Essential Oil from the Leaves of Annona neoinsignis H. Rainer (Annonaceae) Against Liver Cancer: In Vitro and In Vivo Studies
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the EO from the Leaves of A. neoinsignis
2.2. Cytotoxicity of the EO Extracted from the Leaves of A. neoinsignis
2.3. Induction of Apoptosis by A. neoinsignis Leaf EO in Liver Cancer Cells
2.4. Effect of A. neoinsignis Leaf EO on Mice Xenografted with Liver Cancer Cells
3. Materials and Methods
3.1. Botanical Material
3.2. EO Extraction
3.3. Analysis of the Chemical Constituents
3.4. Cytotoxicity Assay
3.5. DNA Fragmentation and Cell Cycle Distribution Analysis
3.6. Apoptosis Staining Assay
3.7. Mitochondrial Transmembrane Potential Analysis
3.8. Human Liver Cancer Xenograft Model
3.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhu, X.; Beeraka, N.M.; Zhao, R.; Li, S.; Li, F.; Mahesh, P.A.; Nikolenko, V.N.; Fan, R.; Liu, J. Projected epidemiological trends and burden of liver cancer by 2040 based on GBD, CI5plus, and WHO data. Sci. Rep. 2024, 14, 28131. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Ducreux, M.; Abou-Alfa, G.K.; Bekaii-Saab, T.; Berlin, J.; Cervantes, A.; de Baere, T.; Eng, C.; Galle, P.; Gill, S.; Gruenberger, T.; et al. The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022. ESMO Open 2023, 8, 101567. [Google Scholar] [CrossRef] [PubMed]
- Ntellas, P.; Chau, I. Updates on Systemic Therapy for Hepatocellular Carcinoma. Am. Soc. Clin. Oncol. Educ. Book. 2024, 44, e430028. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wang, S.; Xia, L.; Sun, Z.; Chan, K.M.; Bernards, R.; Qin, W.; Chen, J.; Xia, Q.; Jin, H. Hepatocellular carcinoma: Signaling pathways and therapeutic advances. Signal Transduct. Target Ther. 2025, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Rainer, H. Monographic studies in the genus Annona L. (Annonaceae): Inclusion of the genus Rollinia A.ST.-HIL. Ann. Des. Naturhistorischen Mus. Wien. 2007, 108, 191–205. [Google Scholar]
- Oliveira, A.N.; Amaral, I.L.; Ramos, M.B.P.; Nobre, A.D.; Couto, L.B.; Sahdo, R.M. Composition and floristic-structural diversity of a hectare of terra firme dense forest in Central Amazonia, Amazonas, Brazil. Acta Amaz. 2008, 38, 627–642. [Google Scholar] [CrossRef]
- Leite, D.O.D.; de FA Nonato, C.; Camilo, C.J.; de Carvalho, N.K.G.; da Nobrega, M.G.L.A.; Pereira, R.C.; da Costa, J.G.M. Annona Genus: Traditional Uses, Phytochemistry and Biological Activities. Curr. Pharm. Des. 2020, 26, 4056–4091. [Google Scholar] [CrossRef] [PubMed]
- Leal, F.; Paull, R.E. The genus Annona: Botanical characteristics, horticultural requirements and uses. Crop Sci. 2023, 63, 1030–1049. [Google Scholar] [CrossRef]
- Mendes-Silva, I.; Lopes, J.C.; Silva, L.V.; Bazante, M.L. Annona in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available online: https://floradobrasil.jbrj.gov.br/FB110253 (accessed on 9 May 2025).
- Jürgens, A.; Webber, A.C.; Gottsberger, G. Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips. Phytochemistry 2000, 55, 551–558. [Google Scholar] [CrossRef]
- Ahmed, A.L.; Bassem, S.E.; Mohamed, Y.H.; Gamila, M.W. Cytotoxic essential oil from Annona sengalensis Pers. leaves. Pharmacogn. Res. 2010, 2, 211–214. [Google Scholar] [CrossRef]
- Elhawary, S.S.; El Tantawy, M.E.; Rabeh, M.A.; Fawaz, N.E. DNA fingerprinting, chemical composition, antitumor and antimicrobial activities of the essential oils and extractives of four Annona species from Egypt. J. Nat. Sci. Res. 2013, 3, 59–68. [Google Scholar]
- Costa, E.V.; Dutra, L.M.; Salvador, M.J.; Ribeiro, L.H.; Gadelha, F.R.; de Carvalho, J.E. Chemical composition of the essential oils of Annona pickelii and Annona salzmannii (Annonaceae), and their antitumour and trypanocidal activities. Nat. Prod. Res. 2013, 27, 997–1001. [Google Scholar] [CrossRef]
- Bomfim, L.M.; Menezes, L.R.; Rodrigues, A.C.; Dias, R.B.; Rocha, C.A.; Soares, M.B.; Neto, A.F.; Nascimento, M.P.; Campos, A.F.; Silva, L.C.; et al. Antitumour Activity of the Microencapsulation of Annona vepretorum Essential Oil. Basic. Clin. Pharmacol. Toxicol. 2016, 118, 208–213. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Peng, C.X.; Hu, Y.; Bu, C.; Guo, S.C.; Li, X.; Chen, Y.; Chen, J.W. Studies on chemical constituents and anti-hepatoma effects of essential oil from Annona squamosa L. pericarps. Nat. Prod. Res. 2017, 31, 1305–1308. [Google Scholar] [CrossRef]
- Brito, M.T.; Ferreira, R.C.; Beltrao, D.M.; Moura, A.P.G.; Xavier, A.L.; Pita, J.C.L.R.; Batista, T.M.; Longato, G.B.; Ruiz, A.L.T.G.; Carvalho, J.E.D.; et al. Antitumor activity and toxicity of volatile oil from the leaves of Annona leptopetala. Rev. Bras. Farmacogn. 2018, 28, 602–609. [Google Scholar] [CrossRef]
- Rabelo, S.V.; Oliveira, F.G.D.S.; Lira, M.M.C.; Dutra, L.M.; Sartoratto, A.; Duarte, M.C.T.; Luciano, M.C.D.S.; Silva, M.F.S.; Pessoa, C.D.O.; Moraes Filho, M.O.; et al. Non-polar chemical constituents of atemoya and evaluation of the cytotoxic and antimicrobial activity. Phyton-Int. J. Exp. Bot. 2021, 90, 921. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Elzefzafy, N.; El-Khadragy, M.F.; Alzahrani, A.; Yehia, H.M.; Kachlicki, P. Comprehensive Tools of Alkaloid/Volatile Compounds-Metabolomics and DNA Profiles: Bioassay-Role-Guided Differentiation Process of Six Annona sp. Grown in Egypt as Anticancer Therapy. Pharmaceuticals 2024, 17, 103. [Google Scholar] [CrossRef]
- Van Den Dool, H.A.N.D.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007; p. 803. [Google Scholar]
- Souza, T.J.T.; Zanetti, G.D.; Apel, M.A.; Henriques, A.T.; Manfron, M.P. Characterization of seasonal and chemotypical variability in the essential oil from leaves of Annona neosalicifolia H. Rainer (Annonaceae). Nat. Volatiles Essent. Oils 2021, 8, 81–91. [Google Scholar] [CrossRef]
- Siqueira, C.A.T.; Oliani, J.; Sartoratto, A.; Queiroga, C.L.; Moreno, P.R.H.; Reimão, J.Q.; Tempone, A.G.; Fischer, D.C.H. Chemical constituents of the volatile oil from leaves of Annona coriacea and in vitro antiprotozoal activity. Rev. Bras. Farmacog. 2011, 21, 33–40. [Google Scholar] [CrossRef]
- Costa, E.V.; Dutra, L.M.; Nogueira, P.C.L.; Moraes, V.R.S.; Salvador, M.J.; Ribeiro, L.H.G.; Gadelha, F.R. Essential oil from the leaves of Annona vepretorum: Chemical composition and bioactivity. Nat. Prod. Commun. 2012, 7, 265–266. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.S.; Joshi, N.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Chauhan, A. Characterization of the leaf essential oil composition of Annona squamosa L. from foothills of north India. Med. Arom. Plants 2016, 5, 5–9. [Google Scholar] [CrossRef]
- Joseph, S.M.; Dev, A.R.A.; Kanchana, A. Unveiling the chemical variations of Annona essential oils and its associated pharmacological activities. J. Mol. Struct. 2023, 1292, 136082. [Google Scholar] [CrossRef]
- Soares, E.R.; Almeida, R.A.; Lima, B.R.; Pereira Junior, R.C.; Freitas, F.A.; Mafra, H.R.; Araujo, N.F.; Maciel, J.B.; Leão, L.Q.S.; Souza, A.D.L.; et al. Chemical Composition of Essential Oils of Three Species of the Genus Bocageopsis (Annonaceae) Amazon Region. Rev. Virtual Quim. 2022, 14, 1–7. [Google Scholar] [CrossRef]
- Palazzo, M.C.; Agius, B.R.; Wright, B.S.; Haber, W.A.; Moriarity, D.M.; Setzer, W.N. Chemical compositions and cytotoxic activities of leaf essential oils of four Lauraceae tree species from Monteverde, Costa Rica. Rec. Nat. Prod. 2009, 3, 32–37. [Google Scholar]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Saab, A.M.; Statti, G.A.; Menichini, F. Antiproliferative effects of essential oils and their major constituents in human renal adenocarcinoma and amelanotic melanoma cells. Cell Prolif. 2008, 41, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; An, Q.; Zhao, Z.; Wu, M.; Yang, C.; Liang, W.; Xu, X.; Jiang, T.; Zhang, G. Beta-elemene: A phytochemical with promise as a drug candidate for tumor therapy and adjuvant tumor therapy. Biomed. Pharmacother. 2024, 172, 116266. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedula, V.S.; Schilling, J.K.; Miller, J.S.; Andriantsiferana, R.; Rasamison, V.E.; Kingston, D.G. New cytotoxic terpenoids from the wood of Vepris punctata from the Madagascar Rainforest. J. Nat. Prod. 2004, 67, 895–898. [Google Scholar] [CrossRef] [PubMed]
- Vitale, I.; Pietrocola, F.; Guilbaud, E.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostini, M.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; et al. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ. 2023, 30, 1097–1154. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Wei, S.; Kim, B.S.; Kim, B.; Bae, S.J.; Chae, Y.C.; Ryu, D.; Ha, K.T. Diversity and complexity of cell death: A historical review. Exp. Mol. Med. 2023, 55, 1573–1594. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, X.; Yang, M.; Liu, S.B. Research progress on morphology and mechanism of programmed cell death. Cell Death Dis. 2024, 15, 327. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Huang, F.; Zhao, J.; Ding, H.; Cunningham, C.; Coad, J.E.; Flynn, D.C.; Reed, E.; Li, Q.Q. Antitumor effect of beta-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death. Cell. Mol. Life Sci. 2005, 62, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Y.; Zhang, L.; Geng, Y.D.; Wang, B.; Feng, X.J.; Chen, Z.L.; Wei, W.; Jiang, L. β-Elemene induces apoptosis and autophagy in colorectal cancer cells through regulating the ROS/AMPK/mTOR pathway. Chin. J. Nat. Med. 2022, 20, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Basheer, I.; Wang, H.; Li, G.; Jehan, S.; Raza, A.; Du, C.; Ullah, N.; Li, D.; Sui, G. β-caryophyllene sensitizes hepatocellular carcinoma cells to chemotherapeutics and inhibits cell malignancy through targeting MAPK signaling pathway. Front. Pharmacol 2024, 15, 1492670. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.B.; Menezes, L.R.A.; Sampaio, M.F.C.; Meira, C.S.; Guimaraes, E.T.; Soares, M.B.P.; Prata, A.P.N.; Nogueira, P.C.L.; Costa, E.V. Chemical composition and anti-Trypanosoma cruzi activity of essential oils obtained from leaves of Xylopia frutescens and X. laevigata (Annonaceae). Nat. Prod. Commun. 2013, 8, 403–406. [Google Scholar] [CrossRef] [PubMed]
- ATCC. Animal Cell Culture Guide: Get Time-Tested Tips for Culturing ATCC Animal Cells. Available online: https://www.atcc.org/resources/culture-guides/animal-cell-culture-guide (accessed on 22 January 2024).
- Ahmed, S.A.; Gogal, R.M.; Walsh, J.E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes an alternative to [3H] thymidine incorporation assay. J. Immunol. Methods 1994, 170, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, I.; Migliorati, G.; Pagliacci, M.C.; Grignani, F.; Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods. 1991, 139, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Idziorek, T.; Estaquier, J.; De Bels, F.; Ameisen, J.C. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J. Immunol. Methods. 1995, 185, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Sureda, F.X.; Escubedo, E.; Gabriel, C.; Comas, J.; Camarasa, J.; Camins, A. Mitochondrial membrane potential measurement in rat cerebellar neurons by flow cytometry. Cytometry 1997, 28, 74–80. [Google Scholar] [CrossRef]
Compounds | RI a | RI b | Peak Area % | |
---|---|---|---|---|
1 | β-Pinene | 970 | 974 | 0.04 ± 0.00 |
2 | Myrcene | 988 | 988 | 0.11 ± 0.01 |
3 | Limonene | 1027 | 1024 | 0.07 ± 0.01 |
4 | (Z)-β-Ocimene | 1035 | 1032 | 0.04 ± 0.00 |
5 | (E)-β-Ocimene | 1046 | 1044 | 0.20 ± 0.02 |
6 | Terpinolene | 1083 | 1086 | 0.02 ± 0.00 |
7 | Linalool | 1098 | 1095 | 0.39 ± 0.02 |
8 | Terpinen-4-ol | 1179 | 1174 | 0.05 ± 0.00 |
9 | α-Terpineol | 1193 | 1186 | 0.24 ± 0.05 |
10 | Nerol | 1223 | 1227 | 0.01 ± 0.00 |
11 | Geraniol | 1250 | 1249 | 0.04 ± 0.00 |
12 | δ-Elemene | 1334 | 1335 | 2.27 ± 0.20 |
13 | α-Cubebene | 1346 | 1348 | 0.64 ± 0.07 |
14 | α-Ylangene | 1367 | 1373 | 0.41 ± 0.10 |
15 | α-Copaene | 1374 | 1374 | 2.52 ± 0.25 |
16 | β-Elemene | 1389 | 1389 | 29.61 ± 3.80 |
17 | (E)-Caryophyllene | 1419 | 1417 | 18.23 ± 0.43 |
18 | γ-Elemene | 1428 | 1434 | 4.47 ± 0.04 |
19 | α-trans-Bergamotene | 1432 | 1432 | 0.87 ± 0.02 |
20 | Aromadendrene | 1437 | 1439 | 0.05 ± 0.00 |
21 | cis-Muurola-3,5-diene | 1448 | 1448 | 0.10 ± 0.00 |
22 | α-Humulene | 1454 | 1452 | 3.33 ± 0.06 |
23 | cis-Cadina-1(6),4-diene | 1461 | 1461 | 0.05 ± 0.00 |
24 | γ-Muurolene | 1473 | 1478 | 0.73 ± 0.02 |
25 | Germacrene D | 14.80 | 1480 | 15.34 ± 2.13 |
26 | β-Selinene | 1488 | 1489 | 1.69 ± 0.07 |
27 | Bicyclogermacrene | 1494 | 1500 | 4.61 ± 0.15 |
28 | α-Muurolene | 1497 | 1500 | 0.20 ± 0.01 |
29 | Germacrene A | 1506 | 1508 | 0.82 ± 0.08 |
30 | γ-Cadinene | 1511 | 1513 | 0.28 ± 0.00 |
31 | δ-Amorphene | 1516 | 1511 | 1.81 ± 0.06 |
32 | trans-Calamenene | 1520 | 1521 | 0.12 ± 0.04 |
33 | (E)-γ-Bisabolene | 1525 | 1529 | 0.57 ± 0.01 |
34 | trans-Cadina-1(2),4-diene | 1531 | 1533 | 0.21 ± 0.01 |
35 | α-Cadinene | 1535 | 1537 | 0.32 ± 0.01 |
36 | Selina-3,7(11)-diene | 1540 | 1545 | 0.15 ± 0.00 |
37 | Germacrene B | 1558 | 1559 | 6.80 ± 0.39 |
38 | Spathulenol | 1575 | 1577 | 0.28 ± 0.02 |
39 | Caryophyllene oxide | 1580 | 1582 | 0.65 ± 0.02 |
40 | Globulol | 1584 | 1590 | 0.10 ± 0.00 |
41 | 1-epi-Cubenol | 1626 | 1627 | 0.33 ± 0.00 |
42 | Cubenol | 1642 | 1645 | 0.25 ± 0.01 |
43 | α-Cadinol | 1653 | 1652 | 0.27 ± 0.01 |
44 | neo-Intermedeol | 1657 | 1658 | 0.55 ± 0.01 |
Monoterpenes | 1.22% | |||
Sesquiterpenes | 98.63% | |||
Total Identified | 99.84% | |||
Total Not Identified (N.I.) | 0.15% |
Cells | Histological Type | IC50 and 95% CI (in μg/mL) | |
---|---|---|---|
DOX | EO | ||
Cancer cells | |||
HepG2 | Human liver cancer | 0.03 0.02–0.04 | 27.90 20.44–36.66 |
HCT116 | Human colon cancer | 0.05 0.04–0.06 | 24.35 16.86–37.23 |
MCF-7 | Human breast cancer | 0.84 0.65–1.12 | 37.50 30.07–55.21 |
MDA-MB-231 | Human breast cancer | 0.61 0.47–0.82 | 31.78 24.42–44.90 |
4T1 | Mouse breast cancer | 0.60 0.46–0.81 | 21.64 17.05–27.32 |
B16-F10 | Mouse melanoma | 0.06 0.04–0.08 | 12.28 10.08–14.85 |
Noncancerous cells | |||
MRC-5 | Human lung fibroblast | 1.94 1.40–2.88 | >50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, M.P.; de Castro, M.V.L.; Barbosa, G.A.d.C.; Carvalho, S.G.; Coelho, A.M.R.M.; Dias, R.B.; Soares, M.B.P.; Costa, E.V.; Bezerra, D.P. Essential Oil from the Leaves of Annona neoinsignis H. Rainer (Annonaceae) Against Liver Cancer: In Vitro and In Vivo Studies. Molecules 2025, 30, 2971. https://doi.org/10.3390/molecules30142971
Souza MP, de Castro MVL, Barbosa GAdC, Carvalho SG, Coelho AMRM, Dias RB, Soares MBP, Costa EV, Bezerra DP. Essential Oil from the Leaves of Annona neoinsignis H. Rainer (Annonaceae) Against Liver Cancer: In Vitro and In Vivo Studies. Molecules. 2025; 30(14):2971. https://doi.org/10.3390/molecules30142971
Chicago/Turabian StyleSouza, Melissa P., Maria V. L. de Castro, Gabriela A. da C. Barbosa, Sabrine G. Carvalho, Amanda M. R. M. Coelho, Rosane B. Dias, Milena B. P. Soares, Emmanoel V. Costa, and Daniel P. Bezerra. 2025. "Essential Oil from the Leaves of Annona neoinsignis H. Rainer (Annonaceae) Against Liver Cancer: In Vitro and In Vivo Studies" Molecules 30, no. 14: 2971. https://doi.org/10.3390/molecules30142971
APA StyleSouza, M. P., de Castro, M. V. L., Barbosa, G. A. d. C., Carvalho, S. G., Coelho, A. M. R. M., Dias, R. B., Soares, M. B. P., Costa, E. V., & Bezerra, D. P. (2025). Essential Oil from the Leaves of Annona neoinsignis H. Rainer (Annonaceae) Against Liver Cancer: In Vitro and In Vivo Studies. Molecules, 30(14), 2971. https://doi.org/10.3390/molecules30142971