A Preliminary Study of the Response of Microcyclosporella mali to Selected Essential Oils
Abstract
1. Introduction
2. Results
2.1. EO Composition
2.2. Flow Cytometry Analysis
2.3. Influence of the Essential Oils on the Viability of the M. mali Conidia
2.4. Determination of the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC)
- The MIC values were 0.8%, 0.5% and 0.4% after 15 min, 2 h and 24 h, respectively;
- The MFC values were 1.6%, 1.3% and 0.9% after 15 min, 2 h and 24 h, respectively.
- The MIC values were 1.5%, 0.8% and 1.2% after 15 min, 2 h and 24 h, respectively;
- The MFC values were 3.6%, 2.0% and 2.4% after 15 min, 2 h and 24 h, respectively.
3. Discussion
4. Materials and Methods
4.1. Plant Raw Materials Used for EO Distillation
4.2. EO Extraction and GC-MS/GC-FID Analysis
4.3. Influence of the Concentrations of the Essential Oils on the Viability of the M. mali Conidia
4.4. Statistical Analysis of the Obtained Results
4.5. Influence of the Concentrations of the Selected Essential Oils on the Development of the M. mali Colonies in In Vitro Tests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pakuła, K.; Kuziemska, B.; Trębicka, J.; Pieniak-Lendzion, K. The production of apple in Poland—Environmental, economics and logistics aspects. Zesz. Nauk. SGGW W Warszawie. Ekon. I Organ. Gospod. Żywnościowej 2018, 122, 81–93. [Google Scholar] [CrossRef]
- Batzer, J.C.; Gleason, M.L.; Harrington, T.C.; Tiffany, L.H. Expansion of the sooty blotch and flyspeck complex on apples based on analysis of rybosomal DNA gene sequences and morphology. Mycologia 2005, 97, 1268–1286. [Google Scholar] [CrossRef] [PubMed]
- Meresz, A.; Fisher, P.; Thorpe, C. Disease survey of commercial apple orchards in southern Ontario. Can. Plant Dis. Surv. 1988, 68, 169–171. [Google Scholar]
- Spolti, P.; Valdebenito-Sanhueza, R.M.; Gleason, M.L.; Del Ponte, E.M. Sooty blotch and flyspeck control with fungicide applications based on calendar, local IPM, and warning system. Pesq. Agropec. Bras. 2011, 46, 697–705. [Google Scholar] [CrossRef]
- Yang, H.L.; Sun, G.Y.; Batzer, J.C.; Crous, P.W.; Groenewald, J.Z.; Gleason, M.L. Novel fungal genera and species associated with the sooty blotch and flyspeck complex on apple in China and the USA. Personia 2010, 24, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Noga, G.; Kern, S.; Dehne, W.; Steiner, U.; Böhmer, B.; Heupel, M.; Frahm, J. Die Rußfleckenkrankheit Beim Apfel. Arbeitsergebnisse aus dem Lehr- und Forschungsschwerpunkt USL; Hoegen, B., Ed.; Universität Bonn: Bonn, Germany, 2000; Available online: www.usl.uni-bonn.de/pdf/russfleck.pdf (accessed on 14 March 2015).
- Frank, J.; Crous, P.W.; Groenewald, J.Z.; Oertel, B.; Hyde, K.D.; Phengsintham, P.; Schroers, H.J. Microcyclospora and Microcyclosporella: Novel genera accommodating epiphytic fungi causing sooty blotch on apple. Persoonia 2010, 24, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, M.M.; Ivanović, M.S.; Batzer, J.C.; Tatalović, N.; Oertel, B.; Latinović, J.; Latinović, N.; Gleason, M.L. Fungi in the apple sooty blotch and flyspeck complex from Serbia and Montenegro. Plant Pathol. J. 2010, 92, 65–72. [Google Scholar]
- Gleason, M.L.; Batzer, J.C.; Sun, G.; Zhang, R.; Diaz Ariaz, M.M.; Sutton, T.B.; Crous, P.W.; Ivanović, M.; McManus, P.S.; Cooley, D.R.; et al. A new view of sooty blotch and flyspeck. Plant Dis. 2011, 95, 368–383. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.C.; Frank, M.; Tuttle, A.F.; Cooley, D.R. Can we predict flyspeck development? Fruit Notes 1997, 62, 21–23. [Google Scholar]
- Mirzwa-Mróz, E. Identyfikacja i Biologia Sprawców Brudnej Plamistości Jabłek; Wieś Jutra Ltd.: Warsaw, Poland, 2013; pp. 9–25. [Google Scholar]
- Mirzwa-Mróz, E.; Dzięcioł, R.; Pitera, E.; Jurkowski, A. Influence of sooty blotch and flyspeck (SBFS) fungi on apple fruits during storage. Acta Sci. Pol. Hortorum Cultus 2012, 11, 39–46. [Google Scholar]
- Belding, R.D.; Sutton, T.B.; Blankenship, S.M.; Young, E. Relationship between apple fruit epicuticular wax and growth of Peltaster fructicola and Leptodontidium elatius, two fungi that cause sooty blotch disease. Plant Dis. 2000, 84, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, M. Występowanie brudnej i kropkowanej plamistości jabłek na wybranych odmianach odpornych na parcha jabłoni. In Materiały Ogólnopolskiej Naukowej Konferencji Ochrony Roślin Sadowniczych; ISiK: Skierniewice, Poland, 1999; pp. 219–220. [Google Scholar]
- Grabowski, M. Choroby drzew owocowych. Plantpress 1999, 78–80. [Google Scholar]
- Bryk, H.; Kruczyńska, D.E. Możliwości uprawy i ochrony jabłoni przed chorobami w sadach ekologicznych. J. Res. Appl. Agric. Eng. 2011, 53, 40–44. [Google Scholar]
- Bryk, H.; Kruczyńska, D.E.; Rutkowski, K.P. Jakość i zdolność przechowalnicza jabłek kilku odmian z sadu ekologicznego. J. Res. Appl. Agric. Eng. 2013, 58, 59–65. [Google Scholar]
- Dutka, A. Application of essential oils in plant protection against pest insects—Paper review. Prog. Plant Prot./Post. Ochr. Roślin 2013, 53, 36–42. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Trindade, H.; Pedro, L.G.; Figueiredo, A.C.; Barroso, J.G. Chemotypes and terpene synthase genes in Thymus genus: State of the art. Ind. Crops Prod. 2018, 124, 530–547. [Google Scholar] [CrossRef]
- Konakchiev, A.; Genova, E.; Couladis, M. Chemical composition of the essential oil of Origanum vulgare ssp. hirtum (Link) Ietswaart in Bulgaria. Comptes Rendus L’academie Bulg. Des. Sci. 2004, 57, 11–49. [Google Scholar]
- De Martino, L.; De Feo, V.; Formisano, C.; Mignola, E.; Senatore, F. Chemical composition and antimicrobial activity of the essential oils from three chemotypes of Origanum vulgare L. ssp. hirtum (Link) Letswaart Grow. Wild Campania (South Italy). Molecules 2009, 1, 2735–2746. [Google Scholar] [CrossRef]
- Kosakowska, O.; Bączek, K.; Geszprych, A.; Węglarz, Z. Ocena składu chemicznego olejku eterycznego dziko rosnących populacji lebiodki pospolitej (Origanum vulgare L.). Pol. J. Agron. 2013, 15, 60–64. [Google Scholar]
- Chizzola, R.; Michitsch, H.; Franz, C. Antioxidative properties of Thymus vulgaris leaves: Comparison of different extracts and essential oil chemotypes. J. Agric. Food Chem. 2008, 56, 6897–6904. [Google Scholar] [CrossRef] [PubMed]
- Hudaib, M.; Speroni, E.; Pietra, A.; Cavrini, A. GC/MS evaluation of thyme (Thymus vulgaris) oil composition and variations during the vegetative cycle. J. Pharm. Biomed. Anal. 2002, 29, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Sienkiewicz, M.; Wasiela, M. Aktywność olejków tymiankowego i lawendowego wobec opornych na antybiotyki szczepów klinicznych Pseudomonas aeruginosa. Postępy Fitoter. 2012, 4, 139–145. [Google Scholar]
- Michalski, J.A.; Zielińska, D. Review of essential oils obtained from plants Lamiaceae family and their properties. Pol. J. Cosmetol. 2015, 18, 16–24. [Google Scholar]
- Król, B.; Kiełtyka-Dadasiewicz, A. Wpływ metody suszenia na cechy sensoryczne oraz skład olejku eterycznego tymianku właściwego (Thymus vulgaris L.). Żywność. Nauka. Technologia. Jakość 2015, 4, 162–175. [Google Scholar] [CrossRef]
- Bączek, K.B.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Costa, R.; Mondello, L.; Gniewosz, M.; Synowiec, A.; Węglarz, Z. Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum Vulgare L.). Ind. Crops Prod. 2017, 102, 154–163. [Google Scholar] [CrossRef]
- Hassanpourghdam, M.B.; Tabatabaie, S.J.; Nazemiyeh, H.; Vojdi, L.; Aazami, M.A. Volatile oil constituent of alecost [Tanacetum balsamita L. ssp. balsamitioides (Schultz-Bip.)]. Grow. Wild North-West Iran. Herba Pol. 2009, 55, 53–59. [Google Scholar]
- Yousefzadi, M.; Ebrahimi, S.N.; Sonboli, A.; Miraghasi, F.; Ghiasi, S.; Arman, M.; Mosaffa, N. Cytotoxicity, antimicrobial activity and composition of essential oil from Tanacetum balsamita L. subsp. balsamita. Nat. Prod. Commun. 2009, 4, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Tomazini, E.Z.; Pauletti, G.F.; Ribeiro, R.T.S.; Moura, S.; Schwambach, J. In vitro and in vivo activity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulus and Cinnamomum camphora against Alternaria solani Sorauer causing early blight in tomato. Sci. Hortic. 2017, 223, 72–77. [Google Scholar] [CrossRef]
- Bautista-Baños, S.; Correa-Pacheco, Z.N.; Black-Solis, J. Current status of the effectiveness of essential oils for controlling phytopathogenic fungi, a review. Acta Agrícola Pecu. 2020, 6, E0061008. [Google Scholar] [CrossRef]
- Tabassum, N.; Vidyasagar, G.M. Antifungal investigations on plant essential oils. A review. Int. J. Pharm. Sci. 2013, 5, 19–28. [Google Scholar]
- Arshad, Z.; Hanif, M.A.; Qadri, R.W.K.; Khan, M.M. Role of essential oils in plant diseases protection: A Review. Int. J. Chem. Biochem Sci. 2014, 6, 11–17. [Google Scholar]
- Allagui, M.B.; Moumni, M.; Romanazzi, G. Antifungal activity of thirty essential oils to control pathogenic fungi of postharvest decay. Antibiotics 2024, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Cheng, S.; Wang, H.; Yu, D.; Mungai, C. The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. J. Appl. Microbiol. 2013, 114, 1642–1649. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Kumari, P.; Sinha, D.; Yadav, M.; Singh, D.; Singh, B.K. Antimicrobial Activity of Essential Oils Against Plant Pathogenic Fungi: A Review. Int. J. Incl. Dev. 2020, 6, 37–44. [Google Scholar] [CrossRef]
- Luković, L.; Đurović-Pejčev, R.; Đorđević, T.; Milijašević-Marčić, S.; Duduk, N.; Vico, I.; Potočnik, I. Antifungal and synergistic activity of five plant essential oils from Serbia against Trichoderma aggressivum f. europaeum Samuels & W. Gams. Pestic. Phytome. 2020, 35, 173–181. [Google Scholar] [CrossRef]
- Kesraoui, S.; Maria Fe Andrés, M.; Berrocal-Lobo, M.; Azucena Gonzalez-Coloma, A. Direct and Indirect Effects of Essential Oils for Sustainable Crop Protection. Plants 2022, 11, 2144. [Google Scholar] [CrossRef] [PubMed]
- Adaszyńska, M.; Swarcewicz, M. Olejki eteryczne jako substancje aktywne lub konserwanty w kosmetykach. Wiadomości chemiczne 2012, 66, 139–158. [Google Scholar]
- Nurzyńska-Wierdak, R. Terapeutyczne właściwości olejków eterycznych. Ann. UMCS Sect. EEE Hortic. 2015, XXV, 1–14. [Google Scholar]
- Król, S.; Skalicka-Woźniak, K.; Kandefer-Szerszeń, M.; Stepulak, A. Aktywność biologiczna i farmakologiczna olejków eterycznych w leczeniu i profilaktyce chorób infekcyjnych. Postep. Hig. Med. Dośw. 2013, 67, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Fekih, N.; Allali, H.; Merghache, S.; Chaïb, F.; Merghache, D.; Amine, M.E.; Djabou, N.; Muselli, A.; Tabti, B.; Costa, J. Chemical composition and antibacterial activity of Pinus halepensis Miller growing in West Northern of Algeria, Asian Pacific. J. Trop. Dis. 2014, 4, 97–103. [Google Scholar] [CrossRef]
- Stewart, C.D.; Jones, C.D.; William, N.; Setzer, W.N. Essential oil compositions of Juniperus virginiana and Pinus virginiana, two important trees in Cherokee traditional medicine. Am. J. Ess. Oils Nat. Prod. 2014, 2, 17–24. [Google Scholar]
- Czerwińska, E.; Szparaga, A. Antibacterial and antifungal activity of plant extracts. Rocz. Ochr. Sr. 2015, 17, 209–229. [Google Scholar]
- Segvić-Klarić, M.; Kosalec, I.; Mastelić, J.; Pieckova, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Appl. Microbiol. 2007, 44, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Frankova, A.; Smid, J.; Bernardos, A.; Finkousova, A.; Marsik, P.; Novotny, D.; Legarova, V.; Pulkrabek, J.; Kloucek, P. The antifungal activity of essential oils in combination with warm air flow against the postharvest phytopathogenic fungi in apples. Food Control 2016, 68, 62–68. [Google Scholar] [CrossRef]
- Sadowska, K.; Łukaszewska-Skrzypniak, N.; Wojczyńska, J.; Stępniewska-Jarosz, S.; Tyrakowska, M.; Rataj-Guranowska, M. Evaluation of susceptibility of potential rape pathogens to selected essential oils. Prog. Plant Prot./Post. Ochr. Roślin 2017, 57, 201–205. [Google Scholar] [CrossRef]
- Puškárová, A.; Bučková, M.; Kraková, L.; Pangallo, D.; Kozics, K. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci. Rept. 2017, 7, 8211. [Google Scholar] [CrossRef] [PubMed]
- Paster, N.; Menasherov, M.; Ravid, U.; Juven, B. Antifungal Activity of Oregano and Thyme Essential Oils Applied as Fumigants Against Fungi Attacking Stored Grain. J. Food Prot. 1995, 58, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Riuz-Navajas, Y.; Fernandez-Lopez, J.; Perez-Alvarez, J.A. Antifungal activities of thyme, clove and oregano essential oils. J. Food Saf. 2006, 27, 91–101. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot. 2003, 22, 38–44. [Google Scholar] [CrossRef]
- Wójcik-Stopczyńska, B.; Jakubowska, B. Ocena in vitro aktywności przeciwgrzybowej niektórych suszonych przypraw ziołowych. Żywność. Nauka. Technologia. Jakość 2018, 25, 112–125. [Google Scholar] [CrossRef]
- Sampietro, D.A.; Lizarraga, E.F.; Ibatayev, Z.A.; Omarova, A.B.; Suleimen, Y.M.; Catalán, C.A. Chemical composition and antimicrobial activity of essential oils from Acantholippia deserticola, Artemisia proceriformis, Achillea micrantha and Libanotis buchtormensis against phytopathogenic bacteria and fungi. Nat. Prod. Res. 2016, 30, 1950–1955. [Google Scholar] [CrossRef] [PubMed]
- Souza, E.L.; Stamford, T.L.M.; Lima, E.O.; Trajano, V.N. Effectiveness of Origanum vulgare L. essential oil to inhibit the growth of food spoiling yeast. Food Control 2007, 18, 409–413. [Google Scholar] [CrossRef]
- Fournomiti, M.; Kimbaris, A.; Mantzourani, I.; Plessas, S.; Theodoridou, I.; Papaemmanouil, V.; Kapsiotis, I.; Panopoulou, M.; Stavropoulou, E.; Bezirtzoglou, E.E.; et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015, 26, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bara, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef]
- Gehan, I.K.M.; Mona, A.A.R.; Samir, A.M.A. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pest. Biochem. Physiol. 2012, 103, 56–61. [Google Scholar] [CrossRef]
- Balouirin, M.; Sadiki, M.; Ibnsoud, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Ban, X.; Zeng, H.; He, J.J.; Chen, Y.; Wang, Y. The Mechanism of Antifungal Action of Essential Oil from Dill (Anethum graveolens L.) on Aspergillus flavus. PLoS ONE 2012, 17, e30147. [Google Scholar] [CrossRef] [PubMed]
- Green, L.; Petersen, B.; Steimel, L.; Haeber, P.; Current, W. Rapid determination of antifungal activity by flow cytometry. J. Clin. Microbiol. 1994, 32, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Ramani, R.; Chaturvedi, V. Flow cytometry antifungal susceptibility testing of pathogenic yeasts other than Candida albicans and comparison with the NCCLS broth microdilution test. Antimicrob. Agents Chemother. 2000, 44, 2752–2758. [Google Scholar] [CrossRef] [PubMed]
- Pina-Vaz, C.; Rodrigues, A.G. Evaluation of antifungal susceptibility using flow cytometry. Methods Mol. Biol. 2010, 638, 281–289. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia. European Directorate for the Quality of Medicines and Health Care (EDQM), 9th ed.; Council of Europe: Strasbourg, France, 2017. [Google Scholar]
- Bączek, K.; Kosakowska, O.; Przybył, J.L.; Kuźma, P.; Ejdys, M.; Obiedziński, M.; Węglarz, Z. Intraspecific variability of yarrow (Achillea millefolium L. s.l.) in respect of developmental and chemical traits. Herba Pol. 2015, 61, 37–52. [Google Scholar] [CrossRef]
- Gams, W.; Aa, H.A.; van der Plaats-Niterink, A.J.; van der Samson, R.A.; Stalpers, J.A. Course of Mycology. Centraalbureau voor Schimmelcultures BAARN (The Nederlands); Institute of the Royal Nederlands Academy of Sciences and Letters: Amsterdam, The Netherlands, 1975; 105p. [Google Scholar]
- Kowalik, R.; Krechniak, E. Szczegółowa metodyka biologicznych laboratoryjnych badań środków grzybobójczych. In Materiały do Metodyki Biologicznej Oceny Środków Ochrony Roślin, Węgorek (Red.); IOR Poznań: Poznań, Poland, 1961; pp. 63–91. [Google Scholar]
Relative Area (%) | ||||||
---|---|---|---|---|---|---|
No. | Compound | RI 1 | RI 2 | Greek Oregano | Thyme | Costmary |
1 | (Z)-salvene | 935 | - | - | - | 0.21 |
2 | (E)-salvene | 949 | - | - | - | 0.07 |
3 | α-thujene | 1023 | 1012–1039 | 0.17 | 0.35 | 0.03 |
4 | α-pinene | 1029 | 1008–1039 | 1.54 | 1.72 | 0.05 |
5 | camphene | 1075 | 1043–1086 | 0.41 | 0.25 | 0.23 |
6 | β-pinene | 1111 | 1085–1138 | 0.67 | 0.19 | 0.14 |
7 | sabinene | 1125 | 1098–1140 | 0.03 | 0.08 | 0.04 |
8 | β-myrcene | 1167 | 1155–1169 | 2.47 | 1.06 | - |
9 | α-terpinene | 1183 | 1154–1195 | 2.17 | 1.38 | 0.34 |
10 | limonene | 1203 | 1178–1219 | 0.29 | 0.25 | 0.36 |
11 | 1.8-cineole | 1216 | 1186–1231 | - | 0.04 | 2.43 |
12 | β-ocimene | 1236 | 1211–1251 | 0.01 | 0.07 | - |
13 | γ-terpinene | 1253 | 1222–1266 | 17.04 | 7.33 | 0.11 |
14 | p-cymene | 1276 | 1246–1291 | 5.43 | 16.56 | 0.58 |
15 | terpinolene | 1285 | 1261–1300 | 0.05 | 0.07 | 0.11 |
16 | hexanol | 1349 | 1344–1360 | - | 0.14 | - |
17 | octan-3-ol | 1392 | 1372–1408 | - | 0.24 | - |
18 | α-thujone | 1418 | 1385–1441 | - | - | 2.81 |
19 | β-thujone | 1437 | 1400–1452 | - | - | 89.38 |
20 | 1-octen-3-ol | 1446 | 1411–1465 | 0.54 | - | - |
21 | menthone | 1459 | 1450–1475 | 0.40 | - | 0.06 |
22 | α-copaene | 1494 | 1462–1522 | - | 0.71 | - |
23 | camphor | 1509 | 1481–1537 | 0.19 | 0.24 | 0.10 |
24 | β-cubebene | 1536 | 1518–1560 | - | 1.49 | - |
25 | linalool | 1542 | 1507–1564 | 0.47 | 1.6 | 0.05 |
26 | bornyl acetate | 1577 | 1549–1597 | 0.94 | 0.96 | - |
27 | β-caryophyllene | 1593 | 1570–1685 | - | 0.51 | 0.20 |
28 | terpinen-4-ol | 1597 | 1564–1630 | 0.59 | 0.65 | - |
29 | pulegone | 1623 | 1626–1663 | - | - | 0.29 |
30 | menthol | 1631 | 1599–1651 | 0.17 | - | 0.11 |
31 | α-terpineol | 1680 | 1682–1706 | 1.02 | - | - |
32 | borneol | 1687 | 1653–1728 | - | 0.23 | - |
33 | carvone | 1711 | 1699–1751 | 0.42 | - | - |
34 | germacrene D | 1716 | 1676–1726 | 0.32 | 0.14 | - |
35 | caryophyllene oxide | 1976 | 1936–2023 | - | 0.44 | - |
36 | (−)spathulenol | 2124 | 2074–2150 | 0.12 | - | - |
37 | thymol | 2164 | 2100–2205 | 0.98 | 57.06 | 0.25 |
38 | α-bisabolol | 2197 | 2178–2234 | 0.19 | - | - |
39 | carvacrol | 2211 | 2140–2246 | 60.65 | 3.59 | 0.26 |
40 | β-eudesmol | 2235 | 2196–2272 | - | - | 0.15 |
Total identified | 97.28 | 97.35 | 98.36 | |||
Monoterpene hydrocarbons | 30.28 | 29.31 | 1.99 | |||
Oxygenated monoterpenes | 4.20 | 3.72 | 95.23 | |||
Phenolic monoterpenes | 61.63 | 60.65 | 0.51 | |||
Sesquiterpene hydrocarbons | 0.32 | 2.85 | 0.20 | |||
Oxygenated sesquiterpenes | 0.31 | 0.44 | 0.15 | |||
Other compounds | 0.54 | 0.38 | 0.28 |
Essential Oil | Average Viability of Conidia (%) |
---|---|
Costmary | 91.96 a * |
Thyme | 74.31 b |
Greek oregano | 57.13 c |
Essential Oil | Incubation Time | MIC | MFC |
---|---|---|---|
Greek oregano | 15 min | 0.8 | 1.6 |
2 h | 0.5 | 1.3 | |
24 h | 0.4 | 0.9 | |
Thyme | 15 min | 1.5 | 3.6 |
2 h | 0.8 | 2.0 | |
24 h | 1.2 | 2.4 |
Essential Oil | Concentration (%) | Inhibition of the Growth of the Colonies (%) |
---|---|---|
Greek oregano | 0.4 | 62 |
0.9 | 65 | |
Thyme | 1.2 | 60 |
2.4 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paduch-Cichal, E.; Wakuliński, W.; Wilkos, A.; Bączek, K.; Kosakowska, O.; Węglarz, Z.; Mirzwa-Mróz, E. A Preliminary Study of the Response of Microcyclosporella mali to Selected Essential Oils. Molecules 2025, 30, 3122. https://doi.org/10.3390/molecules30153122
Paduch-Cichal E, Wakuliński W, Wilkos A, Bączek K, Kosakowska O, Węglarz Z, Mirzwa-Mróz E. A Preliminary Study of the Response of Microcyclosporella mali to Selected Essential Oils. Molecules. 2025; 30(15):3122. https://doi.org/10.3390/molecules30153122
Chicago/Turabian StylePaduch-Cichal, Elżbieta, Wojciech Wakuliński, Anna Wilkos, Katarzyna Bączek, Olga Kosakowska, Zenon Węglarz, and Ewa Mirzwa-Mróz. 2025. "A Preliminary Study of the Response of Microcyclosporella mali to Selected Essential Oils" Molecules 30, no. 15: 3122. https://doi.org/10.3390/molecules30153122
APA StylePaduch-Cichal, E., Wakuliński, W., Wilkos, A., Bączek, K., Kosakowska, O., Węglarz, Z., & Mirzwa-Mróz, E. (2025). A Preliminary Study of the Response of Microcyclosporella mali to Selected Essential Oils. Molecules, 30(15), 3122. https://doi.org/10.3390/molecules30153122