Copper(I) Complexes with Terphenyl-Substituted NPN Ligands Bearing Pyridyl Groups: Synthesis, Characterization, and Catalytic Studies in the S-Arylation of Thiols
Abstract
1. Introduction
2. Results
2.1. Synthesis and Properties of Terphenyl-Substitued NPN Ligands Bearing Pyridyl Groups
2.2. Synthesis and Characterization of Cu(I) Complexes with NOPONXyl2, NOPONXyl2-Me2, and N2PN2Xyl2
2.3. Catalytic Studies of the S-Arylation of Thiols
3. Materials and Methods
General Catalytic Procedure for the S-Arylation of Thiols with Aryl Iodides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14. [Google Scholar] [CrossRef] [PubMed]
- Miękus, N.; Marszałek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C.; Świergiel, A.H. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules 2020, 25, 3804. [Google Scholar] [CrossRef]
- Ruhee, R.T.; Roberts, L.A.; Ma, S.; Suzuki, K. Organosulfur Compounds: A Review of Their Anti-inflammatory Effects in Human Health. Front. Nutr. 2020, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Milzani, A.; Dalle-Donne, I.; Giannerini, F.; Giustarini, D.; Lusini, L.; Colombo, R.; Di Simplicio, P. Different Metabolizing Ability of Thiol Reactants in Human and Rat Blood. J. Biol. Chem. 2001, 276, 7004. [Google Scholar] [CrossRef]
- Raghavan, S.; Krishnaiah, V.; Sridhar, B. Asymmetric Synthesis of the Potent HIV-Protease Inhibitor, Nelfinavir. J. Org. Chem. 2010, 75, 498. [Google Scholar] [CrossRef]
- Alcaraz, M.; Atkinson, S.; Cornwall, P.; Foster, A.C.; Gill, D.M.; Humphries, L.A.; Keegan, P.S.; Kemp, R.; Merifield, E.; Nixon, R.A.; et al. Efficient Syntheses of AZD4407 via Thioether Formation by Nucleophilic Attack of Organometallic Species on Sulphur. Org. Process Res. Dev. 2005, 9, 555. [Google Scholar] [CrossRef]
- Gao, W.C.; Shang, Y.Z.; Chang, H.H.; Li, X.; Wei, W.L.; Yu, X.Z.; Zhou, R. N-Alkynylthio Phthalimide: A Shelf-Stable Alkynylthio Transfer Reagent for the Synthesis of Alkynyl Thioethers. Org. Lett. 2019, 21, 6021. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Baishya, G. Green Protocol for Conjugate Addition of Thiols to α,β-Unsaturated Ketones Using a [Bmim]PF6/H2O System. J. Org. Chem. 2003, 68, 7098. [Google Scholar] [CrossRef]
- Reeves, J.T.; Camara, K.; Han, Z.S.; Xu, Y.; Lee, H.; Busacca, C.A. The Reaction of Grignard Reagents with Bunte Salts: A Thiol-Free Synthesis of Sulfides. Org. Lett. 2014, 16, 1196. [Google Scholar] [CrossRef] [PubMed]
- Kibriya, G.; Mondal, S.; Hajra, A. Visible-Light-Mediated Synthesis of Unsymmetrical Diaryl Sulfides via Oxidative Coupling of Arylhydrazine with Thiol. Org. Lett. 2018, 20, 7740. [Google Scholar] [CrossRef]
- Eichman, C.C.; Stambuli, J.P. Transition metal catalyzed synthesis of aryl sulfides. Molecules 2011, 16, 590. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, A. Advances in transition-metal catalyzed thiotherification reactions of aromatic compounds. Tetrahedron 2016, 72, 4758. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Ananikov, V.P. Transition-metal-matalyzed C-S, C-Se, and C-Te bond formations via cross-coupling and atom-economic addition reactions. Achievements and challenges. Chem. Rev. 2022, 122, 16110. [Google Scholar] [CrossRef]
- Dunleavy, J. Sulfur as a catalyst poison. Platin. Met. Rev. 2006, 50, 110. [Google Scholar] [CrossRef]
- Song, C.S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 2003, 86, 211. [Google Scholar] [CrossRef]
- Borgna, A.; Garetto, T.F.; Monzon, A. Modelling of sulfur deactivation of naphtha-reforming catalysts Structure sensitivity in cyclopentane hydrogenolysis. J. Chem. Soc. Faraday Trans. 1997, 93, 2445. [Google Scholar] [CrossRef]
- Feng, T.; Wang, H.; Sun, F.; Li, Y.; Fu, X.; Jin, K. A highly efficient and widely functional-group-tolerant catalyst system for copper(I)-catalyzed S-arylation of thiols with aryl halides. Tetrahedron 2009, 65, 9737. [Google Scholar] [CrossRef]
- Kondo, T.; Mitsudo, T. Metal-Catalyzed Carbon−Sulfur Bond Formation. Chem. Rev. 2000, 100, 3205. [Google Scholar] [CrossRef]
- Kosugi, M.; Shimizu, T.; Migita, T. Reactions of aryl halides with thiolate anions in the presence of catalytic amounts of tetrakis(triphenylphosphine)palladium Preparation of aryl sulfides. Chem. Lett. 1978, 7, 13. [Google Scholar] [CrossRef]
- Chen, Z.-W.; Bai, R.; Annamalai, P.; Badsara, S.S.; Lee, C.-F. The journey of C–S bond formation from metal catalysis to electrocatalysis. New J. Chem. 2022, 46, 15. [Google Scholar] [CrossRef]
- Palomo, C.; Oiarbide, M.; López, R.; Gómez-Bengoa, E. Phosphazene bases for the preparation of biaryl thioethers from aryl iodides and arenethiols. Tetrahedron Lett. 2000, 41, 1283. [Google Scholar] [CrossRef]
- Murashkina, A.V.; Mitrofanov, A.Y.; Beletskaya, I.P. Copper in Cross-Coupling Reactions: II. Arylation of Thiols. Russ. J. Org. Chem. 2019, 55, 1629. [Google Scholar] [CrossRef]
- Haldón, E.; Álvarez, E.; Nicasio, M.C.; Pérez, P.J. Dinuclear Copper(I) Complexes as Precatalysts in Ullmann and Goldberg Coupling Reactions. Organometallics 2009, 28, 3815. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Fan, H.-J. Theoretical Study on Copper-Catalyzed S-Arylation of Thiophenols with Aryl Halides: Evidence Supporting the LCu(I)-SPh Active Catalyst and Halogen Atom Transfer Mechanism. Organometallics 2013, 32, 4944. [Google Scholar] [CrossRef]
- Ribas, X.; Güell, I. Cu(I)/Cu(III) catalytic cycle involved in Ullmann-type cross-coupling reactions. Pure Appl. Chem. 2014, 86, 345. [Google Scholar] [CrossRef]
- Marín, M.; Moreno, J.J.; Navarro-Gilabert, C.; Álvarez, E.; Maya, C.; Peloso, R.; Nicasio, M.C.; Carmona, E. Structure and Nickel Carbonyl Complexes of Dialkylterphenyl Phosphines. Chem. Eur. J. 2018, 25, 260. [Google Scholar] [CrossRef]
- Alcaide, M.M.; Pugliesi, M.; Álvarez, E.; López-Serrano, J.; Peloso, R. New Phosphonite Ligands with High Steric Demand and Low Basicity: Synthesis, Structural Properties and Cyclometalated Complexes of Pt(II). Inorganics 2022, 10, 109. [Google Scholar] [CrossRef]
- Ortega-Moreno, L.; Peloso, R.; López-Serrano, J.; Iglesias-Sigüenza, J.; Maya, C.; Carmona, E. A Cationic Unsaturated Platinum(II) Complex that Promotes the Tautomerization of Acetylene to Vinylidene. Angew. Chem. Int. Ed. 2017, 56, 2772–2775. [Google Scholar] [CrossRef]
- Beltrán, Á.; Gata, I.; Maya, C.; Avó, J.; Lima, J.C.; Laia, C.A.T.; Peloso, R.; Outis, M.; Nicasio, M.C. Dinuclear Cu(I) Halides with Terphenyl Phosphines: Synthesis, Photophysical Studies, and Catalytic Applications in CuAAC Reactions. Inorg. Chem. 2020, 59, 10894–10906. [Google Scholar] [CrossRef]
- Martín, M.T.; Marín, M.; Rama, R.J.; Álvarez, E.; Maya, C.; Molina, F.; Nicasio, M.C. Zero-valent ML2 complexes of group 10 metals supported by terphenyl phosphanes. Chem. Commun. 2021, 57, 3083–3086. [Google Scholar] [CrossRef]
- Campos, J.; Ortega-Moreno, L.; Conejero, S.; Peloso, R.; López-Serrano, J.; Maya, C.; Carmona, E. Reactivity of Cationic Agostic and Carbene Structures Derived from Platinum(II) Metallacycles. Chem. Eur. J. 2015, 21, 8883. [Google Scholar] [CrossRef]
- Cornet, S.M.; Dillon, K.B.; Howard, J.A.K.; Monks, P.K.; Thompson, A.L. Hydrogen bonding and short contacts in [2,4,6-tris (trifluoro meth yl)phenyl] phosphinic acid. Acta. Crystallogr. Sect. C 2009, 65, o195. [Google Scholar] [CrossRef] [PubMed]
- Allefeld, N.; Neumann, B.; Stammler, H.G.; Ignat’ev, N.; Hoge, B. Functionalized Pentafluoroethylphosphanes. Chem. Eur. J. 2015, 21, 12326. [Google Scholar] [CrossRef]
- Urnéžius, E.; Protasiewicz, J.D. Synthesis and Structural Characterization of New Hindered Aryl Phosphorus Centers (Aryl = 2,6-Dimesitylphenyl). Main Group Chem. 1996, 1, 369. [Google Scholar] [CrossRef]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 955. [Google Scholar] [CrossRef]
- Ortega-Moreno, L.; Fernández-Espada, M.; Moreno, J.J.; Navarro-Gilabert, C.; Campos, J.; Conejero, S.; López-Serrano, J.; Maya, C.; Peloso, R.; Carmona, E. Synthesis, Properties, and Some Rhodium, Iridium, and Platinum Complexes of a Series of Bulky m-Terphenylphosphine Ligands. Polyhedron 2016, 116, 170. [Google Scholar] [CrossRef]
- Kubas, G.J.; Monzyk, B.; Crumbliss, A.L. Tetrakis(Acetonitrile)Copper(1+) hexafluorophosphate(1-). Inorg. Synth. 1990, 28, 68. [Google Scholar] [CrossRef]
- Bates, C.G.; Gujadhur, R.K.; Venkataraman, D. A General Method for the Formation of Aryl−Sulfur Bonds Using Copper(I) Catalysts. Org. Lett. 2002, 4, 2803–2806. [Google Scholar] [CrossRef]
- Deng, W.; Zou, Y.; Wang, Y.F.; Liu, L.; Guo, Q.X. CuI-Catalyzed Coupling Reactions of Aryl Iodides and Bromides with Thiols Promoted by Amino Acid Ligands. Synlett 2004, 1254–1258. [Google Scholar] [CrossRef]
- Rout, L.; Sen, T.K.; Punniyamurthy, T. Efficient CuO-Nanoparticle-Catalyzed C-S Cross-Coupling of Thiols with Iodobenzene. Angew Chem. Int. Ed. 2007, 46, 5583–5586. [Google Scholar] [CrossRef]
- Trécourt, F.; Breton, G.; Bonnet, V.; Mongin, F.; Marsais, F.; Quéguiner, G. New Syntheses of Substituted Pyridines via Bromine–Magnesium Exchange. Tetrahedron 2001, 56, 1349–1360. [Google Scholar] [CrossRef]
- Taniguchi, N.; Onami, T. Magnesium-Induced Copper-Catalyzed Synthesis of Unsymmetrical Diaryl Chalcogenide Compounds from Aryl Iodide via Cleavage of the Se−Se or S−S BondClick to copy article link. J. Org. Chem. 2004, 69, 915–920. [Google Scholar] [CrossRef]
- Still, I.W.J.; Toste, F.D. Reduction of Aryl Thiocyanates with SmI2 and Pd-Catalyzed Coupling with Aryl Halides as a Route to Mixed Aryl Sulfides. J. Org. Chem. 1996, 61, 7677–7680. [Google Scholar] [CrossRef] [PubMed]
- Buranaprasertsuk, P.; Chang, J.W.W.; Chavasiri, W.; Chan, P.W.H. Copper-catalyzed Ullmann coupling under ligand- and additive-free conditions. Part 2: S-Arylation of thiols with aryl iodides. Tetrahedron Lett. 2008, 49, 2023. [Google Scholar] [CrossRef]
- Nakazawa, T.; Hirose, N.; Itabashi, K. An Efficient Synthesis of Naphthyl Alkyl and Aryl Sulfides by the Reaction of Naphthols with Alkane- and Arenethiols. Synthesis 1989, 12, 955–957. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, M.; Zou, Z.; Wu, Z.; Ni, S.; Kong, L.; Zheng, Y.; Wang, Y.; Pan, Y. Redox-active benzimidazolium sulfonamides as cationic thiolating reagents for reductive cross-coupling of organic halides. Chem. Sci. 2021, 12, 2509–2514. [Google Scholar] [CrossRef]
- Wong, Y.C.; Jayanth, T.T.; Cheng, C.H. Cobalt-Catalyzed Aryl−Sulfur Bond Formation. Org. Lett. 2006, 8, 5613–5616. [Google Scholar] [CrossRef] [PubMed]
- Kao, H.L.; Chen, C.K.; Wang, Y.J.; Lee, C.F. An Efficient Copper-Catalyzed Cross-Coupling Reaction of Thiols with Aryl Iodides. Eur. J. Org. Chem. 2011, 2011, 1776–1781. [Google Scholar] [CrossRef]
- Pijper, T.C.; Robertus, J.; Browne, W.R.; Feringa, B.L. Mild Ti-mediated transformation of t-butyl thio-ethers into thio-acetates. Org. Biomol. Chem. 2015, 13, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Entry | Variation | Yield (%) b |
---|---|---|
1 | None | 98 |
2 | LiOtBu instead of NaOtBu | 99 |
3 | K3PO4 instead of NaOtBu | 98 |
4 | K3PO4 as the base and 100 °C instead of 110 °C | 91 |
5 | K3PO4 as the base, 100 °C, and THF instead of dioxane | 75 |
6 | K3PO4 as the base, 100 °C, and toluene instead of dioxane | 63 |
7 | K3PO4 as the base and 2.5 mol% catalyst loading | 97 |
8 | K3PO4 as the base and 2 mol% catalyst loading | 91 |
9 | K3PO4 as the base and 1 mol% catalyst loading | 80 |
10 | 2b as the catalyst | 90 |
11 | 2c as the catalyst | 38 |
12 | No copper catalyst | - |
Entry | Catalyst | Base | Solvent | Catalyst Load (mol %) | Yield (%) b |
---|---|---|---|---|---|
1 | PhBr | K3PO4 | dioxane | 2 | - |
2 | PhBr | K3PO4 | dioxane | 5 | 2 |
3 | PhBr | K3PO4 | dioxane | 10 | 5 |
4 | PhBr | NaOtBu | dioxane | 10 | 7 |
5 | PhBr | K3PO4 | DMF | 10 | 11 |
6 | PhBr | K3PO4 | NMP | 10 | 12 |
7 | PhBr | NaOtBu | DMF | 10 | 14 |
8 | PhCl | K3PO4 | dioxane | 10 | - |
9 | PhCl | NaOtBu | dioxane | 10 | - |
10 | PhCl | NaOtBu | DMF | 10 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, M.T.; del Postigo, A.G.; Sánchez, P.; Álvarez, E.; Maya, C.; Nicasio, M.C.; Peloso, R. Copper(I) Complexes with Terphenyl-Substituted NPN Ligands Bearing Pyridyl Groups: Synthesis, Characterization, and Catalytic Studies in the S-Arylation of Thiols. Molecules 2025, 30, 3167. https://doi.org/10.3390/molecules30153167
Martín MT, del Postigo AG, Sánchez P, Álvarez E, Maya C, Nicasio MC, Peloso R. Copper(I) Complexes with Terphenyl-Substituted NPN Ligands Bearing Pyridyl Groups: Synthesis, Characterization, and Catalytic Studies in the S-Arylation of Thiols. Molecules. 2025; 30(15):3167. https://doi.org/10.3390/molecules30153167
Chicago/Turabian StyleMartín, M. Trinidad, Ana Gálvez del Postigo, Práxedes Sánchez, Eleuterio Álvarez, Celia Maya, M. Carmen Nicasio, and Riccardo Peloso. 2025. "Copper(I) Complexes with Terphenyl-Substituted NPN Ligands Bearing Pyridyl Groups: Synthesis, Characterization, and Catalytic Studies in the S-Arylation of Thiols" Molecules 30, no. 15: 3167. https://doi.org/10.3390/molecules30153167
APA StyleMartín, M. T., del Postigo, A. G., Sánchez, P., Álvarez, E., Maya, C., Nicasio, M. C., & Peloso, R. (2025). Copper(I) Complexes with Terphenyl-Substituted NPN Ligands Bearing Pyridyl Groups: Synthesis, Characterization, and Catalytic Studies in the S-Arylation of Thiols. Molecules, 30(15), 3167. https://doi.org/10.3390/molecules30153167