Fast, Simple and Accurate Method for Simultaneous Determination of α-Lipoic Acid and Selected Thiols in Human Saliva by Capillary Electrophoresis with UV Detection and pH-Mediated Sample Stacking
Abstract
1. Introduction
2. Results and Discussion
2.1. Sample Preparation
2.1.1. Preliminary Considerations
2.1.2. Disulfide Bond Reduction
2.1.3. Derivatization
2.1.4. Integration of Disulfide Bond Reduction with Derivatization
2.1.5. Removal of Proteins
2.1.6. Stability of Processed Samples
2.2. Optimization of Electrophoretic and Detection Conditions
2.2.1. Buffer Selection
2.2.2. Optimization of BGE Concentration and pH
2.2.3. Electrophoresis with pH-Mediated Stacking
2.2.4. Optimization of the Sample and Acid Injection Time
2.2.5. Optimization of Acid Concentration
2.2.6. Sensitivity Enhancement Factor
2.3. Greenness Assessment of the CE-UV Method
2.4. Validation of the Method
2.4.1. System Suitability
2.4.2. Selectivity
2.4.3. Linearity
2.4.4. Precision and Accuracy
2.4.5. The Limit of Quantification
2.4.6. Carry-Over Effect
2.4.7. Matrix Effect
2.4.8. Reinjection Reproducibility
2.5. Application of the Method
3. Materials and Methods
3.1. Reagents and Materials
3.2. Instrumentation
3.3. Stock Solutions
3.4. Biological Samples Collection
3.5. Saliva Sample Preparation
3.6. Chromatographic Conditions
3.7. Electrophoretic Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACN | Acetonitrile |
BGE | Background electrolyte |
CE | Capillary electrophoresis |
CMLT | 2-chloro-1-methyllepidinium tetrafluoroborate |
CV | Coefficient of variation |
Cys | Cysteine |
Cys2 | Cystine |
CysGly | Cysteinylglycine |
GAC | Green Analytical Chemistry |
GC | Gas chromatography |
GSH | Glutathione |
Hcy | Homocysteine |
Hcy2 | Homocystine |
HPLC | High-performance liquid chromatography |
ICH | International Council for Harmonization |
IP-HPLC | Ion-pairing high-performance liquid chromatography |
LA | α-lipoic acid |
LOD | Limit of determination |
LOQ | Limit of quantification |
LIF | Laser-induced fluorescence |
MS | Mass spectrometry |
NAC | N-acetyl-cysteine |
PB | Phosphate buffer |
PCA | Perchloric acid |
PP | Polypropylene |
R | Correlation coefficient |
SEF | Sensitivity enhancement factory |
TCA | Trichloroacetic acid |
TCEP | Tris(2-carboxyethyl)phosphine |
UV | Ultraviolet detection |
γ-Glu-Cys | γ-glutamyl-cysteine |
References
- Gallardo, E.; Queiroz, J.A. The Role of Alternative Specimens in Toxicological Analysis. Biomed. Chromatogrpahy 2008, 22, 795–821. [Google Scholar] [CrossRef] [PubMed]
- Piechocka, J.; Wrońska, M.; Głowacki, R. Chromatographic Strategies for the Determination of Aminothiols in Human Saliva. Trends Anal. Chem. 2020, 126, 115866. [Google Scholar] [CrossRef]
- Oliveira, P.V.; Laurindo, F.R.M. Implications of Plasma Thiol Redox in Disease. Clin. Sci. 2018, 132, 1257–1280. [Google Scholar] [CrossRef] [PubMed]
- Elmongy, H.; Abdel-Rehim, M. Saliva as an Alternative Specimen to Plasma for Drug Bioanalysis: A Review. Trends Anal. Chem. 2016, 83, 70–79. [Google Scholar] [CrossRef]
- De Almeida, P.D.V.; Grégio, A.M.T.; Machado, M.Â.N.; De Lima, A.A.S.; Azevedo, L.R. Saliva Composition and Functions: A Comprehensive Review. J. Contemp. Dent. Pract. 2008, 9, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, F.; Tabucchi, A. Capillary Electrophoresis in the Evaluation of Aminothiols in Body Fluids. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3347–3357. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.V.; Popov, M.A.; Aleksandrin, V.V.; Pudova, P.A.; Galdobina, M.P.; Metelkin, A.A.; Kruglova, M.P.; Maslennikov, R.A.; Silina, E.V.; Stupin, V.A.; et al. Simultaneous Determination of Cystine and Other Free Aminothiols in Blood Plasma Using Capillary Electrophoresis with pH-Mediated Stacking. Electrophoresis 2023, 45, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Sotgia, S.; Scanu, B.; Pisanu, E.; Sanna, M.; Sati, S.; Deiana, L.; Sengupta, S.; Carru, C. Determination of Homocysteine Thiolactone, Reduced Homocysteine, Homocystine, Homocysteine-Cysteine Mixed Disulfide, Cysteine and Cystine in a Reaction Mixture by Overimposed Pressure/Voltage Capillary Electrophoresis. Talanta 2010, 82, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Kubalczyk, P.; Bald, E.; Furmaniak, P.; Głowacki, R. Simultaneous Determination of Total Homocysteine and Cysteine in Human Plasma by Capillary Zone Electrophoresis with pH-Mediated Sample Stacking. Anal. Methods 2014, 6, 4138–4143. [Google Scholar] [CrossRef]
- Kubalczyk, P.; Głowacki, R. Determination of Lipoic Acid in Human Urine by Capillary Zone Electrophoresis. Electrophoresis 2017, 38, 1800–1805. [Google Scholar] [CrossRef] [PubMed]
- Stachniuk, J.; Kubalczyk, P.; Furmaniak, P.; Głowacki, R. A Versatile Method for Analysis of Saliva, Plasma and Urine for Total Thiols Using HPLC with UV Detection. Talanta 2016, 155, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Piechocka, J.; Wieczorek, M.; Głowacki, R. Gas Chromatography–Mass Spectrometry Based Approach for the Determination of Methionine-Related Sulfur-Containing Compounds in Human Saliva. Int. J. Mol. Sci. 2020, 21, 9252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, P.; Geng, Q.; Duan, Y.; Guo, M.; Cao, Y. Simultaneous Determination of Glutathione, Cysteine, Homocysteine, and Cysteinylglycine in Biological Fluids by Ion-Pairing High-Performance Liquid Chromatography Coupled with Precolumn Derivatization. J. Agric. Food Chem. 2014, 62, 5845–5852. [Google Scholar] [CrossRef] [PubMed]
- Hodáková, J.; Preisler, J.; Foret, F.; Kubáň, P. Sensitive Determination of Glutathione in Biological Samples by Capillary Electrophoresis with Green (515nm) Laser-Induced Fluorescence Detection. J. Chromatogr. A 2015, 1391, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Isokawa, M.; Kanamori, T.; Funatsu, T.; Tsunoda, M. Analytical Methods Involving Separation Techniques for Determination of Low-Molecular-Weight Biothiols in Human Plasma and Blood. J. Chromatogr. B 2014, 964, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Głowacki, R.; Piechocka, J.; Bald, E.; Chwatko, G. Application of Separation Techniques in Analytics of Biologically Relevant Sulfur Compounds. In Handbook of Bioanalytics; Buszewski, B., Baranowska, I., Eds.; Springer: Cham, Switzerland, 2022; pp. 233–256. [Google Scholar]
- Piechocka, J.; Wyszczelska-Rokiel, M.; Głowacki, R. Simultaneous Determination of 2-(3-Hydroxy-5-Phosphonooxymethyl-2-Methyl-4-Pyridyl)-1,3-Thiazolidine-4-Carboxylic Acid and Main Plasma Aminothiols by HPLC–UV Based Method. Sci. Rep. 2023, 13, 9294. [Google Scholar] [CrossRef] [PubMed]
- Roblegg, E.; Coughran, A.; Sirjani, D. Saliva: An All-Rounder of Our Body. Eur. J. Pharm. Biopharm. 2019, 142, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Furmaniak, P.; Kubalczyk, P.; Stachniuk, J.; Głowacki, R. Novel MEKC Method for Determination of Sodium 2-Mercaptoethanesulfonate in Human Plasma with in-Capillary Derivatization and UV Detection. J. Chromatogr. B 2016, 1027, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Głowacki, R.; Borowczyk, K.; Bald, E. Determination of Nε-Homocysteinyl-Lysine and γ-Glutamylcysteine in Plasma by Liquid Chromatography with UV-Detection. J. Anal. Chem. 2014, 69, 583–589. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep—Analytical Greenness Metric for Sample Preparation. TrAC Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Kubalczyk, P.; Bald, E. Methods of Analyte Concentration in a Capillary. In Electromigration Techniques Theory and Practice; Buszewski, B., Dziubakiewicz, E., Szumski, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 215–235. ISBN 9783642350429. [Google Scholar]
- Hadwiger, M.E.; Torchia, S.R.; Park, S.; Biggin, M.E.; Lunte, C.E. Optimization of the Separation and Detection of the Enantiomers of Isoproterenol in Microdialysis Samples by Cyclodextrin-Modified Capillary Electrophoresis Using Electrochemical Detection. J. Chromatogr. B Biomed. Appl. 1996, 681, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Tobiszewski, M.; Wojnowski, W.; Psillakis, E. A Tutorial on AGREEprep an Analytical Greenness Metric for Sample Preparation. Adv. Sample Prep. 2022, 4, 100025. [Google Scholar] [CrossRef]
- ICH. M10 Guideline for Bioanalytical Method Validation and Study Sample Analysis; ICH: Geneva, Switzerland, 2022; 59p. [Google Scholar]
Analyte | Method | Volume Sample * [µL] | Chemicals Consumption [µL] | Linearity [µmol/L] | LOQ [µmol/L] | Sample Preparation Time [min] | Overall Analysis Time ** [min] | Method Reference |
---|---|---|---|---|---|---|---|---|
LA | GC-MS | 50 | 320 | n.a. | n.a. | 35 | 65 | [12] |
Hcy | 0.5–20 | 0.1 | ||||||
CysGly | n.a. | n.a. | ||||||
Cys | 0.5–20 | 0.1 | ||||||
LA | HPLC-UV | 50 | 120 | n.a. | n.a. | 23 | 31 | [11] |
Hcy | 0.1–20 | 0.05 | ||||||
CysGly | 0.25–50 | 0.12 | ||||||
Cys | 5–300 | 0.08 | ||||||
LA | IP-HPLC | 100 | 300 | n.a. | n.a. | 40 | 51 | [13] |
Hcy | 0.15–500 | 0.15 | ||||||
CysGly | 0.15–500 | 0.15 | ||||||
Cys | 0.15–500 | 0.12 | ||||||
LA | CE-UV | 50 | 170 | 3–30 | 1 | 15 | 28 | Present method |
Hcy | 3–30 | 0.17 | ||||||
CysGly | 3–30 | 0.11 | ||||||
Cys | 3–30 | 0.1 |
Analyte | Equations of the Calibration Curve | Calibration Concentration Range [µmol/L] | R | LOD [µmol/L] | LOQ [µmol/L] |
---|---|---|---|---|---|
LA | y = (1.0172 ± 0.1356)x + 0.7578 ± 0.0747 | 3–30 | 0.9992 | 0.4 | 1 |
Hcy | y = (3.3225 ± 0.0886)x + 0.3791 ± 0.1978 | 3–30 | 0.9994 | 0.08 | 0.17 |
CysGly | y = (3.9626 ± 0.0528)x + 1.121 ± 0.03684 | 3–30 | 0.9997 | 0.04 | 0.11 |
Cys | y = (5.4346 ± 0.0543)x + 1.2468 ± 0.07495 | 3–30 | 0.9998 | 0.03 | 0.10 |
Analyte | Added * (µmol/L) | Intraday | Interday | ||||
---|---|---|---|---|---|---|---|
Found ± SD (µmol/L) | CV (%) | Accuracy (%) | Found ± SD (µmol/L) | CV (%) | Accuracy (%) | ||
LA | 3 | 2.86 ± 0.13 | 4.68 | 95.28 | 2.67 ± 0.11 | 4.05 | 89.01 |
12 | 12.06 ± 0.38 | 3.14 | 100.52 | 10.69 ± 0.37 | 3.43 | 89.05 | |
18 | 17.98 ± 0.04 | 0.22 | 99.89 | 19.29 ± 0.47 | 2.44 | 107.17 | |
30 | 30.47 ± 0.42 | 1.38 | 101.57 | 29.90 ± 0.78 | 2.61 | 99.66 | |
Hcy | 3 | 2.99 ± 0.06 | 2.04 | 87.91 | 3.42 ± 0.08 | 2.38 | 114.01 |
12 | 11.42 ± 0.48 | 4.24 | 95.15 | 13.41 ± 0.12 | 0.87 | 111.78 | |
18 | 18.51 ± 0.08 | 0.45 | 102.02 | 16.84 ± 0.14 | 0.86 | 93.53 | |
30 | 30.05 ± 0.54 | 1.78 | 99.84 | 30.52 ± 0.19 | 2.71 | 101.75 | |
CysGly | 3 | 2.93 ± 0.04 | 1.37 | 89.40 | 2.68 ± 0.06 | 2.18 | 89.65 |
12 | 11.73 ± 0.21 | 1.77 | 97.70 | 12.09 ± 0.18 | 1.45 | 100.75 | |
18 | 17.89 ± 0.07 | 0.41 | 98.70 | 18.05 ± 0.25 | 1.40 | 100.27 | |
30 | 30.29 ± 0.37 | 1.24 | 100.28 | 29.38 ± 0.19 | 0.64 | 97.95 | |
Cys | 3 | 3.16 ± 0.07 | 2.36 | 94.50 | 2.9 ± 0.02 | 0.79 | 96.79 |
12 | 11.79 ± 0.36 | 3.03 | 98.24 | 12.21 ± 0.14 | 1.11 | 101.74 | |
18 | 18.57 ± 0.06 | 0.20 | 103.18 | 17.64 ± 0.05 | 0.30 | 97.98 | |
30 | 29.81 ± 0.42 | 0.43 | 98.15 | 29.73 ± 1.03 | 3.46 | 99.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudomir, U.; Piechocka, J.; Głowacki, R.; Kubalczyk, P. Fast, Simple and Accurate Method for Simultaneous Determination of α-Lipoic Acid and Selected Thiols in Human Saliva by Capillary Electrophoresis with UV Detection and pH-Mediated Sample Stacking. Molecules 2025, 30, 3129. https://doi.org/10.3390/molecules30153129
Sudomir U, Piechocka J, Głowacki R, Kubalczyk P. Fast, Simple and Accurate Method for Simultaneous Determination of α-Lipoic Acid and Selected Thiols in Human Saliva by Capillary Electrophoresis with UV Detection and pH-Mediated Sample Stacking. Molecules. 2025; 30(15):3129. https://doi.org/10.3390/molecules30153129
Chicago/Turabian StyleSudomir, Urszula, Justyna Piechocka, Rafał Głowacki, and Paweł Kubalczyk. 2025. "Fast, Simple and Accurate Method for Simultaneous Determination of α-Lipoic Acid and Selected Thiols in Human Saliva by Capillary Electrophoresis with UV Detection and pH-Mediated Sample Stacking" Molecules 30, no. 15: 3129. https://doi.org/10.3390/molecules30153129
APA StyleSudomir, U., Piechocka, J., Głowacki, R., & Kubalczyk, P. (2025). Fast, Simple and Accurate Method for Simultaneous Determination of α-Lipoic Acid and Selected Thiols in Human Saliva by Capillary Electrophoresis with UV Detection and pH-Mediated Sample Stacking. Molecules, 30(15), 3129. https://doi.org/10.3390/molecules30153129