47. [Google Scholar] [CrossRef]
- Benhamza, M.; Dahlui, M.; Said, M.A. Determining Direct, Indirect Healthcare and Social Costs for Diabetic Retinopathy Management: A Systematic Review. BMC Ophthalmol. 2024, 24, 424. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Teo, Z.L.; Tham, Y.-C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045. Ophthalmology 2021, 128, 1580–1591. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, N. Progress of Nanotechnology in Diabetic Retinopathy Treatment. Int. J. Nanomed. 2021, 16, 1391–1403. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Zhong, H.; Fang, J.; Li, X.; Shi, R.; Yu, Q. Research Progress on the Pathogenesis of Diabetic Retinopathy. BMC Ophthalmol. 2023, 23, 372. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, N.; Xu, W.; Li, X.; Spiliopoulou, A.; Theodoratou, E. Associations of Genetic Factors with Vascular Diabetes Complications: An Umbrella Review. J. Glob. Health 2025, 15, 04081. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Cheung, C.M.G.; Larsen, M.; Sharma, S.; Simó, R. Diabetic Retinopathy. Nat. Rev. Dis. Primer 2016, 2, 16012. [Google Scholar] [CrossRef]
- Kaštelan, S.; Salopek Rabatić, J.; Tomić, M.; Gverović Antunica, A.; Ljubić, S.; Kaštelan, H.; Novak, B.; Orešković, D. Body Mass Index and Retinopathy in Type 1 Diabetic Patients. Int. J. Endocrinol. 2014, 2014, 387919. [Google Scholar] [CrossRef]
- Kaštelan, S.; Tomić, M.; Gverović Antunica, A.; Ljubić, S.; Salopek Rabatić, J.; Karabatić, M. Body Mass Index: A Risk Factor for Retinopathy in Type 2 Diabetic Patients. Mediat. Inflamm. 2013, 2013, 436329. [Google Scholar] [CrossRef]
- Tomić, M.; Ljubić, S.; Kaštelan, S.; Gverović Antunica, A.; Jazbec, A.; Poljičanin, T. Inflammation, Haemostatic Disturbance, and Obesity: Possible Link to Pathogenesis of Diabetic Retinopathy in Type 2 Diabetes. Mediat. Inflamm. 2013, 2013, 818671. [Google Scholar] [CrossRef]
- Wong, T.Y.; Sun, J.; Kawasaki, R.; Ruamviboonsuk, P.; Gupta, N.; Lansingh, V.C.; Maia, M.; Mathenge, W.; Moreker, S.; Muqit, M.M.K.; et al. Guidelines on Diabetic Eye Care. Ophthalmology 2018, 125, 1608–1622. [Google Scholar] [CrossRef] [PubMed]
- Chabba, N.; Silwal, P.R.; Bascaran, C.; Murphy, R.; Gordon, I.; Mwangi, N.; Bhatta, S.; Pant, N.; Burton, M.J.; Keel, S.; et al. Measures of Diabetic Retinopathy Treatment Coverage: Protocol for a Methodological Review. BMJ Open 2025, 15, e092081. [Google Scholar] [CrossRef] [PubMed]
- Bahr, T.A.; Bakri, S.J. Update on the Management of Diabetic Retinopathy: Anti-VEGF Agents for the Prevention of Complications and Progression of Nonproliferative and Proliferative Retinopathy. Life 2023, 13, 1098. [Google Scholar] [CrossRef]
- Brown, D.M.; Wykoff, C.C.; Boyer, D.; Heier, J.S.; Clark, W.L.; Emanuelli, A.; Higgins, P.M.; Singer, M.; Weinreich, D.M.; Yancopoulos, G.D.; et al. Evaluation of Intravitreal Aflibercept for the Treatment of Severe Nonproliferative Diabetic Retinopathy: Results From the PANORAMA Randomized Clinical Trial. JAMA Ophthalmol. 2021, 139, 946. [Google Scholar] [CrossRef]
- Tan, T.E.; Wong, T.Y. Diabetic Retinopathy: Looking Forward to 2030. Front. Endocrinol. 2023, 13, 1077669. [Google Scholar] [CrossRef]
- Seo, H.; Park, S.-J.; Song, M. Diabetic Retinopathy (DR): Mechanisms, Current Therapies, and Emerging Strategies. Cells 2025, 14, 376. [Google Scholar] [CrossRef]
- Koushki, M.; Farahani, M.; Yekta, R.F.; Frazizadeh, N.; Bahari, P.; Parsamanesh, N.; Chiti, H.; Chahkandi, S.; Fridoni, M.; Amiri-Dashatan, N. Potential Role of Resveratrol in Prevention and Therapy of Diabetic Complications: A Critical Review. Food Nutr. Res. 2024, 68, 9731. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, D.; Sahu, P.K.; Purohit, S.; Ranajit, S.K.; Acharya, B.; Sangam, S.; Shrivastava, A.K. Therapeutic Interventions for Diabetes Mellitus-Associated Complications. Curr. Diabetes Rev. 2025, 21, e030524229631. [Google Scholar] [CrossRef]
- Roy, D.; Ghosh, M.; Rangra, N.K. Herbal Approaches to Diabetes Management: Pharmacological Mechanisms and Omics-Driven Discoveries. Phytother. Res. 2024, ptr.8410. [Google Scholar] [CrossRef]
- Bohara, R.A.; Tabassum, N.; Singh, M.P.; Gigli, G.; Ragusa, A.; Leporatti, S. Recent Overview of Resveratrol’s Beneficial Effects and Its Nano-Delivery Systems. Molecules 2022, 27, 5154. [Google Scholar] [CrossRef]
- Salla, M.; Karaki, N.; El Kaderi, B.; Ayoub, A.J.; Younes, S.; Abou Chahla, M.N.; Baksh, S.; El Khatib, S. Enhancing the Bioavailability of Resveratrol: Combine It, Derivatize It, or Encapsulate It? Pharmaceutics 2024, 16, 569. [Google Scholar] [CrossRef] [PubMed]
- Pop, R.; Daescu, A.; Rugina, D.; Pintea, A. Resveratrol: Its Path from Isolation to Therapeutic Action in Eye Diseases. Antioxidants 2022, 11, 2447. [Google Scholar] [CrossRef] [PubMed]
- Bola, C.; Bartlett, H.; Eperjesi, F. Resveratrol and the Eye: Activity and Molecular Mechanisms. Graefes Arch. Clin. Exp. Ophthalmol. 2014, 252, 699–713. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an Anti-Cancer Agent: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1428–1447. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Ho, C.-T.; Chen, Y.-K. Biological Actions and Molecular Effects of Resveratrol, Pterostilbene, and 3′-Hydroxypterostilbene. J. Food Drug Anal. 2017, 25, 134–147. [Google Scholar] [CrossRef]
- Yuan, D.; Xu, Y.; Xue, L.; Zhang, W.; Gu, L.; Liu, Q. Resveratrol Protects against Diabetic Retinal Ganglion Cell Damage by Activating the Nrf2 Signaling Pathway. Heliyon 2024, 10, e30786. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Mohammadpour, A.; Medoro, A.; Davinelli, S.; Saso, L.; Miroliaei, M. Exploring the Links between Polyphenols, Nrf2, and Diabetes: A Review. Biomed. Pharmacother. 2025, 186, 118020. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Z.; Lei, H.; Zhang, D. Recent Progress in Nanotechnology-Based Drug Carriers for Resveratrol Delivery. Drug Deliv. 2023, 30, 2174206. [Google Scholar] [CrossRef]
- Wei, L.; Sun, X.; Fan, C.; Li, R.; Zhou, S.; Yu, H. The Pathophysiological Mechanisms Underlying Diabetic Retinopathy. Front. Cell Dev. Biol. 2022, 10, 963615. [Google Scholar] [CrossRef]
- Shyam, M.; Sidharth, S.; Veronica, A.; Jagannathan, L.; Srirangan, P.; Radhakrishnan, V.; Sabina, E.P. Diabetic Retinopathy: A Comprehensive Review of Pathophysiology and Emerging Treatments. Mol. Biol. Rep. 2025, 52, 380. [Google Scholar] [CrossRef]
- Zhang, H.; Mo, Y. The Gut-Retina Axis: A New Perspective in the Prevention and Treatment of Diabetic Retinopathy. Front. Endocrinol. 2023, 14, 1205846. [Google Scholar] [CrossRef]
- Cai, Y.; Kang, Y. Gut Microbiota and Metabolites in Diabetic Retinopathy: Insights into Pathogenesis for Novel Therapeutic Strategies. Biomed. Pharmacother. 2023, 164, 114994. [Google Scholar] [CrossRef]
- Schiavone, N.; Isoldi, G.; Calcagno, S.; Rovida, E.; Antiga, E.; De Almeida, C.V.; Lulli, M. Exploring the Gut Microbiota-Retina Axis: Implications for Health and Disease. Microorganisms 2025, 13, 1101. [Google Scholar] [CrossRef]
- Li, S.; Deng, J.; Sun, D.; Chen, S.; Yao, X.; Wang, N.; Zhang, J.; Gu, Q.; Zhang, S.; Wang, J.; et al. FBXW7 Alleviates Hyperglycemia-Induced Endothelial Oxidative Stress Injury via ROS and PARP Inhibition. Redox Biol. 2022, 58, 102530. [Google Scholar] [CrossRef] [PubMed]
- Szabó, C.; Biser, A.; Benkő, R.; Böttinger, E.; Suszták, K. Poly(ADP-Ribose) Polymerase Inhibitors Ameliorate Nephropathy of Type 2 Diabetic Lepr Db/Db Mice. Diabetes 2006, 55, 3004–3012. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative Stress and Diabetic Complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Deng, A.; Liu, J.; Hou, W. The Role of Keap1-Nrf2-ARE Signal Pathway in Diabetic Retinopathy Oxidative Stress and Related Mechanisms. Int. J. Clin. Exp. Pathol. 2018, 11, 3084–3090. [Google Scholar]
- Wang, K.; Chen, Z.; Huang, L.; Meng, B.; Zhou, X.; Wen, X.; Ren, D. Naringenin Reduces Oxidative Stress and Improves Mitochondrial Dysfunction via Activation of the Nrf2/ARE Signaling Pathway in Neurons. Int. J. Mol. Med. 2017, 40, 1582–1590. [Google Scholar] [CrossRef]
- Tabei, Y.; Murotomi, K.; Umeno, A.; Horie, M.; Tsujino, Y.; Masutani, B.; Yoshida, Y.; Nakajima, Y. Antioxidant Properties of 5-Hydroxy-4-Phenyl-Butenolide via Activation of Nrf2/ARE Signaling Pathway. Food Chem. Toxicol. 2017, 107, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Altmann, C.; Schmidt, M. The Role of Microglia in Diabetic Retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration. Int. J. Mol. Sci. 2018, 19, 110. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, X.; Peng, H.; Guan, J.; Huang, Z.; Jiang, B.; Sun, D. A New Modulator of Neuroinflammation in Diabetic Retinopathy: USP25. Inflammation 2024, 47, 1520–1535. [Google Scholar] [CrossRef]
- Viganò, I.; Galbiati, S.; Aragona, E.; Gabellini, D.; Lattanzio, R.; Pedon, V.; Basile, G.; Arrigo, A.; Bandello, F.; Zerbini, G. Diabetes-Driven Retinal Neurodegeneration: Its Role in the Pathogenesis of Diabetic Retinopathy. Biomedicines 2025, 13, 1328. [Google Scholar] [CrossRef]
- Arrigo, A.; Cremona, O.; Aragona, E.; Casoni, F.; Consalez, G.; Dogru, R.M.; Hauck, S.M.; Antropoli, A.; Bianco, L.; Parodi, M.B.; et al. Müller Cells Trophism and Pathology as the next Therapeutic Targets for Retinal Diseases. Prog. Retin. Eye Res. 2025, 106, 101357. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhou, C. Observation on the Changes of Visual Field and Optic Nerve Fiber Layer Thickness in Patients with Early Diabetic Retinopathy. Photodiagn. Photodyn. Ther. 2024, 47, 104197. [Google Scholar] [CrossRef]
- Neves, D.; Salazar, I.L.; Almeida, R.D.; Silva, R.M. Molecular Mechanisms of Ischemia and Glutamate Excitotoxicity. Life Sci. 2023, 328, 121814. [Google Scholar] [CrossRef]
- Daniele, S.G.; Trummer, G.; Hossmann, K.A.; Vrselja, Z.; Benk, C.; Gobeske, K.T.; Damjanovic, D.; Andrijevic, D.; Pooth, J.-S.; Dellal, D.; et al. Brain Vulnerability and Viability after Ischaemia. Nat. Rev. Neurosci. 2021, 22, 553–572. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.W. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front. Neurosci. 2020, 14, 579953. [Google Scholar] [CrossRef]
- El-Sehrawy, A.A.; Elkhamisy, E.M.; Badawi, A.E.; Elshahawy, H.A.; Elsayed, E.; Mohammed, N.T.; El-Eshmawy, M.M. Subclinical Hypothyroidism in Patients with Diabetic Retinopathy: Role of Vascular Endothelial Growth Factor. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Batsos, G.; Christodoulou, E.; Christou, E.E.; Galanis, P.; Katsanos, A.; Limberis, L.; Stefaniotou, M. Vitreous Inflammatory and Angiogenic Factors on Patients with Proliferative Diabetic Retinopathy or Diabetic Macular Edema: The Role of Lipocalin2. BMC Ophthalmol. 2022, 22, 496. [Google Scholar] [CrossRef]
- Jain, A.; Saxena, S.; Khanna, V.K.; Shukla, R.K.; Meyer, C.H. Status of Serum VEGF and ICAM-1 and Its Association with External Limiting Membrane and Inner Segment-Outer Segment Junction Disruption in Type 2 Diabetes Mellitus. Mol. Vis. 2013, 19, 1760–1768. [Google Scholar]
- Zhang, M.; Zhou, M.; Cai, X.; Zhou, Y.; Jiang, X.; Luo, Y.; Hu, Y.; Qiu, R.; Wu, Y.; Zhang, Y.; et al. VEGF Promotes Diabetic Retinopathy by Upregulating the PKC/ET/NF-κB/ICAM-1 Signaling Pathway. Eur. J. Histochem. EJH 2022, 66, 3522. [Google Scholar] [CrossRef] [PubMed]
- Gaonkar, B.; Prabhu, K.; Rao, P.; Kamat, A.; Rao Addoor, K.; Varma, M. Plasma Angiogenesis and Oxidative Stress Markers in Patients with Diabetic Retinopathy. Biomarkers 2020, 25, 397–401. [Google Scholar] [CrossRef]
- Chen, C.-H. Nrf2-ARE Pathway: Defense Against Oxidative Stress. In Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense; Springer International Publishing: Cham, Switzerland, 2020; pp. 145–154. ISBN 978-3-030-41678-2. [Google Scholar]
- Park, C.; Lee, H.; Han, M.H.; Jeong, J.-W.; Kim, S.O.; Jeong, S.-J.; Lee, B.; Kim, G.; Park, E.K.; Jeon, Y.; et al. Cytoprotective Effects of Fermented Oyster Extracts against Oxidative Stress-Induced DNA Damage and Apoptosis through Activation of the Nrf2/HO-1 Signaling Pathway in MC3T3-E1 Osteoblasts. EXCLI J. 2020, 9, 1102–1119. [Google Scholar] [CrossRef]
- Abiko, Y.; Toriba, A.; Kumagai, Y. Phytochemicals to Regulate Oxidative and Electrophilic Stress through Nrf2 Activation. Redox Exp. Med. 2022, 2023, e220021. [Google Scholar] [CrossRef]
- Chang, H.-Y.; Lin, C.-W.; Yang, C.-M.; Yang, C.-H. Nrf-2 Activator Sulforaphane Protects Retinal Cells from Oxidative Stress-Induced Retinal Injury. J. Funct. Foods 2020, 71, 104023. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Venkidasamy, B.; Subramanian, U.; Samynathan, R.; Ali Shariati, M.; Rebezov, M.; Girish, S.; Thangavel, S.; Dhanapal, A.R.; Fedoseeva, N.; et al. Bioactive Compounds in Oxidative Stress-Mediated Diseases: Targeting the NRF2/ARE Signaling Pathway and Epigenetic Regulation. Antioxidants 2021, 10, 1859. [Google Scholar] [CrossRef] [PubMed]
- Truong, V.; Jun, M.; Jeong, W. Role of Resveratrol in Regulation of Cellular Defense Systems against Oxidative Stress. BioFactors 2018, 44, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Patel, J. Resveratrol and Its Biological Actions. Int. J. Green Pharm. 2010, 4, 15. [Google Scholar] [CrossRef]
- Bryl, A.; Falkowski, M.; Zorena, K.; Mrugacz, M. The Role of Resveratrol in Eye Diseases—A Review of the Literature. Nutrients 2022, 14, 2974. [Google Scholar] [CrossRef]
- Li, J.; Yu, S.; Ying, J.; Shi, T.; Wang, P. Resveratrol Prevents ROS-Induced Apoptosis in High Glucose-Treated Retinal Capillary Endothelial Cells via the Activation of AMPK/Sirt1/PGC-1 α Pathway. Oxid. Med. Cell Longev. 2017, 2017, 7584691. [Google Scholar] [CrossRef]
- Jîtcă, G. The Role of AMPK Activation in Metabolic Regulation, Energy Homeostasis and Aging: A Comprehensive Overview. INNOSC Theranostics Pharmacol. Sci. 2024, 8, 1–15. [Google Scholar] [CrossRef]
- Marin, T.L.; Gongol, B.; Zhang, F.; Martin, M.; Johnson, D.A.; Xiao, H.; Wang, Y.; Subramaniam, S.; Chien, S.; Shyy, J.Y.-J. AMPK Promotes Mitochondrial Biogenesis and Function by Phosphorylating the Epigenetic Factors DNMT1, RBBP7, and HAT1. Sci. Signal. 2017, 10, eaaf7478. [Google Scholar] [CrossRef] [PubMed]
- Duarte, F.; Amorim, J.; Palmeira, C.; Rolo, A. Regulation of Mitochondrial Function and Its Impact in Metabolic Stress. Curr. Med. Chem. 2015, 22, 2468–2479. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.; Ferreira, B.I.; Hollstein, P.E.; Curtis, S.D.; Trefts, E.; Weiser Novak, S.; Yu, J.; Gilson, R.; Hellberg, K.; Fang, L.; et al. Induction of Lysosomal and Mitochondrial Biogenesis by AMPK Phosphorylation of FNIP1. Science 2023, 380, eabj5559. [Google Scholar] [CrossRef]
- Jiang, T.; Gu, J.; Chang, Q. Resveratrol Suppresses “Metabolic Memory” by Inhibiting Inflammation and Apoptosis Through the ROS/TXNIP/NLRP3 Signaling Pathway. Pharmacogn. Mag. 2024, 20, 898–907. [Google Scholar] [CrossRef]
- Im, E.J.; Kim, S.J.; Hong, S.B.; Park, J.-K.; Rhee, M.H. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF- κ B Signaling Pathway. Evid. Based Complement. Alternat. Med. 2016, 2016, 3704764. [Google Scholar] [CrossRef]
- Kim, J.-K.; Jun, J.-G. Licochalcone B Exhibits Anti-Inflammatory Effects via Modulation of NF-κB and AP-1. Biomed. Sci. Lett. 2015, 21, 218–226. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Ma, S.-X.; Ko, Y.-H.; Seo, J.-Y.; Lee, B.-R.; Lee, T.H.; Kim, S.Y.; Lee, S.-Y.; Jang, C.-G. Vaccinium Bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells. Biomol. Ther. 2016, 24, 543–551. [Google Scholar] [CrossRef]
- Qomaladewi, N.P.; Aziz, N.; Kim, M.-Y.; Cho, J.Y. Piper Cubeba L. Methanol Extract Has Anti-Inflammatory Activity Targeting Src/Syk via NF- κ B Inhibition. Evid. Based Complement. Alternat. Med. 2019, 2019, 1548125. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, S.; Wang, W.; Wang, Z.; Wu, X.; Zhang, Z. Nanog Inhibits Lipopolysaccharide-Induced Expression of pro-Inflammatory Cytokines by Blocking NF-κB Transcriptional Activity in Rat Primary Microglial Cells. Mol. Med. Rep. 2011, 5, 842–844. [Google Scholar] [CrossRef]
- McDougald, D.S.; Dine, K.E.; Zezulin, A.U.; Bennett, J.; Shindler, K.S. SIRT1 and NRF2 Gene Transfer Mediate Distinct Neuroprotective Effects Upon Retinal Ganglion Cell Survival and Function in Experimental Optic Neuritis. Investig. Opthalmol. Vis. Sci. 2018, 59, 1212. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.G.; Chaqour, B.; McDougald, D.S.; Dine, K.E.; Duong, T.T.; Shindler, R.E.; Yue, J.; Liu, T.; Shindler, K.S. Selective Upregulation of SIRT1 Expression in Retinal Ganglion Cells by AAV-Mediated Gene Delivery Increases Neuronal Cell Survival and Alleviates Axon Demyelination Associated with Optic Neuritis. Biomolecules 2022, 12, 830. [Google Scholar] [CrossRef]
- Mimura, T.; Hidetaka, N.; Funatsu, H.; Aki, K.; Matsubara, M. Retinal Neuroprotective Effect of Sirtuins. SM Ophthalmol. J. 2014, 2, 1016. [Google Scholar]
- Zeng, K.; Wang, Y.; Yang, N.; Wang, D.; Li, S.; Ming, J.; Wang, J.; Yu, X.; Song, Y.; Zhou, X.; et al. Resveratrol Inhibits Diabetic-Induced Müller Cells Apoptosis through MicroRNA-29b/Specificity Protein 1 Pathway. Mol. Neurobiol. 2017, 54, 4000–4014. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Wan, Z.-W.; Sun, P.; Wang, Y.; Song, Y.; Yu, X.-M.; Deng, B. Resveratrol Improves Diabetic Retinopathy via Regulating MicroRNA-29b/Specificity Protein 1/Apoptosis Pathway by Enhancing Autophagy 2024. Eur. J. Nutr. 2025, 64, 232. [Google Scholar]
- Luo, J.; He, T.; Yang, J.; Yang, N.; Li, Z.; Xing, Y. SIRT1 Is Required for the Neuroprotection of Resveratrol on Retinal Ganglion Cells after Retinal Ischemia-Reperfusion Injury in Mice. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 335–344. [Google Scholar] [CrossRef]
- Shindler, K.S.; Ventura, E.; Rex, T.S.; Elliott, P.; Rostami, A. SIRT1 Activation Confers Neuroprotection in Experimental Optic Neuritis. Investig. Opthalmol. Vis. Sci. 2007, 48, 3602. [Google Scholar] [CrossRef]
- Arshadi, D.; Mansouri, K.; Khodarahmi, R.; Seyfi, P.; Shakiba, Y.; Mostafaie, A. In Vitro Anti-Angiogenic Activity of Persian Shallot (Allium Hirtifolium) Extract Is Mediated through Inhibition of Endothelial Cell Proliferation/Migration and down-Regulation of VEGF and MMP Expression. J. Rep. Pharm. Sci. 2014, 3, 65. [Google Scholar] [CrossRef]
- Han, J.M.; Choi, Y.S.; Dhakal, D.; Sohng, J.K.; Jung, H.J. Novel Nargenicin A1 Analog Inhibits Angiogenesis by Downregulating the Endothelial VEGF/VEGFR2 Signaling and Tumoral HIF-1α/VEGF Pathway. Biomedicines 2020, 8, 252. [Google Scholar] [CrossRef]
- Giordo, R.; Nasrallah, G.K.; Posadino, A.M.; Galimi, F.; Capobianco, G.; Eid, A.H.; Pintus, G. Resveratrol-Elicited PKC Inhibition Counteracts NOX-Mediated Endothelial to Mesenchymal Transition in Human Retinal Endothelial Cells Exposed to High Glucose. Antioxidants 2021, 10, 224. [Google Scholar] [CrossRef] [PubMed]
- Toro, M.D.; Nowomiejska, K.; Avitabile, T.; Rejdak, R.; Tripodi, S.; Porta, A.; Reibaldi, M.; Figus, M.; Posarelli, C.; Fiedorowicz, M. Effect of Resveratrol on In Vitro and In Vivo Models of Diabetic Retinophathy: A Systematic Review. Int. J. Mol. Sci. 2019, 20, 3503. [Google Scholar] [CrossRef]
- Liu, X.-Q.; Wu, B.-J.; Pan, W.H.T.; Zhang, X.-M.; Liu, J.-H.; Chen, M.-M.; Chao, F.-P.; Chao, H.-M. Resveratrol Mitigates Rat Retinal Ischemic Injury: The Roles of Matrix Metalloproteinase-9, Inducible Nitric Oxide, and Heme Oxygenase-1. J. Ocul. Pharmacol. Ther. 2013, 29, 33–40. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Al-Jaber, H.I.; Shakya, A.K.; Al-Qudah, M.A.; Barhoumi, L.M.; Abu-Sal, H.E.; Hasan, H.S.; Al-Bataineh, N.; Abu-Orabi, S.; Mubarak, M.S. Piceatannol, a Comprehensive Review of Health Perspectives and Pharmacological Aspects. Arab. J. Chem. 2024, 17, 105939. [Google Scholar] [CrossRef]
- Ashikawa, K.; Majumdar, S.; Banerjee, S.; Bharti, A.C.; Shishodia, S.; Aggarwal, B.B. Piceatannol Inhibits TNF-Induced NF-κB Activation and NF-κB-Mediated Gene Expression Through Suppression of IκBα Kinase and P65 Phosphorylation. J. Immunol. 2002, 169, 6490–6497. [Google Scholar] [CrossRef]
- Liu, X.; Pei, J.; Li, J.; Zhu, H.; Zheng, X.; Zhang, X.; Ruan, B.; Chen, L. Recent Advances in Resveratrol Derivatives: Structural Modifications and Biological Activities. Molecules 2025, 30, 958. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Jia, Y.; Ren, F. Multidimensional Biological Activities of Resveratrol and Its Prospects and Challenges in the Health Field. Front. Nutr. 2024, 11, 1408651. [Google Scholar] [CrossRef] [PubMed]
- Amri, A.; Chaumeil, J.C.; Sfar, S.; Charrueau, C. Administration of Resveratrol: What Formulation Solutions to Bioavailability Limitations? J. Control. Release 2012, 158, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Radeva, L.; Yoncheva, K. Resveratrol—A Promising Therapeutic Agent with Problematic Properties. Pharmaceutics 2025, 17, 134. [Google Scholar] [CrossRef]
- Li, P.; Peng, J.; Li, Y.; Gong, L.; Lv, Y.; Liu, H.; Zhang, T.; Yang, S.; Liu, H.; Li, J.; et al. Pharmacokinetics, Bioavailability, Excretion and Metabolism Studies of Akebia Saponin D in Rats: Causes of the Ultra-Low Oral Bioavailability and Metabolic Pathway. Front. Pharmacol. 2021, 12, 621003. [Google Scholar] [CrossRef]
- Chong, C.; Schug, S.; Page-Sharp, M.; Ilett, K. Bioavailability of Ketamine After Oral or Sublingual Administration. Pain Med. 2006, 7, 469. [Google Scholar] [CrossRef]
- Chu, S.Y.; Deaton, R.; Cavanaugh, J. Absolute Bioavailability of Clarithromycin after Oral Administration in Humans. Antimicrob. Agents Chemother. 1992, 36, 1147–1150. [Google Scholar] [CrossRef]
- Shirasaki, Y.; Yamaguchi, M.; Miyashita, H. Retinal Penetration of Calpain Inhibitors in Rats After Oral Administration. J. Ocul. Pharmacol. Ther. 2006, 22, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-C.; Chen, Y.-H.; Lu, D.-W. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int. J. Mol. Sci. 2023, 24, 15352. [Google Scholar] [CrossRef]
- Azman, M.; Sabri, A.H.; Anjani, Q.K.; Mustaffa, M.F.; Hamid, K.A. Intestinal Absorption Study: Challenges and Absorption Enhancement Strategies in Improving Oral Drug Delivery. Pharmaceuticals 2022, 15, 975. [Google Scholar] [CrossRef]
- Minichmayr, I.K.; Shebley, M.; Van Der Graaf, P.H.; Venkatakrishnan, K. Getting the Dosage Right: A Vital Role for Clinical Pharmacology in the Era of Precision Medicine. Clin. Pharmacol. Ther. 2024, 116, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Thrimawithana, T.; Young, S.; Bunt, C.R.; Green, C.R.; Alany, R.G. Drug Delivery to the Posterior Segment of the Eye: Challenges and Opportunities. Drug Deliv. Lett. 2011, 1, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Diress, M.; Wagle, S.R.; Lim, P.; Foster, T.; Kovacevic, B.; Ionescu, C.M.; Mooranian, A.; Al-Salami, H. Advanced Drug Delivery Strategies for Diabetic Retinopathy: Current Therapeutic Advancement, and Delivery Methods Overcoming Barriers, and Experimental Modalities. Expert Opin. Drug Deliv. 2024, 21, 1859–1877. [Google Scholar] [CrossRef] [PubMed]
- Pintea, A.M.; Rugină, D.O. Resveratrol and the Human Retina. In Handbook of Nutrition, Diet and the Eye; Elsevier: Amsterdam, The Netherlands, 2014; pp. 481–491. ISBN 978-0-12-401717-7. [Google Scholar]
- Rutkovsky, A.C. Resveratrol Clinical Trials: Number of Studies per Condition 2020. Available online: https://zenodo.org/records/4058712 (accessed on 12 July 2025).
- Tomé-Carneiro, J.; Larrosa, M.; González-Sarrías, A.; Tomás-Barberán, F.; García-Conesa, M.; Espín, J. Resveratrol and Clinical Trials: The Crossroad from In Vitro Studies to Human Evidence. Curr. Pharm. Des. 2013, 19, 6064–6093. [Google Scholar] [CrossRef]
- Smoliga, J.M.; Vang, O.; Baur, J.A. Challenges of Translating Basic Research Into Therapeutics: Resveratrol as an Example. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 158–167. [Google Scholar] [CrossRef]
- Simó-Servat, O.; Hernández, C.; Simó, R. Diabetic Retinopathy in the Context of Patients with Diabetes. Ophthalmic Res. 2019, 62, 211–217. [Google Scholar] [CrossRef]
- Silva, P.S.; Cavallerano, J.D.; Sun, J.K.; Aiello, L.M.; Aiello, L.P. Effect of Systemic Medications on Onset and Progression of Diabetic Retinopathy. Nat. Rev. Endocrinol. 2010, 6, 494–508. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Jiang, Y.; Jaganathan, R.; Hao, Y. Current Advances in Pharmacotherapy and Technology for Diabetic Retinopathy: A Systematic Review. J. Ophthalmol. 2018, 2018, 1694187. [Google Scholar] [CrossRef]
- Maheshwari, S.Y.; Kumar, S.; Sinha, A.H.; Kumar, M. Diabetic Retinopathy: A Pharmacological Consideration. Cureus 2023, 15, e46842. [Google Scholar] [CrossRef]
- Magri, C.J.; Fava, S. The Diabetic Eye: A Window to the Heart & Vascular System. J. Diabetes Metab. 2012, 03. [Google Scholar] [CrossRef]
- Jumelle, C.; Gholizadeh, S.; Annabi, N.; Dana, R. Advances and Limitations of Drug Delivery Systems Formulated as Eye Drops. J. Control. Release 2020, 321, 1–22. [Google Scholar] [CrossRef]
- Ahmed, S.; Amin, M.M.; Sayed, S. Ocular Drug Delivery: A Comprehensive Review. AAPS PharmSciTech 2023, 24, 66. [Google Scholar] [CrossRef]
- Kannan, R.M.; Pitha, I.; Parikh, K.S. A New Era in Posterior Segment Ocular Drug Delivery: Translation of Systemic, Cell-Targeted, Dendrimer-Based Therapies. Adv. Drug Deliv. Rev. 2023, 200, 115005. [Google Scholar] [CrossRef]
- Pandian, S.; Jeevanesan, V.; Ponnusamy, C.; Natesan, S. RES-Loaded Pegylated CS NPs: For Efficient Ocular Delivery. IET Nanobiotechnol. 2017, 11, 32–39. [Google Scholar] [CrossRef]
- Buosi, F.S.; Alaimo, A.; Di Santo, M.C.; Elías, F.; García Liñares, G.; Acebedo, S.L.; Castañeda Cataña, M.A.; Spagnuolo, C.C.; Lizarraga, L.; Martínez, K.D.; et al. Resveratrol Encapsulation in High Molecular Weight Chitosan-Based Nanogels for Applications in Ocular Treatments: Impact on Human ARPE-19 Culture Cells. Int. J. Biol. Macromol. 2020, 165, 804–821. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Li, R.; Yan, M. New Resveratrol Micelle Formulation for Ocular Delivery: Characterization and in Vitro/in Vivo Evaluation. Drug Dev. Ind. Pharm. 2020, 46, 1960–1970. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Fnu, G.; Bhatia, D.; Shahid, A.; Sutariya, V. Nanodelivery of Resveratrol-Loaded PLGA Nanoparticles for Age-Related Macular Degeneration. AAPS PharmSciTech 2020, 21, 291. [Google Scholar] [CrossRef]
- Chakole, C.M. Resveratrol Loaded Nanostructured Lipid Carrier for Enhanced Ocular Delivery: Formulation, In Vitro and Ex Vivo Evaluation. Afr. J. Biol. Sci. 2024, 6, 1215–1221. [Google Scholar]
- Saha, M.; Saha, D.R.; Ulhosna, T.; Sharker, S.M.; Shohag, M.H.; Islam, M.S.; Ray, S.K.; Rahman, G.M.S.; Reza, H.M. QbD Based Development of Resveratrol-Loaded Mucoadhesive Lecithin/Chitosan Nanoparticles for Prolonged Ocular Drug Delivery. J. Drug Deliv. Sci. Technol. 2021, 63, 102480. [Google Scholar] [CrossRef]
- Li, M.; Yu, X.; Zhu, L.; Jin, Y.; Wu, Z. Ocular Lamellar Crystalline Gels for Sustained Release and Enhanced Permeation of Resveratrol against Corneal Neovascularization. Drug Deliv. 2021, 28, 206–217. [Google Scholar] [CrossRef]
- Krstić, L.; Jarho, P.; Ruponen, M.; Urtti, A.; González-García, M.J.; Diebold, Y. Improved Ocular Delivery of Quercetin and Resveratrol: A Comparative Study between Binary and Ternary Cyclodextrin Complexes. Int. J. Pharm. 2022, 624, 122028. [Google Scholar] [CrossRef] [PubMed]
- Vivero-Lopez, M.; Sparacino, C.; Quelle-Regaldie, A.; Sánchez, L.; Candal, E.; Barreiro-Iglesias, A.; Huete-Toral, F.; Carracedo, G.; Otero, A.; Concheiro, A.; et al. Pluronic®/Casein Micelles for Ophthalmic Delivery of Resveratrol: In Vitro, Ex Vivo, and in Vivo Tests. Int. J. Pharm. 2022, 628, 122281. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Chen, P.; Liu, X.; Lian, Y.; Xi, J.; Li, J.; Song, J.; Li, X. Trimethylated Chitosan-Coated Flexible Liposomes with Resveratrol for Topical Drug Delivery to Reduce Blue-Light-Induced Retinal Damage. Int. J. Biol. Macromol. 2023, 252, 126480. [Google Scholar] [CrossRef]
- De Luca, I.; Di Cristo, F.; Conte, R.; Peluso, G.; Cerruti, P.; Calarco, A. In-Situ Thermoresponsive Hydrogel Containing Resveratrol-Loaded Nanoparticles as a Localized Drug Delivery Platform for Dry Eye Disease. Antioxidants 2023, 12, 993. [Google Scholar] [CrossRef]
- Zingale, E.; Bonaccorso, A.; D’Amico, A.G.; Lombardo, R.; D’Agata, V.; Rautio, J.; Pignatello, R. Formulating Resveratrol and Melatonin Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Ocular Administration Using Design of Experiments. Pharmaceutics 2024, 16, 125. [Google Scholar] [CrossRef]
- Gonzalez-Perez, J.; Lopera-Echavarría, A.M.; Arevalo-Alquichire, S.; Araque-Marín, P.; Londoño, M.E. Development of a Resveratrol Nanoformulation for the Treatment of Diabetic Retinopathy. Materials 2024, 17, 1420. [Google Scholar] [CrossRef]
- Krstić, L.; Vallejo, R.; Rodriguez-Rojo, S.; González-García, M.J.; Arias, F.J.; Girotti, A.; Diebold, Y. Effective Ocular Delivery of Antioxidant Polyphenols Using Elastin-like Polymer Nanosystems Developed by Sustainable Process. Int. J. Pharm. 2025, 678, 125691. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Wang, C.; Xie, X.; Ma, Y.; Wang, Y. Biodegradable and Dissolvable Resveratrol Nanocrystals Non-Silicon Microneedles for Transdermal Drug Delivery. J. Drug Deliv. Sci. Technol. 2023, 86, 104653. [Google Scholar] [CrossRef]
- Lynch, C.; Kondiah, P.P.D.; Choonara, Y.E.; Du Toit, L.C.; Ally, N.; Pillay, V. Advances in Biodegradable Nano-Sized Polymer-Based Ocular Drug Delivery. Polymers 2019, 11, 1371. [Google Scholar] [CrossRef]
- Saleem, Z.; Rehman, K.; Hamid Akash, M.S. Role of Drug Delivery System in Improving the Bioavailability of Resveratrol. Curr. Pharm. Des. 2022, 28, 1632–1642. [Google Scholar] [CrossRef]
- Taheri, S.L.; Poorirani, S.; Mostafavi, S.A. Intraocular Drug Delivery Systems for Diabetic Retinopathy: Current and Future Prospective. BioImpacts 2024, 15, 30127. [Google Scholar] [CrossRef]
- Yilmaz, T.; Cordero-Coma, M.; Lavaque, A.J.; Gallagher, M.J.; Padula, W.V. Triamcinolone and Intraocular Sustained-Release Delivery Systems in Diabetic Retinopathy. Curr. Pharm. Biotechnol. 2011, 12, 337–346. [Google Scholar] [CrossRef]
- Rafael, D.; Guerrero, M.; Marican, A.; Arango, D.; Sarmento, B.; Ferrer, R.; Durán-Lara, E.F.; Clark, S.J.; Schwartz, S. Delivery Systems in Ocular Retinopathies: The Promising Future of Intravitreal Hydrogels as Sustained-Release Scaffolds. Pharmaceutics 2023, 15, 1484. [Google Scholar] [CrossRef]
- Wykoff, C.C.; Kuppermann, B.D.; Regillo, C.D.; Chang, M.; Hariprasad, S.M.; Duker, J.S.; Altaf, S.; Saïm, S. Extended Intraocular Drug-Delivery Platforms for the Treatment of Retinal and Choroidal Diseases. J. Vitreoretin. Dis. 2024, 8, 577–586. [Google Scholar] [CrossRef]
- Rathi, S.A.; Dhoke, A.P. A Comprehensive Review of Innovations for Diabetic Retinopathy and Next-Generation Intraocular Drug Delivery. Int. J. Sci. Technol. 2025, 16, 1504. [Google Scholar] [CrossRef]
- Zaher Addeen, S.; Shaddoud, I. Combined Phacoemulsification Surgery and Intravitreal Triamcinolone Injection versus Stand-Alone Surgery in Patients with Type 2 Diabetes: A Prospective Randomized Trial. BMC Ophthalmol. 2022, 22, 445. [Google Scholar] [CrossRef]
- Riaz, S.; Ahmed, N.; Khan, A.; Jabran, A.; Raza, I.; Afzal, t. Panretinal Photocoagulation Plus Intravitreal Bevacizumab Versus Panretinal Photocoagulation Alone for Proliferative Diabetic Retinopathy. Biol. Clin. Sci. Res. J. 2024, 2024, 1313. [Google Scholar] [CrossRef]
- Zhang, W.; Geng, J.; Sang, A. Effectiveness of Panretinal Photocoagulation Plus Intravitreal Anti-VEGF Treatment Against PRP Alone for Diabetic Retinopathy: A Systematic Review With Meta-Analysis. Front. Endocrinol. 2022, 13, 807687. [Google Scholar] [CrossRef]
- Fallico, M.; Maugeri, A.; Lotery, A.; Longo, A.; Bonfiglio, V.; Russo, A.; Avitabile, T.; Pulvirenti, A.; Furino, C.; Cennamo, G.; et al. Intravitreal Anti-vascular Endothelial Growth Factors, Panretinal Photocoagulation and Combined Treatment for Proliferative Diabetic Retinopathy: A Systematic Review and Network Meta-analysis. Acta Ophthalmol. 2021, 99, e795–e805. [Google Scholar] [CrossRef]
- Pei, X.; Huang, D.; Li, Z. Genetic Insights and Emerging Therapeutics in Diabetic Retinopathy: From Molecular Pathways to Personalized Medicine. Front. Genet. 2024, 15, 1416924. [Google Scholar] [CrossRef]
- Hammes, H.P. Optimal Treatment of Diabetic Retinopathy. Ther. Adv. Endocrinol. Metab. 2013, 4, 61–71. [Google Scholar] [CrossRef]
- Agarwal, A.; Soliman, M.K.; Sepah, Y.J.; Do, D.V.; Nguyen, Q.D. Diabetic Retinopathy: Variations in Patient Therapeutic Outcomes and Pharmacogenomics. Pharmacogenom. Pers. Med. 2014, 7, 399–409. [Google Scholar] [CrossRef]
- Duh, E.J.; Sun, J.K.; Stitt, A.W. Diabetic Retinopathy: Current Understanding, Mechanisms, and Treatment Strategies. JCI Insight 2017, 2, e93751. [Google Scholar] [CrossRef]
- Kianmehr, H.; Zhang, P.; Ospina, N.S.; Shi, L.; Fonseca, V.; Guo, J.; Shao, H. 418-P: Certain Patient Subgroups with Type 2 Diabetes May Benefit from Intensive Glycemic and Blood Pressure Control from Reductions in Major Adverse Cardiovascular Events (MACE): A Machine Learning–Based Post Hoc Analysis of ACCORD Trial Data. Diabetes 2022, 71, 418. [Google Scholar] [CrossRef]
- Dhruval, N.; Manohar, M.; Gowda, D.V. Recent Review on Role of Resveratrol in Diabetes and Its Complication. Int. J. Res. Pharm. Sci. 2020, 11, 1692–1700. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Evangelopoulos, A.; Kazazis, C. Resveratrol and Diabetes. Rev Diabet Stud 2013, 10, 236–242. [Google Scholar] [CrossRef]
- Moshtaghion, S.M.; Caballano-Infantes, E.; Plaza Reyes, Á.; Valdés-Sánchez, L.; Fernández, P.G.; De La Cerda, B.; Riga, M.S.; Álvarez-Dolado, M.; Peñalver, P.; Morales, J.C.; et al. Piceid Octanoate Protects Retinal Cells against Oxidative Damage by Regulating the Sirtuin 1/Poly-ADP-Ribose Polymerase 1 Axis In Vitro and in Rd10 Mice. Antioxidants 2024, 13, 201. [Google Scholar] [CrossRef]
- Trombino, S.; Cassano, R.; Di Gioia, M.L.; Aiello, F. Emerging Trends in Green Extraction Techniques, Chemical Modifications, and Drug Delivery Systems for Resveratrol. Antioxidants 2025, 14, 654. [Google Scholar] [CrossRef]
- Intagliata, S.; Modica, M.N.; Santagati, L.M.; Montenegro, L. Strategies to Improve Resveratrol Systemic and Topical Bioavailability: An Update. Antioxidants 2019, 8, 244. [Google Scholar] [CrossRef]
- Robertson, I.; Wai Hau, T.; Sami, F.; Sajid Ali, M.; Badgujar, V.; Murtuja, S.; Saquib Hasnain, M.; Khan, A.; Majeed, S.; Tahir Ansari, M. The Science of Resveratrol, Formulation, Pharmacokinetic Barriers and Its Chemotherapeutic Potential. Int. J. Pharm. 2022, 618, 121605. [Google Scholar] [CrossRef]
- Dikmetas, D.N.; Yenipazar, H.; Can Karaca, A. Recent Advances in Encapsulation of Resveratrol for Enhanced Delivery. Food Chem. 2024, 460, 140475. [Google Scholar] [CrossRef]
- Harwansh, R.K.; Yadav, P.; Deshmukh, R. Current Insight into Novel Delivery Approaches of Resveratrol for Improving Therapeutic Efficacy and Bioavailability with Its Clinical Updates. Curr. Pharm. Des. 2023, 29, 2921–2939. [Google Scholar] [CrossRef]
- Ye, X.; Fung, N.S.K.; Lam, W.C.; Lo, A.C.Y. Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems. Nutrients 2024, 16, 1715. [Google Scholar] [CrossRef]
- Delmas, D.; Cornebise, C.; Courtaut, F.; Xiao, J.; Aires, V. New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. Int. J. Mol. Sci. 2021, 22, 1295. [Google Scholar] [CrossRef]
- Hu, W.H.; Zhang, X.-Y.; Leung, K.-W.; Duan, R.; Dong, T.-X.; Qin, Q.-W.; Tsim, K.W.-K. Resveratrol, an Inhibitor Binding to VEGF, Restores the Pathology of Abnormal Angiogenesis in Retinopathy of Prematurity (ROP) in Mice: Application by Intravitreal and Topical Instillation. Int. J. Mol. Sci. 2022, 23, 6455. [Google Scholar] [CrossRef]
- Uludag, G.; Hassan, M.; Matsumiya, W.; Pham, B.H.; Chea, S.; Trong Tuong Than, N.; Doan, H.L.; Akhavanrezayat, A.; Halim, M.S.; Do, D.V.; et al. Efficacy and Safety of Intravitreal Anti-VEGF Therapy in Diabetic Retinopathy: What We Have Learned and What Should We Learn Further? Expert Opin. Biol. Ther. 2022, 22, 1275–1291. [Google Scholar] [CrossRef]
- Zhu, H.; Li, B.; Huang, T.; Wang, B.; Li, S.; Yu, K.; Cai, L.; Ye, Y.; Chen, S.; Zhu, H.; et al. Update in the Molecular Mechanism and Biomarkers of Diabetic Retinopathy. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167758. [Google Scholar] [CrossRef]
- Seong, E.J.; Kim, Y.; Su, Z.-Y.; Kang, H.-T.; Lee, J.H. Combined Treatment of Metformin and Resveratrol Promotes Myogenesis Through Increased Irisin Release in C2C12 Cells. Pharm. Res. 2025, 42, 419–428. [Google Scholar] [CrossRef]
- Chung, J.Y.; Jeong, J.-H.; Song, J. Resveratrol Modulates the Gut-Brain Axis: Focus on Glucagon-Like Peptide-1, 5-HT, and Gut Microbiota. Front. Aging Neurosci. 2020, 12, 588044. [Google Scholar] [CrossRef]
- Berzack, S.; Galor, A. Microbiome-Based Therapeutics for Ocular Diseases. Clin. Exp. Optom. 2025, 108, 115–122. [Google Scholar] [CrossRef]
- Danışman, B.; Ercan Kelek, S.; Aslan, M. Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. Psychiatry Clin. Psychopharmacol. 2023, 33, 147–155. [Google Scholar] [CrossRef]
- Taurone, S.; De Ponte, C.; Rotili, D.; De Santis, E.; Mai, A.; Fiorentino, F.; Scarpa, S.; Artico, M.; Micera, A. Biochemical Functions and Clinical Characterizations of the Sirtuins in Diabetes-Induced Retinal Pathologies. Int. J. Mol. Sci. 2022, 23, 4048. [Google Scholar] [CrossRef]
- Çevik, D.; Yildirim, E.B.; Güzelmeriç, E.; Yeşilada, E. Inconsistency between Declared versus Determined Transresveratrol and/or Quercetin Contents in Food Supplements. J. Res. Pharm. 2024, 28, 2078–2091. [Google Scholar] [CrossRef]
- Khattar, S.; Khan, S.A.; Zaidi, S.A.A.; Darvishikolour, M.; Farooq, U.; Naseef, P.P.; Kurunian, M.S.; Khan, M.Z.; Shamim, A.; Khan, M.M.U.; et al. Resveratrol from Dietary Supplement to a Drug Candidate: An Assessment of Potential. Pharmaceuticals 2022, 15, 957. [Google Scholar] [CrossRef] [PubMed]
Pathogenic Mechanism | Key Molecular Players | Pathophysiological Impact on Retina | Clinical Relevance | Therapeutic Effects of Resveratrol |
---|---|---|---|---|
Oxidative stress and mitochondrial dysfunction | ROS, ETC, PARP, NAD+, GAPDH, Nrf2, ARE | -Hyperglycaemia-induced ROS damages mitochondria and DNA, overactivates PARP, impairs NAD+/energy metabolism, and suppresses Nrf2-mediated antioxidant responses, leading to endothelial/pericyte dysfunction | -Precedes clinical DR signs -Correlates with early microvascular damage -Therapeutic window for antioxidants. | -Activates Nrf2/ARE pathway, enhances HO-1, NQO1 expression, and stimulates AMPK/SIRT1/PGC-1α signalling to reduce ROS, -Preserve mitochondrial function -Inhibit apoptosis. |
Chronic inflammation and cytokine activation | NF-κB, TNF-α, IL-1β, IL-6, MCP-1, ICAM-1 | NF-κB activation increases inflammatory cytokines, microglial activation, BRB breakdown, and leukostasis; causes oedema and capillary damage | -Drives NPDR and PDR associated with retinal thickening and macular oedema -Rationale for corticosteroids and anti-inflammatory therapy | -Inhibits NF-κB signalling -Downregulates TNF-α, IL-1β, IL-6, and MCP-1 -Suppresses microglial activation -Blocks NLRP3 inflammasome via TXNIP inhibition |
Neurodegeneration and apoptosis | RGCs, Müller cells, glutamate, NMDAR, Ca2+, autophagy proteins | RGC apoptosis, RNFL thinning, excitotoxicity via glutamate/NMDAR → Ca2+ influx -Impaired autophagy leads to neuroinflammation and cell loss | -Occurs early, even before vascular damage -Causes visual dysfunction -Supports neuroprotective strategies | -Upregulates SIRT1 and promotes autophagy (LC3-II, Beclin-1) -Activates Nrf2 for neuroprotection, -Maintains Müller cell function |
Pathological angiogenesis | VEGF, IGF-1, PKC, ICAM-1, HIF-1α | -Hypoxia and hyperglycaemia upregulate VEGF/HIF-1α, leading to neovascularisation and BRB breakdown -ICAM-1 promotes leukocyte adhesion. | -Hallmark of PDR and DME -Treated with anti-VEGF agents -Signs include haemorrhages, exudates, neovascularisation | -Downregulates VEGF and HIF-1α -Inhibits EndMT via PKC/NOX pathway -Reduces endothelial proliferation -Modulates nitric oxide signaling |
Gut–retina axis dysregulation | gut microbiota, LPS, SCFAs, systemic cytokines | -Dysbiosis increases gut permeability and systemic LPS -Elevating inflammatory mediators that disrupt the BRB and exacerbate DR | -Emerging target in DR management: potential role for microbiome-modulating interventions | -Indirectly modulates gut microbiota and systemic inflammation -Enhances intestinal barrier integrity -Attenuates LPS-driven retinal inflammation (supported by systemic anti-inflammatory effects) |
Formulation Type | Formulation Composition | Physicochemical Characteristics | Indication | Model | Study Type | Advantages | Disadvantages | Author |
---|---|---|---|---|---|---|---|---|
Polymeric nanoparticles (PEGylated nanoparticles) | RSV, Chitosan—mucoadhesive properties, Sodium tripolyphosphate (TPP)—cross-linker, Polyethene glycol (PEG 2000, 4000, 6000)—surface modifier | Particle size: without PEG: ~14 nm, with PEG: up to ~755 nm (depending on PEG MW and concentration) Zeta potential: Decreased with PEGylation (enhanced biocompatibility) PDI: Increased with PEG Encapsulation efficiency (EE): Up to 91.89% | Glaucoma | Ex vivo rabbit cornea Rabbits | In vitro studies: Drug release: dialysis bag method (12–14 kDa cut-off), PBS pH 7.4 as release medium, magnetic stirring at 600 rpm, temperature 37 °C Initial burst release (~45%), followed by sustained release (up to 12 h), Higher MW PEG = slower release HET-CAM Assay (Ocular Irritation Test) RES-loaded CS NPs: slight irritation after 8 h, RES-loaded PEGylated CS NPs: non-irritant up to 24 h, Conclusion: PEG improves ocular tolerance Ex vivo permeability studies: (excised rabbit cornea) Ex vivo transcorneal permeation, Model: Rabbit cornea with 2–4 mm surrounding sclera, System: Side-by-side Franz diffusion cell Permeability results: PEG-modified CS NPs: 78.34 ± 0.39% permeation, CS NPs: 52.07 ± 1.24%, RES dispersion: significantly less Mechanism: PEGylation enhances transcellular transport, CS increases mucoadhesion and paracellular permeability In vivo studies: Rabbits Ocular Distribution (FITC-labelled study) CS NPs: Accumulate on surface epithelium, PEG-CS NPs: Penetrate deep into cornea and reach retinal choroid PEGylation facilitates deeper tissue penetration | High entrapment efficiency Sustained and controlled drug release Improved corneal permeability and retinal targeting Non-irritant, iso-osmolar, and pH-compatible with the eye Effective IOP reduction over time Reaches the posterior segment (retinal choroid) | Particle size increases with PEG (may affect long-term stability) Entrapment efficiency and drug loading decrease with high PEG concentration The in vivo evaluation was limited to normotensive rabbit models, without validation in a disease-specific glaucoma model | Saravanakumar P et al. (2016) [114] |
Polymeric nanogel | RSV, High Molecular Weight Chitosan (300 kDa), extracted from Pleoticus muelleri shrimp waste Sodium, Tripolyphosphate (TPP): Polyanionic cross-linker, Water, Ultrapure grade | Particle Size (DLS):~144 nm PDI: Low, indicating homogeneity Zeta Potential: +32 mV → indicates good colloidal stability Morphology: Spherical, compact structures (TEM) Encapsulation Efficiency (EE): 59 ± 1% Photostability of RSV: Free RSV degraded 29–36% after UV exposure, HCS reduced degradation to ~17% | Non-specific (generally eye diseases) | Retinal Pigment Epithelial cells (RPE) (ARPE-19 cells) | In vitro studies: Model: ARPE-19 human retinal pigment epithelial cells MTT Assay (cytotoxicity): No toxicity up to 1000 µg/mL for any component Cell Morphology: Maintained, as shown by phase-contrast microscopy Inflammatory Response (IL-6 and IL-8 ELISA): No pro-inflammatory response observed (unlike LPS positive control) Cellular Uptake and Colocalisation | Biocompatible, non-toxic, and non-inflammatory to retinal cells High RSV encapsulation efficiency and strong UV protection Suitable size and stability for ocular delivery (~144 nm, +32 mV) Enables intracellular delivery by escaping lysosomal degradation Eco-friendly formulation using natural chitosan from shrimp waste | No in vivo testing performed Limited data on long-term stability and release kinetics Fragile structure under high-force processing (e.g., ultracentrifugation) | Solana Buosi F et al. (2020) [115] |
Micellar solution | RSV, Carrier: Soluplus® (Sol), PBS (pH 6.8) Optimal formulation ratio: 18:1 (Sol: RSV by weight) | Size: ~50.1 nm PDI: 0.081 ± 0.002 Zeta Potential: ~−3.5 mV Entrapment Efficiency: ~98.8% pH of final solution: 6.8 | Treatment of corneal injuries and other inflammatory diseases of the anterior segment of the eye. | Human corneal epithelial cells (HCECs) Mice Rabbits | In vitro studies: Cytotoxicity: MTT assay on HCECs Cellular uptake: Using Coumarin-6 labelled Sol-Res, observed via fluorescence microscopy and quantified Chemical stability: Degradation under light (photostability); half-life improved from ~117 to ~441 min Storage stability: 12 weeks at 4 °C with >92% Res retention In vivo studies: Ocular tolerance test: Modified Draize test in rabbits with histopathological examination Corneal permeation study: Fluorescence microscopy and HPLC analysis in mouse corneas Corneal wound healing assay: n-heptanol injury model in mice with RT-PCR analysis of cytokines | Improved RSV Stability: Micelle encapsulation significantly increased photostability and chemical stability High Entrapment Efficiency: Nearly complete encapsulation of Res Enhanced Ocular Penetration: Better permeation into corneal epithelium and stroma than free Res Excellent Biocompatibility: Promoted HCEC proliferation, no cytotoxicity observed Strong Wound Healing Effect: Faster epithelial recovery compared to PBS or free Res Anti-inflammatory and Antioxidant Activity: Downregulation of pro-inflammatory cytokines (IL-1β, IL-6, TNFα, COX-2) and upregulation of HO-1, SOD, and SIRT1 | Penetration limited to epithelium and stroma: Micelle-associated fluorescence did not reach corneal endothelium Long-term storage stability not fully established: Only short-term data (12 weeks) under refrigerated conditions Formulation colour and scale-up feasibility briefly noted but not deeply evaluated | Li M et al. (2020) [116] |
PLGA nanoparticles | RSV, Polymer: PLGA, Acetone (solvent), distilled water, Tween 80 Fluorescent marker: Coumarin-6 | Particle size: 102.7 ± 2.8 nm (by DLS); Zeta potential: −47.30 ± 0.9 mV PDI: 0.095 ± 0.003 Entrapment efficiency: 65.21 ± 2.2% Drug loading: 8.3 ± 0.4% Morphology: Spherical, uniform, smooth surface (TEM) Release profile: Sustained release; ~16% in first hour, ~83.4% after 72 | Age-Related Macular Degeneration | Retinal Pigment Epithelial cells (RPE) (ARPE-19 cells) | In vitro studies: Model: ARPE-19 human retinal pigment epithelial cells Cytotoxicity: MTT assay at 24 h and 48 h—good biocompatibility (>90% viability for RES-NPs) Cellular uptake: Confocal microscopy using Coumarin-6—confirmed internalization after 2 h Anti-angiogenic activity: VEGF expression measured by ELISA—significant reduction at 24 h and 48 h compared to control | Sustained release allows for prolonged drug availability Reduced VEGF expression, indicating potential anti-angiogenic activity Biocompatibility confirmed by high cell viability Enhanced cellular uptake via endocytosis Minimally invasive potential for intravitreal injection | Study limited to in vitro evaluation No in vivo pharmacokinetic or biodistribution data | Bhatt P et al. (2020) [117] |
Mucoadhesive nanoparticles | RSV, Polymers: Lecithin, Chitosan | Particle size: 163.3 nm PDI: 0.254 Zeta potential: +46.4 mV Encapsulation efficiency (EE): 97.03% Cumulative drug release: 96.87% Release kinetics: Zero-order (R2 = 0.9897) | Non-specific (generally eye diseases) | The New Zealand albino rabbits (female, weight range of 2.8–3.1 kg) | In vitro studies: Drug release study—Dialysis membrane method under simulated tear fluid conditions Release kinetics—Analysed using zero-order, first-order, and Higuchi models Mucoadhesion evaluation—Turbidimetric assay using mucin dispersion In vivo studies: Ocular pharmacokinetics—Topical administration in rabbits with subsequent measurement of drug levels in aqueous humour using HPLC Pharmacokinetic parameters assessed: AUC0–6, MRT Comparison with plain RSV solution to demonstrate improved ocular retention | High entrapment efficiency (97%) ensures maximum drug loading Mucoadhesive properties prolong retention on the ocular surface Positive zeta potential (+46.4 mV) enhances interaction with negatively charged mucins Sustained drug release over time (zero-order kinetics) Improved bioavailability demonstrated by 6.44× increase in AUC0–6 and 2.46× increase in MRT compared to RSV solution | Lack of long-term stability studies for the final formulation In vivo testing limited to healthy rabbits—no disease models (e.g., dry eye, inflammation, diabetic retinopathy) were used No evaluation of potential ocular irritation or toxicity beyond pharmacokinetics Scale-up potential and reproducibility in industrial conditions not discussed | Saha M et al. (2021) [119] |
Lamellar liquid crystalline gel (gel-based eye drops) | RSV, Matrix components: Glyceryl monooleate (GMO)—lipid phase, Ethanol—solvent (small amount), Water—aqueous phase | Semisolid, transparent or slightly opaque gel Lamellar liquid crystalline gel (confirmed by PLM & SAXS) RSV content: 4.4 mg/g (high drug loading) Crystallinity—Amorphous dispersion (confirmed by PXRD) Viscosity behaviour: Exhibits viscoelastic properties; stable under <100% strain Release profile: Sustained release; ~67% over 7 h Ethanol content ~0.6 g per 1 g gel, structurally embedded with limited contact Mucoadhesiveness: High, enabling prolonged corneal retention (≥90 min) Size (microstructure): Lamellar bilayers; not nanoparticulate—visible gel phase | Corneal neovascularisation (CNV) | Human corneal epithelial cells (HCECs) Ex vivo rabbit cornea male Sprague-Dawley rats | In vitro studies: Drug release study—in saline solution, analysed by HPLC (0–7 h) Cytotoxicity (CCK-8 assay)—on HCEC cells at various concentrations Ex vivo studies: Franz diffusion cell with excised rabbit corneas, Comparison of permeation: ROLGs vs. RHSs In vivo studies (in rats): OCT (Optical Coherence Tomography)—monitoring gel retention on the ocular surface, Sodium fluorescein test—assessment of corneal epithelial integrity Histological analysis (H&E staining)—corneal structure after treatment CNV model (Corneal Neovascularisation, alkaline burn injury)—evaluation of therapeutic effect IHC (Immunohistochemistry)—analysis of VEGF expression in corneal tissue Neovascular area measurement—ImageJ software and slit-lamp imaging | High drug loading capacity Stable lamellar gel structure Enhanced corneal penetration (3× more than suspension) Non-invasive, once-daily administration Safe for the corneal epithelium Significant anti-VEGF and anti-CNV activity Promotes corneal healing and reduces inflammation | Study performed only in rats Long-term stability under ambient conditions was not discussed Ethanol—required for RSV solubilization and structurally embedded in lamellar gel (limited direct contact) Residual ethanol presents a potential risk with prolonged use, so further safety evaluation is recommended for long-term application | Minshu Li et al. (2021) [120] |
Cyclodextrin-based nanoparticles | Quercetin (QUE)/RSV; Cyclodextrins (CDs): β-CD, HPβ-CD, RAMEB; Hyaluronic acid (HA) Formulation types: -Binary complexes (QUE/CD and RSV/CD) -Ternary complexes (QUE/CD/HA and RSV/CD/HA) | Particle size RSV/CD/HA: ~82 nm QUE/CD/HA: ~103 nm Spherical nanoaggregates | Dry eye disease | Human Corneal Epithelial Cells (HCECs) Conjunctival epithelial cell (IM-ConjEpi) lines | In vitro studies: Assessment of cytoskeletal morphology and cell viability In vitro ROS assay: Evaluation of antioxidant activity (DCF-DA method) | Significantly improved solubility and chemical stability of RSV and QUE in complexes Formation of stable nanoaggregates suitable for ophthalmic delivery Strong antioxidant effect (>95% intracellular ROS scavenging) in both cell lines No cytotoxic effects observed on HCE and IM-ConjEpi cells Promising potential for topical treatment of Dry Eye Disease (DED) | In vitro study only—no in vivo data on efficacy or ocular penetration Short-term stability assessment—long-term characterization is needed Further validation required through clinical studies or dry eye models | Krstić L et al. (2022) [121]. |
Micellar solution | RSV, Carriers: Pluronic® F127 (Poloxamer 407)—amphiphilic copolymer Casein (0.1%)—milk protein, Phosphate buffer (pH 7), ethanol, water, propylene glycol Formulations: Single micelles: Pluronic® F127 (5–15 mM) Mixed micelles: Pluronic® F127 + casein | Physicochemical Properties Particle size: 2.4–32.7 nm Zeta potential: Pluronic® micelles: near 0 mV Mixed micelles: –0.1 to –2.2 mV (depending on composition) Formulation pH: 7.0–7.3 RSV solubility: Increased up to 50–57 times (up to 9.36 mg/mL) Stability: Stable for 30 days at 4 °C Rheology: Sol-to-gel transition at 23.9–27.1 °C Mucoadhesion: Significantly increased on the corneal surface | Non-specific (generally eye diseases) | Ex vivo porcine eye globes Rabbits | In vitro/in vivo safety HET-CAM assay: No irritation observed in any formulation Zebrafish FET test: 5 and 10 mM Pluronic®: safe, 15 mM and mixed micelles: mildly toxic Antibacterial activity: Active against S. aureus and P. aeruginosa, stronger effect with higher RSV concentrations, Pluronic® alone showed a mild antibacterial effect Ex vivo permeability (porcine cornea and sclera) Higher accumulation in the sclera than in the cornea, Mixed micelles: slower onset and lower permeability Single micelles (P10R): better permeation and tissue uptake In vivo studies in rabbits: single micelles—good ocular tolerance (no irritation) Delivery of RSV to both anterior and posterior eye segments, detectable RSV in tears, cornea, sclera, and retina even 8 h post-instillation | High RSV solubilization and stability Physiological pH and non-irritant Easy administration (liquid-to-gel transition) Effective tissue penetration and prolonged retention Antioxidant and antibacterial activity Potential alternative to preservatives in eye drops | Casein-containing mixed micelles showed increased toxicity in zebrafish embryos Lower scleral permeability with mixed micelles Further long-term safety evaluation needed for mixed systems | Vivero-Lopez M et al. (2022) [122] |
Chitosan-coated liposomes | RSV, Core lipid carrier: Flexible liposomes prepared using egg yolk phospholipid (EYPC), cholesterol, and sodium cholate Surface coating: TMC, Stabiliser: Sodium cholate for liposome flexibility | Size: ~92.13 ± 0.70 nm (before TMC coating) PDI: 0.223 ± 0.026 Zeta potential: Positive after TMC coating Shape: Uniform spherical shape confirmed by TEM | Blue-light-induced retinal damage | Retinal Pigment Epithelial cells (RPE) (ARPE-19 cells) Mices | In vitro studies: Cell model: ARPE-19 human retinal epithelial cells Cell viability under oxidative stress (H2O2 challenge) Mitochondrial membrane potential protection (JC-1 assay) Uptake and distribution studies In vivo studies: Animal model: Mice subjected to blue-light-induced retinal damage (Retinal targeting via fluorescent tagging), Histopathology (frozen retinal sections), safety and efficacy through tissue observation and damage attenuation) | Improved ocular penetration: Positively charged TMC enhanced adhesion to ocular tissues and deeper retinal penetration. Effective delivery to the fundus: Confirmed RSV delivery to the posterior segment. Protection against oxidative stress: Reduced blue-light-induced mitochondrial damage and retinal cell injury. Stability: Formulations remained stable in artificial tear fluid. | Lack of long-term in vivo data: Chronic toxicity or prolonged efficacy was not addressed. Scalability and formulation complexity: Use of TMC and flexible liposomes may pose challenges in mass production. Exact RSV release kinetics and in vivo bioavailability were not deeply explored | Gu H et al. (2023) [123] |
In-Situ Thermoresponsive Hydrogel | RSV, Carrier polymer: PLGA-PEI, Stabiliser: Polysorbate 80 Gel matrix: Poloxamer 407 (20% w/v), thermoresponsive hydrogel | particle size: 189.0 ± 3.2 nm Zeta potential: +21.5 ± 1.8 mV Entrapment efficiency (EE): 83.6 ± 1.7% Gelation temperature: ~32 °C (in situ gelation) Release profile: 68% of RSV released within 24 h (sustained release) Rheology: Increased viscosity after gelation (solid-like behaviour) | Dry eye disease | Human corneal epithelial cells (HCECs) Ex vivo porcine eye globes | In vitro studies: Model: HCECs under hyperosmotic stress Tests performed: Cell viability (MTT assay) Apoptosis detection (DAPI staining, immunofluorescence for BAX/BCL-2) Oxidative stress analysis: ROS and lipid peroxidation (MDA) Gene expression (qRT-PCR): IL-1β, IL-6, TNF-α, SIRT1 Western blotting: SIRT1 and NF-κB protein expression Cellular uptake of fluorescently labelled nanoparticles Ex vivo studies: Porcine eye—confirmed penetration and retention on the corneal surface via confocal microscopy | In situ gelation provides prolonged residence time on the ocular surface Cationic nanoparticles enhance mucoadhesion and epithelial penetration Strong antioxidant and anti-inflammatory activity—reduced ROS, MDA, and pro-inflammatory cytokines Biocompatible—no cytotoxic effects observed in HCECs Potential for reduced dosing frequency in Dry Eye Disease treatment | Lack of in vivo pharmacodynamic and pharmacokinetic data Long-term stability of the hydrogel under storage conditions not evaluated Possible cytotoxicity of PEI at higher concentrations (not observed in this study) Further validation required in animal models and clinical settings | De Luca I et al. (2023) [124] |
Microneedles | RSV, Nanoparticle core: PLGA, Targeting shell: RPE cell membrane, Microneedle matrix: Optional excipients/dyes (for tracking): Rhodamine B, Coumarin-6 | Uncoated RSV-loaded nanoparticles: 156.63 ± 1.95 nm RPE-coated nanoparticles (RmNP-RSV): 169.23 ± 1.43 nm The ~15 nm increase reflects the successful coating with RPE membrane vesicles. | Age-related macular degeneration | Retinal Pigment Epithelial cells (RPE) (ARPE-19 cells) Rabbits | In vitro studies: Cell uptake studies confirmed enhanced internalisation of RmNP-RSV in RPE cells. Antioxidant and anti-inflammatory assays showed reduction of ROS and pro-inflammatory cytokines such as IL-6 and IL-8 in ARPE-19 cells. In vivo studies: The rabbit model of NaIO3-induced dry AMD was used. Administration of MN/RmNP-Res showed significant preservation of retinal architecture, reduced oxidative stress and inflammation, and reduced retinal degeneration. Imaging (OCT, fundus photography) and histological analysis (H&E staining) confirmed therapeutic benefit. | Targeted delivery to retinal tissue via homologous RPE membrane coating Minimally invasive, painless, and avoids complications of intravitreal injections Efficient penetration of the blood–retinal barrier Enhanced RSV bioavailability and tissue retention Improved safety profile and reduced systemic exposure | The study was limited to animal models; clinical translation requires further validation. Manufacturing complexity due to the need for RPE membrane extraction and microneedle fabrication The stability of biomimetic coatings under storage conditions was not addressed | Liu Y et al. (2023) [128] |
Nanosuspension | CMC, RSV, Tween 20, Span 20, ethanol DMSO, glycerin | Particle size 304 ± 81 nm PDI: 0.225 ± 0.036 Morphology: Spherical | Diabetic Retinopathy | Human microvascular retinal endothelial cells (HMRECs) | In vitro studies: Cytotoxicity—MTT assay Proliferation -Cell proliferation assay Migration—Scratch wound healing assay | No cytotoxic effect at concentration < 18.75 µM Significantly reduces cell proliferation and migration at 37.5 µM → clinically relevant for inhibiting neovascularisation in diabetic retinopathy Physically stable nanosuspension with homogeneous particle size Topical administration—non-invasive alternative to injections | In vitro study only—results based solely on cell models No in vivo testing—actual retinal penetration remains unknown Short-term evaluation—lacks data on long-term stability or pharmacokinetics | Gonzales-Perez J et al. (2024) [126] |
SNEDDS | RSV/Melatonin (MLT); SNEDDS excipients: Capryol 90 (Oil phase), Kolliphor RH 40 (Surfactant), Transcutol HP (Co-surfactant:) | Droplet size: 42–85 nm PDI <0.2 pH, viscosity, dilution stability Emulsification time: ~40 s pH/osmolarity: Suitable for ocular use (pH 6.9–7.5; 0.281–0.320 Osm/kg) | Non-specific (posterior eye diseases) | Rabbit corneal epithelial cell line (SIRC) | In vitro studies: Solubility and dissolution of RSV and MLT tested under physiological pH Cytocompatibility: SIRC Antioxidant activity evaluated under oxidative stress conditions | Self-nanoemulsifying—forms a stable nanoemulsion upon contact with the tear fluid Ultra-small droplets (<50 nm): allow deep ocular penetration, potentially even beyond anterior segment Rapid emulsification: ~40 s ensures quick action before tear clearance High loading efficiency for both RSV and MEL (>90%) Ocular-friendly properties: clear, non-irritating pH/osmolarity and maintained viscosity Promising safety profile: cytocompatible with corneal cells | In vitro only: no in vivo or clinical efficacy data yet Unknown posterior distribution: actual delivery to retina/vitreous not tested Short-term stability tests only: longer-term performance in real-world conditions remains unassessed Mucoadhesion minimal: slight interaction with mucin noted, but may need enhancement for prolonged retention | Zingale E et al. (2024) [125] |
NLC | RSV, Solid lipid: Glyceryl monostearate, Liquid lipid: Soybean oil, Surfactants: Tween 80, Poloxamer 407 Aqueous phase: Purified water | Particle size (DLS): 104.47 ± 13.32 nm PDI = 0.394 ± 0.070 Zeta potential (ZP): –1.63 ± 0.29 mV Entrapment efficiency (EE): 85.88 ± 0.32% | Non-specific (generally eye diseases) | Goat cornea | In vitro studies: Release testing: Franz diffusion cell using simulated tear fluid/methanol (1:1), maintained at 38 °C. Release profile: Initial burst release followed by sustained release over 24 h Ex vivo studies: Model: Isolated goat cornea in Franz diffusion cell setup—Improvement over suspension: Over 11-fold enhancement in transcorneal permeation | Nanometric size enables effective corneal penetration High drug entrapment efficiency Sustained release behaviour extends drug residence time Significantly enhanced bioavailability and corneal absorption Potential for reduced dosing frequency | No in vivo testing conducted Mildly negative zeta potential may affect long-term colloidal stability UV spectroscopy has limited sensitivity compared to chromatographic methods | Chakole CM et al. (2024) [118] |
Protein-based polymeric drug delivery systems | Active compounds: Quercetin (QUE), RSV, or their combination Polymeric carrier: Elastin-like polymers (ELPs) | Dry form: Microparticles In physiological conditions (37 °C): Nanoparticles with an average diameter of QUE-loaded: 56.7 ± 1.0 nm RSV-loaded: 61.5 ± 2.6 nm | Dry eye disease | Human Corneal Epithelial Cells (HCECs) Ex vivo porcine eye globes | In vitro studies: Biocompatibility HCECs Intracellular antioxidant activity (ROS scavenging assays) Cellular uptake tracking using dual fluorescent labelling Ex vivo: corneal targeting in porcine eye globes (time-dependent delivery to corneal epithelium) | Eco-friendly production method (no organic solvents) Stimuli-responsive transformation enabling improved bioavailability Sustained release of polyphenols Excellent biocompatibility and enhanced intracellular delivery Efficient, targeted delivery to the corneal epithelium | No in vivo studies reported Pharmacokinetic parameters and long-term stability data are not provided | Krstić L et al. (2025) [127] |
Therapy | Mechanism of Action | Advantages | Limitations | Complementary or Enhancing the Role of Resveratrol |
---|---|---|---|---|
Anti-VEGF Agents (ranibizumab, aflibercept, bevacizumab) | -Neutralise VEGF to inhibit neovascularisation and reduce vascular permeability | -Clinically validated -Effective in PDR and DME -Reduces macular oedema and vision loss | -Requires repeated intravitreal injections -Limited penetration in early-stage DR -Does not address neuroinflammation or oxidative stress | -Suppresses VEGF and HIF-1α via multi-pathway modulation (Nrf2, AMPK, SIRT1) -Acts on the upstream angiogenic triggers -Potential for oral or topical use -Longer-term neurovascular protection without invasive procedures |
Laser Photocoagulation | -Ablation of ischemic retinal tissue to reduce VEGF production and prevent neovascularisation | -Proven efficacy in PDR -Reduces the risk of severe vision loss | -Causes permanent retinal damage; -Loss of peripheral and night vision -Not effective for DME or neurodegeneration | -Offers non-destructive, cytoprotective, and neurovascular preservation -Inhibits VEGF without damaging the viable retinal tissue |
Intravitreal Corticosteroids (triamcinolone acetonide, dexamethasone implants) | -Suppresses inflammatory cytokines and stabilises the blood–retinal barrier | -Effective in reducing DME and retinal inflammation -Sustained-release options available | -Associated with ocular hypertension -Cataract formation -Repeated injections increase the risk | -Inhibits NF-κB and NLRP3 inflammasome pathways -Provides anti-inflammatory protection with a lower risk of ocular side effects |
Surgical Intervention—vitrectomy | -Removes vitreous haemorrhage or tractional membranes to restore retinal architecture | -Effective in resolving complications of advanced DR (TRD, VH) | -Highly invasive -Does not prevent progression or target early mechanisms | -Targets upstream pathophysiological pathways to potentially delay or prevent surgical indications |
Emerging Systemic Therapies (RAS inhibitors, fenofibrate, anti-inflammatory agents) | -Modulate systemic risk factors: blood pressure, dyslipidaemia, and systemic inflammation | -Reducing the progression of DR -Oral administration -Systemic disease control | -Limited direct retinal bioavailability -Insufficient neuroprotection | -Exerts systemic and retinal effects through AMPK, SIRT1, and anti-inflammatory pathways -Synergistic with systemic agents |
Resveratrol | -Multifunctional: antioxidant (Nrf2/HO-1), anti-inflammatory (NF-κB, NLRP3), anti-angiogenic (VEGF/HIF-1α), neuroprotective (SIRT1, AMPK) | -Addresses multiple early DR mechanisms -Neurovascular protection -Non-invasive potential -Multi-targeted effects | -Low aqueous solubility and systemic bioavailability -Dose standardisation needed -Limited clinical validation | -Promising adjunct or preventive agent -Emerging nanoformulations and implants aim to overcome pharmacokinetic challenges |
Pathophysiological Aspect | Scientific Basis | Mechanism of Action | Proposed Clinical Strategy | Anticipated Therapeutic Benefit |
---|---|---|---|---|
Vascular Dysfunction and BRB Breakdown | -Hyperglycaemia- induced VEGF overexpression and oxidative stress led to BRB disruption, vascular leakage, and neovascularisation. | Downregulates VEGF and ICAM-1 -Promotes pericyte survival -Stabilises endothelial junctions | -Adjunct low-dose anti-VEGF therapy -OCTA and serum VEGF monitoring. | -Reduced injection burden -Enhanced vascular integrity -Delayed progression to PDR |
Neurodegeneration and RGC Loss | -Early DR involves retinal ganglion cell apoptosis, synaptic loss, and neuroinflammation | -Activates SIRT1 and AMPK -Enhances autophagy -Suppresses microglial activation | Combined use with neuroprotectives (citicoline, brimonidine) -Biomarker-driven personalisation | -Improved visual function and RGC preservation in early DR stages |
Gut–Retina Axis Dysregulation | -Diabetes-associated dysbiosis increases systemic inflammation and metabolic endotoxemia, worsening retinal damage | -Modulates gut microbiota -Reduces LPS and systemic cytokines -Activates Nrf2 | -Co-administration with prebiotics/ probiotics -Microbiome-based patient stratification | -Reduced systemic inflammation -Improved metabolic control and DR outcomes |
Limited Bioavailability and Retinal Penetration | -Rapid metabolism and low solubility limit the systemic and ocular efficacy of resveratrol | -Nanoencapsulation, intravitreal -Sustained-release systems -Prodrug strategies | -Development of PEGylated nanoparticles -Ocular pharmacokinetics and biodistribution studies | -Increased intraocular drug levels -Prolonged therapeutic effect -Reduced dosing frequency |
Lack of Standardisation in Clinical Translation | -Variability in dose, endpoints, and trial design impedes clinical applicability | Targets multiple pathways -Potential synergy with standard DR treatments | -Standardised protocols -Biomarker-based stratification -Multicentre RCTs. | Enhanced evidence base -Personalised medicine integration -Adopting the guidelines |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaštelan, S.; Konjevoda, S.; Sarić, A.; Urlić, I.; Lovrić, I.; Čanović, S.; Matejić, T.; Šešelja Perišin, A. Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges. Molecules 2025, 30, 3262. https://doi.org/10.3390/molecules30153262
Kaštelan S, Konjevoda S, Sarić A, Urlić I, Lovrić I, Čanović S, Matejić T, Šešelja Perišin A. Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges. Molecules. 2025; 30(15):3262. https://doi.org/10.3390/molecules30153262
Chicago/Turabian StyleKaštelan, Snježana, Suzana Konjevoda, Ana Sarić, Iris Urlić, Ivana Lovrić, Samir Čanović, Tomislav Matejić, and Ana Šešelja Perišin. 2025. "Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges" Molecules 30, no. 15: 3262. https://doi.org/10.3390/molecules30153262
APA StyleKaštelan, S., Konjevoda, S., Sarić, A., Urlić, I., Lovrić, I., Čanović, S., Matejić, T., & Šešelja Perišin, A. (2025). Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges. Molecules, 30(15), 3262. https://doi.org/10.3390/molecules30153262