Stabilizing Water-in-Water Emulsions Using Oil Droplets
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsumoto, S.; Kita, Y.; Yonezawa, D. An attempt at preparing water-in-oil-in-water multiple-phase emulsions. J. Colloid Interface Sci. 1976, 57, 353–361. [Google Scholar] [CrossRef]
- Ficheux, M.F.; Bonakdar, L.; Leal-Calderon, F.; Bibette, J. Some Stability Criteria for Double Emulsions. Langmuir 1998, 14, 2702–2706. [Google Scholar] [CrossRef]
- Kanouni, M.; Rosano, H.L.; Naouli, N. Preparation of a stable double emulsion (W1/O/W2): Role of the interfacial films on the stability of the system. Adv. Colloid Interface Sci. 2002, 99, 229–254. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Anton, N.; Akram, S.; Er-Rafik, M.; Anton, H.; Klymchenko, A.; Yu, W.; Vandamme, T.F.; Serra, C.A. A new method for the formulation of double nanoemulsions. Soft Matter 2017, 13, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Hanson, J.A.; Chang, C.B.; Graves, S.M.; Li, Z.; Mason, T.G.; Deming, T.J. Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 2008, 455, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Utada, A.S.; Lorenceau, E.; Link, D.R.; Kaplan, P.D.; Stone, H.A.; Weitz, D.A. Monodisperse Double Emulsions Generated from a Microcapillary Device. Science 2005, 308, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, M.-J.; Chu, L.-Y. Microfluidic approach for encapsulation via double emulsions. Curr. Opin. Pharmacol. 2014, 18, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Garti, N.; Bisperink, C. Double emulsions: Progress and applications. Curr. Opin. Colloid Interface Sci. 1998, 3, 657–667. [Google Scholar] [CrossRef]
- Garti, N.; Aserin, A. Double emulsions stabilized by macromolecular surfactants. Adv. Colloid Interface Sci. 1996, 65, 37–69. [Google Scholar] [CrossRef]
- Muschiolik, G.; Dickinson, E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Serra, C.A.; Vandamme, T.F.; Yu, W.; Anton, N. Double emulsions prepared by two-step emulsification: History, state-of-the-art and perspective. J. Control. Release 2019, 295, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Garti, N. Double emulsions scope, limitations and new achievements. Colloids Surf. A 1997, 123–124, 233–246. [Google Scholar] [CrossRef]
- Florence, A.T.; Whitehill, D. Some features of breakdown in water-in-oil-in-water multiple emulsions. J. Colloid Interface Sci. 1981, 79, 243–256. [Google Scholar] [CrossRef]
- Dumas, F.; Benoit, J.-P.; Saulnier, P.; Roger, E. A new method to prepare microparticles based on an Aqueous Two-Phase system (ATPS), without organic solvents. J. Colloid Interface Sci. 2021, 599, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Florence, A.T.; Whitehill, D. The formulation and stability of multiple emulsions. Int. J. Pharm. 1982, 11, 277–308. [Google Scholar] [CrossRef]
- Gao, H.; Ma, L.; Cheng, C.; Liu, J.; Liang, R.; Zou, L.; Liu, W.; McClements, D.J. Review of recent advances in the preparation, properties, and applications of high internal phase emulsions. Trends Food Sci. Technol. 2021, 112, 36–49. [Google Scholar] [CrossRef]
- Hong, L.; Sun, G.; Cai, J.; Ngai, T. One-Step Formation of W/O/W Multiple Emulsions Stabilized by Single Amphiphilic Block Copolymers. Langmuir 2012, 28, 2332–2336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ngai, T. One-Step Formation of Double Emulsions Stabilized by PNIPAM-based Microgels: The Role of Co-monomer. Langmuir 2021, 37, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Song, J.; Zhang, S.; Xu, X.-Q.; Wang, Y. Formulating Polyethylene Glycol as Supramolecular Emulsifiers for One-Step Double Emulsions. Langmuir 2017, 33, 9160–9169. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, K.; Choi, S.Q. Controllable one-step double emulsion formation via phase inversion. Soft Matter 2018, 14, 94–1099. [Google Scholar] [CrossRef] [PubMed]
- Protat, M.; Bodin, N.; Gobeaux, F.; Malloggi, F.; Daillant, J.; Pantoustier, N.; Guenoun, P.; Perrin, P. Biocompatible Stimuli-Responsive W/O/W Multiple Emulsions Prepared by One-Step Mixing with a Single Diblock Copolymer Emulsifier. Langmuir 2016, 32, 10912–10919. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, Z.; Tao, X.; Jia, J.; Lian, X.; Wang, Y. Redox-Driven Spontaneous Double Emulsion. ACS Macro Lett. 2016, 9, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Huang, X.; Zhang, X.; Xie, Z.; Wang, Y. One-step Preparation of Macroporous Polymer Particles with Multiple Interconnected Chambers: A Candidate for Trapping Biomacromolecules. Angew. Chem. Int. Ed. 2013, 52, 10625–10629. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Huang, X.; Wang, Y. Managing the Phase Separation in Double Emulsion by Tuning Amphiphilicity via a Supramolecular Route. Langmuir 2014, 30, 14460–14468. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Qian, Q.; Wang, Y. Anisotropic Particles from a One-Pot Double Emulsion Induced by Partial Wetting and Their Triggered Release. Small 2014, 10, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Sheng, Y.; Ngai, T. Pickering emulsions: Versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci. 2020, 49, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ao, Z.; Yang, Z.; Wang, J.; Zhang, G.; Ngai, T. Emulsion-Templated Liquid Core-Polymer Shell Microcapsule Formation. Langmuir 2009, 25, 2572–2574. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Fang, R.; Wang, D.; Wang, J.; Xu, H.; Wang, Y.; Zhang, X. Tuning Polymeric Amphiphilicity via Se-N Interactions: Towards One-Step Double Emulsion for Highly Selective Enzyme Mimics. Small 2014, 11, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion. Materials 2016, 8, 903. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Z.; Wang, D.; Ma, N.; Li, C.; Wang, Y. Surfactant-Free Emulsions with Erasable Triggered Phase Inversions. Langmuir 2016, 32, 11039–11042. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Liu, M.; Zhou, X.; Hong, L.; Ngai, T. Influence of asymmetric ratio of amphiphilic diblock copolymers on one-step formation and stability of multiple emulsions. Colloids Surf. A 2014, 454, 16–22. [Google Scholar] [CrossRef]
- Bae, J.; Russell, T.P.; Hayward, R.C. Osmotically Driven Formation of Double Emulsions Stabilized by Amphiphilic Block Copolymers. Angew. Chem. Int. Ed. 2014, 53, 8240–8245. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hayward, R.C. Interfacial tension of evaporating emulsion droplets containing amphiphilic block copolymers: Effects of solvent and polymer composition. J. Colloid Interface Sci. 2012, 365, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hayward, R.C. Hierarchically Structured Microparticles Formed by Interfacial Instabilities of Emulsion Droplets Containing Amphiphilic Block Copolymers. Angew. Chem. Int. Ed. 2008, 47, 2113–2116. [Google Scholar] [CrossRef] [PubMed]
- Esquena, J. Water-in-water (W/W) emulsions. Curr. Opin. Colloid Interface Sci. 2016, 25, 109–119. [Google Scholar] [CrossRef]
- Perro, A.; Coudon, N.M.; Chapel, J.-P.; Martin, N.; Béven, L.; Douliez, J.-P. Building micro-capsules using water-in-water emulsion droplets as templates. J. Colloid Interface Sci. 2022, 613, 681–696. [Google Scholar] [CrossRef] [PubMed]
- Torre, P.; Keating, C.D.; Mansy, S.S. Multiphase Water-in-Oil Emulsion Droplets for Cell-Free Transcription-Translation. Langmuir 2014, 30, 5695–5699. [Google Scholar] [CrossRef] [PubMed]
- Dominak, L.M.; Gundermann, E.L.; Keating, C.D. Microcompartmentation in Artificial Cells: pH-Induced Conformational Changes Alter Protein Localization. Langmuir 2010, 26, 5697–5705. [Google Scholar] [CrossRef] [PubMed]
- Aumiller, W.M.; Keating, C.D. Experimental models for dynamic compartmentalization of biomolecules in liquid organelles: Reversible formation and partitioning in aqueous biphasic systems. Adv. Colloid Interface Sci. 2017, 239, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, M.R.; Mangeney-Slavin, L.K.; Long, M.S.; Djoko, K.Y.; Keating, C.D. Aqueous phase separation in giant vesicles. J. Am. Chem. Soc. 2002, 124, 13374–13375. [Google Scholar] [CrossRef] [PubMed]
- Keating, C.D. Aqueous Phase Separation as a Possible Route to Compartmentalization of Biological Molecules. Acc. Chem. Res. 2012, 45, 2114–2124. [Google Scholar] [CrossRef] [PubMed]
- Vogele, K.; Frank, T.; Gasser, L.; Goetzfried, M.A.; Hackl, M.W.; Sieber, S.A.; Simmel, F.C.; Pirzer, T. Towards synthetic cells using peptide-based reaction compartments. Nat. Commun. 2018, 9, 3862. [Google Scholar] [CrossRef] [PubMed]
- Williams David, S.; Patil Avinash, J.; Mann, S. Spontaneous Structuration in Coacervate-Based Protocells by Polyoxometalate-Mediated Membrane Assembly. Small 2014, 10, 1830–1840. [Google Scholar] [CrossRef] [PubMed]
- Moreau, N.G.; Martin, N.; Gobbo, P.; Tang, T.Y.D.; Mann, S. Spontaneous membrane-less multi-compartmentalization via aqueous two-phase separation in complex coacervate micro-droplets. Chem. Commun. 2020, 56, 12717–12720. [Google Scholar] [CrossRef] [PubMed]
- Sakuta, H.; Fujita, F.; Hamada, T.; Hayashi, M.; Takiguchi, K.; Tsumoto, K.; Yoshikawa, K. Self-Emergent Protocells Generated in an Aqueous Solution with Binary Macromolecules through Liquid-Liquid Phase Separation. ChemBioChem 2020, 5, 3323–3328. [Google Scholar] [CrossRef] [PubMed]
- Koga, S.; Williams, D.S.; Perriman, A.W.; Mann, S. Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 2011, 3, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Martin, N. Dynamic Synthetic Cells Based on Liquid-Liquid Phase Separation. ChemBioChem 2019, 20, 2553–2568. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.; Douliez, J.-P.; Qiao, Y.; Booth, R.; Li, M.; Mann, S. Antagonistic chemical coupling in self-reconfigurable host-guest protocells. Nat. Commun. 2018, 9, 3652. [Google Scholar] [CrossRef] [PubMed]
- Poortinga, A.T. Microcapsules from Self-Assembled Colloidal Particles Using Aqueous Phase-Separated Polymer Solutions. Langmuir 2008, 24, 1644–1647. [Google Scholar] [CrossRef] [PubMed]
- Douliez, J.-P.; Perro, A.; Béven, l. Stabilization of all-in-water emulsions to form capsules as artificial cells. ChemBioChem 2019, 20, 2546–2552. [Google Scholar] [CrossRef] [PubMed]
- Ben Ayed, E.; Cochereau, R.; Dechancé, C.; Capron, I.; Nicolai, T.; Benyahia, L. Water-In-Water Emulsion Gels Stabilized by Cellulose Nanocrystals. Langmuir 2018, 34, 6887–6893. [Google Scholar] [CrossRef] [PubMed]
- Merland, T.O.; Waldmann, L.A.; Guignard, O.; Tatry, M.-C.; Wirotius, A.-L.; Lapeyre, V.; Garrigue, P.; Nicolai, T.; Benyahia, L.; Ravaine, V. Thermo-induced inversion of water-in-water emulsion stability by bis-hydrophilic microgels. J. Colloid Interface Sci. 2022, 608, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, R.A.; Nicolai, T.; Chassenieux, C.; Benyahia, L. Stabilization of Water-in-Water Emulsions by Polysaccharide-Coated Protein Particles. Langmuir 2016, 32, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.T.; Wang, W.; Saunders, B.R.; Benyahia, L.; Nicolai, T. pH-Responsive Water-in-Water Pickering Emulsions. Langmuir 2015, 31, 3605–3611. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, G.; Nicolai, T.; Benyahia, L.; Durand, D. Particles Trapped at the Droplet Interface in Water-in-Water Emulsions. Langmuir 2012, 28, 5921–5926. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, T.; Murray, B. Particle stabilized water in water emulsions. Food Hydrocoll. 2017, 68, 157–163. [Google Scholar] [CrossRef]
- Gonzalez-Jordan, A.; Nicolai, T.; Benyahia, L. Influence of the Protein Particle Morphology and Partitioning on the Behavior of Particle-Stabilized Water-in-Water Emulsions. Langmuir 2016, 32, 7189–7197. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Jordan, A.; Nicolai, T.; Benyahia, L. Enhancement of the particle stabilization of water-in-water emulsions by modulating the phase preference of the particles. J. Colloid Interface Sci. 2018, 530, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.; Benyahia, L.; Nicolai, T. Effect of adding a third polysaccharide on the adsorption of protein microgels at the interface of polysaccharide-based water in water emulsions. J. Colloid Interface Sci. 2021, 603, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Jordan, A.; Benyahia, L.; Nicolai, T. Cold gelation of water in water emulsions stabilized by protein particles. Colloids Surf. A 2017, 532, 332–341. [Google Scholar] [CrossRef]
- Zhu, S.; Forth, J.; Xie, G.; Chao, Y.; Tian, J.; Russell, T.P.; Shum, H.C. Rapid Multilevel Compartmentalization of Stable All-Aqueous Blastosomes by Interfacial Aqueous-Phase Separation. ACS Nano 2020, 14, 11215–11224. [Google Scholar] [CrossRef] [PubMed]
- Dewey, D.C.; Strulson, C.A.; Cacace, D.N.; Bevilacqua, P.C.; Keating, C.D. Bioreactor droplets from liposome-stabilized all-aqueous emulsions. Nat. Commun. 2014, 5, 4670. [Google Scholar] [CrossRef] [PubMed]
- Douliez, J.-P.; Perro, A.; Chapel, J.-P.; Goudeau, B.; Béven, L. Preparation of Template-Free Robust Yolk-Shell Gelled Particles from Controllably Evolved All-in-Water Emulsions. Small 2018, 14, 1803042. [Google Scholar] [CrossRef] [PubMed]
- Douliez, J.-P.; Martin, N.; Beneyton, T.; Eloi, J.-C.; Chapel, J.-P.; Navailles, L.; Baret, J.-C.; Mann, S.; Béven, L. Preparation of Swellable Hydrogel-Containing Colloidosomes from Aqueous Two-Phase Pickering Emulsion Droplets. Angew. Chem. Int. Ed. 2018, 57, 7780–7784. [Google Scholar] [CrossRef] [PubMed]
- Ganley, W.J.; Ryan, P.T.; van Duijneveldt, J.S. Stabilisation of water-in-water emulsions by montmorillonite platelets. J. Colloid Interface Sci. 2017, 505, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Bago Rodriguez, A.M.; Binks, B.P.; Sekine, T. Novel stabilisation of emulsions by soft particles: Polyelectrolyte complexes. Faraday Discuss. 2016, 191, 255–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Contini, C.; Hindley, J.W.; Bolognesi, G.; Elani, Y.; Ces, O. Engineering motile aqueous phase-separated droplets via liposome stabilisation. Nat. Commun. 2021, 12, 1673. [Google Scholar] [CrossRef] [PubMed]
- Peddireddy, K.R.; Nicolai, T.; Benyahia, L.; Capron, I. Stabilization of Water-in-Water Emulsions by Nanorods. ACS Macro Lett. 2016, 5, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Tea, L.; Nicolai, T.; Renou, F. Stabilization of Water-In-Water Emulsions by Linear Homo-Polyelectrolytes. Langmuir 2019, 35, 9029–9036. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.T.; Nicolai, T.; Benyahia, L. Stabilization of Water-in-Water Emulsions by Addition of Protein Particles. Langmuir 2013, 29, 10658–10664. [Google Scholar] [CrossRef] [PubMed]
- Coudon, N.; Navailles, L.; Nallet, F.; Ly, I.; Bentaleb, A.; Chapel, J.-P.; Béven, L.; Douliez, J.-P.; Martin, N. Stabilization of all-aqueous droplets by interfacial self-assembly of fatty acids bilayers. J. Colloid Interface Sci. 2022, 617, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Beldengré, Y.; Dallaris, V.; Jan, C.; Protat, R.; Miras, J.; Calvo, M.; Garca-Celma, M.J.; Esquena, J. Formation and stabilization of multiple water-in-water-in-water (W/W/W) emulsions. Food Hydrocoll. 2019, 102, 105588. [Google Scholar] [CrossRef]
- Abbas, M.; Lipiski, W.P.; Wang, J.; Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 2021, 50, 3690–3705. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douliez, J.-P.; Béven, L. Stabilizing Water-in-Water Emulsions Using Oil Droplets. Molecules 2025, 30, 3120. https://doi.org/10.3390/molecules30153120
Douliez J-P, Béven L. Stabilizing Water-in-Water Emulsions Using Oil Droplets. Molecules. 2025; 30(15):3120. https://doi.org/10.3390/molecules30153120
Chicago/Turabian StyleDouliez, Jean-Paul, and Laure Béven. 2025. "Stabilizing Water-in-Water Emulsions Using Oil Droplets" Molecules 30, no. 15: 3120. https://doi.org/10.3390/molecules30153120
APA StyleDouliez, J.-P., & Béven, L. (2025). Stabilizing Water-in-Water Emulsions Using Oil Droplets. Molecules, 30(15), 3120. https://doi.org/10.3390/molecules30153120