Non-Destructive Determination of Starch Gelatinization, Head Rice Yield, and Aroma Components in Parboiled Rice by Raman and NIR Spectroscopy
Abstract
1. Introduction
2. Results
2.1. SG and HRY Values
2.2. Aroma Chemicals
2.3. Raman Spectroscopy
2.4. PCA
2.5. Regression Model Based on PLSR
2.6. Effective Wavelength
2.6.1. Finding Effective Wavelengths from Raman and NIR Spectroscopy Data
2.6.2. Effective Wavelength Modeling for Prediction
PLSR
ANN
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Parboiling Process
4.3. Starch Gelatinization of Rice
4.4. Head Rice Yield of Rice
4.5. Spectroscopic Instruments
4.6. HS-SPME-Arrow Aroma Compound
4.7. Statistical Analysis
Partial Least Squares Regression (PLSR)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SG | Starch Gelatinization |
HRY | Head Rice Yield |
PLSR | Partial Least Squares Regression |
PCA | Principal Component Analysis |
CV | Cross-Validation |
P | Prediction |
LA | Learning Automata |
SPME | Solid Phase Microextraction |
RMSE | Root Mean Square Error |
R2 | R-squared |
RPD | Relative Percent Deviation |
LV | Latent Variable |
C | Calibration |
EWs | Effective Wavelengths |
SVM | Support Vector Machine |
References
- Mohapatra, P.K.; Sahu, B.B.; Mohapatra, P.K.; Sahu, B.B. Botany of rice plant. In Panicle Architecture of Rice and Its Relationship with Grain Filling; Springer: Berlin/Heidelberg, Germany, 2022; pp. 27–48. [Google Scholar]
- Uddin, M.M.; Zakeel, M.C.M.; Zavahir, J.S.; Marikar, F.M.; Jahan, I. Heavy metal accumulation in rice and aquatic plants used as human food: A general review. Toxics 2021, 9, 360. [Google Scholar] [CrossRef]
- Hussain, S.; Huang, J.; Huang, J.; Ahmad, S.; Nanda, S.; Anwar, S.; Shakoor, A.; Zhu, C.; Zhu, L.; Cao, X. Rice production under climate change: Adaptations and mitigating strategies. In Environment, Climate, Plant and Vegetation Growth; Springer: Berlin/Heidelberg, Germany, 2020; pp. 659–686. [Google Scholar]
- Shinta, S.; Indriyani, S.; Arisoesilaningsih, E. Morphological variation of six pigmented rice local varieties grown in organic rice field at Sengguruh Village, Kepanjen Subdistrict, Malang District. J. Trop. Life Sci. 2014, 4, 149–160. [Google Scholar] [CrossRef]
- Planning, F.; Unit, M. Assessment of Non-Human Consumption of Rice in Bangladesh; Research Report. 2023. Available online: https://mofood.portal.gov.bd/sites/default/files/files/mofood.portal.gov.bd/page/1f722343_5fdb_494d_8b62_31fc14abc1da/nothi_81_2022_12_22_91671701102%20(2).pdf (accessed on 8 July 2025).
- Zhang, Z.; Liu, Q.; Song, H.; Rong, X.; Ismail, A.M. Responses of different rice (Oryza sativa L.) genotypes to salt stress and relation to carbohydrate metabolism and chlorophyll content. Afr. J. Agric. Res. 2012, 7, 19–27. [Google Scholar]
- Dulka, O.; Prybylskiy, V.; Kuts, A.; Oliinyk, S.; Dong, N.P.; Vitriak, O. The use of rice in the technology of gluten-free fermented non-alcoholic beverages. Food Sci. Technol. 2020, 14, 4–12. [Google Scholar] [CrossRef]
- Jnawali, P.; Kumar, V.; Tanwar, B. Celiac disease: Overview and considerations for development of gluten-free foods. Food Sci. Hum. Wellness 2016, 5, 169–176. [Google Scholar] [CrossRef]
- Wang, J.; Wu, P.; Wang, J.; Wang, J.; Gu, B.; Ge, F.; Chen, X.D. In vitro gastric digestion and emptying of cooked white and brown rice using a dynamic human stomach system. Food Struct. 2022, 31, 100245. [Google Scholar] [CrossRef]
- Saleh, A.S.; Wang, P.; Wang, N.; Yang, L.; Xiao, Z. Brown rice versus white rice: Nutritional quality, potential health benefits, development of food products, and preservation technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1070–1096. [Google Scholar] [CrossRef]
- De Wardener, H.E.; MacGregor, G. Sodium and blood pressure. Curr. Opin. Cardiol. 2002, 17, 360–367. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Igwe, V.S.; Amagwula, I.; Echeta, C.K. Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: A systematic review. Int. J. Food Sci. 2020, 3, 1–32. [Google Scholar]
- Kim, H.Y.; Hwang, I.G.; Kim, T.M.; Woo, K.S.; Park, D.S.; Kim, J.H.; Kim, D.J.; Lee, J.; Lee, Y.R.; Jeong, H.S. Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chem. 2012, 134, 288–293. [Google Scholar] [CrossRef]
- Moongngarm, A.; Daomukda, N.; Khumpika, S. Chemical compositions, phytochemicals, and antioxidant capacity of rice bran, rice bran layer, and rice germ. Apcbee Procedia 2012, 2, 73–79. [Google Scholar] [CrossRef]
- Yajima, I.; Yanai, T.; Nakamura, M.; Sakakibara, H.; Habu, T. Volatile flavor components of cooked rice. Agric. Biol. Chem. 1978, 42, 1229–1233. [Google Scholar]
- Varnamkhasti, M.G.; Mobli, H.; Jafari, A.; Keyhani, A.; Soltanabadi, M.H.; Rafiee, S.; Kheiralipour, K. Some physical properties of rough rice (Oryza sativa L.) grain. J. Cereal Sci. 2008, 47, 496–501. [Google Scholar] [CrossRef]
- Corrêa, P.; Da Silva, F.S.; Jaren, C.; Junior, P.A.; Arana, I. Physical and mechanical properties in rice processing. J. Food Eng. 2007, 79, 137–142. [Google Scholar] [CrossRef]
- Chrastil, J. Chemical and physicochemical changes of rice during storage at different temperatures. J. Cereal Sci. 1990, 11, 71–85. [Google Scholar] [CrossRef]
- Rocha-Villarreal, V.; Serna-Saldivar, S.O.; García-Lara, S. Effects of parboiling and other hydrothermal treatments on the physical, functional, and nutritional properties of rice and other cereals. Cereal Chem. 2018, 95, 79–91. [Google Scholar] [CrossRef]
- Alexandre, N.; Paul, H.J.; Gerardine, N. Effect of parboiling technique on the nutritional quality of rice. Glob. J. Nutr. Food Sci. 2020, 2, 1–13. [Google Scholar] [CrossRef]
- Pinta, W.; Aninbon, C.; Kaewtaphan, P.; Kunyanee, K. Effects of Parboiling on Chemical Properties, Phenolic Content and Antioxidant Capacity in Colored Landrace Rice. Foods 2024, 13, 393. [Google Scholar] [CrossRef]
- Onmankhong, J.; Sirisomboon, P. Texture evaluation of cooked parboiled rice using nondestructive milled whole grain near infrared spectroscopy. J. Cereal Sci. 2021, 97, 103151. [Google Scholar] [CrossRef]
- Martins, G.M.V.; de Sousa, S.; Duarte, M.E.M.; Cavalcanti-Mata, M.E.R.M.; Oliveira, H.M.L. Modeling the combinatory effects of parboiling and cooking on red paddy rice (Oryza sativa L.) properties. LWT 2021, 147, 111607. [Google Scholar] [CrossRef]
- Balbinoti, T.C.V.; Jorge, L.M.M.; Jorge, R.M.M. Intensification and monitoring by Raman spectroscopy of parboiling process. J. Food Process. Preserv. 2020, 44, e14533. [Google Scholar] [CrossRef]
- Balbinoti, T.C.V.; Nicolin, D.J.; de Matos Jorge, L.M.; Jorge, R.M.M. Parboiled rice and parboiling process. Food Eng. Rev. 2018, 10, 165–185. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Khoshtaghaza, M.H.; Suzuki, T.; Minaei, S.; Brenner, T. Quantifying the Relationship between Rice Starch Gelatinization and Moisture-Electrical Conductivity of Paddy during Soaking. J. Food Process Eng. 2016, 39, 442–452. [Google Scholar] [CrossRef]
- Patindol, J.; Newton, J.; Wang, Y.J. Functional properties as affected by laboratory-scale parboiling of rough rice and brown rice. J. Food Sci. 2008, 73, E370–E377. [Google Scholar] [CrossRef]
- Oli, P.; Ward, R.; Adhikari, B.; Torley, P. Parboiled rice: Understanding from a materials science approach. J. Food Eng. 2014, 124, 173–183. [Google Scholar] [CrossRef]
- Islam, M.R.; Roy, P.; Shimizu, N.; Kimura, T. Effect of processing conditions on physical properties of parboiled rice. Food Sci. Technol. Res. 2002, 8, 106–112. [Google Scholar] [CrossRef]
- Miah, M.K.; Haque, A.; Douglass, M.P.; Clarke, B. Parboiling of rice. Part II: Effect of hot soaking time on the degree of starch gelatinization. Int. J. Food Sci. Technol. 2002, 37, 539–545. [Google Scholar] [CrossRef]
- Likitrattanaporn, C.; Noomhorm, A. Effects of simultaneous parboiling and drying by infrared radiation heating on parboiled rice quality. Dry. Technol. 2011, 29, 1066–1075. [Google Scholar] [CrossRef]
- Ayamdoo, J.; Demuyakor, B.; Dogbe, W.; Owusu, R. Parboiling of paddy rice, the science and perceptions of it as practiced in Northern Ghana. Int. J. Sci. Technol. Res. 2013, 2, 13–18. [Google Scholar]
- Abhiram, G.; Amarathunga, K. Effects of far-infrared radiation on the gelatinized rice starch granules. Dry. Technol. 2024, 42, 114–124. [Google Scholar] [CrossRef]
- Bello, M.; Baeza, R.; Tolaba, M. Quality characteristics of milled and cooked rice affected by hydrothermal treatment. J. Food Eng. 2006, 72, 124–133. [Google Scholar] [CrossRef]
- Mondal, M.H.T.; Sarker, M.S.H. Comprehensive energy analysis and environmental sustainability of industrial grain drying. Renew. Sustain. Energy Rev. 2024, 199, 114442. [Google Scholar] [CrossRef]
- Echeverria, G.; Leclerc, C.; Giné-Bordonaba, J.; Romero, A. Sensorial evaluation and aroma of vegetable oils. In Oil and Oilseed Processing: Opportunities and Challenges; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 245–278. [Google Scholar] [CrossRef]
- Čolić, S.; Zec, G.; Natić, M.; Fotirić-Akšić, M. Almond (Prunus dulcis) oil. In Fruit Oils: Chemistry and Functionality; Springer: Berlin/Heidelberg, Germany, 2019; pp. 149–180. [Google Scholar]
- Koyama, S.; Heinbockel, T. The effects of essential oils and terpenes in relation to their routes of intake and application. Int. J. Mol. Sci. 2020, 21, 1558. [Google Scholar] [CrossRef] [PubMed]
- Zawirska-Wojtasiak, R. Optical purity of (R)-(−)-1-octen-3-ol in the aroma of various species of edible mushrooms. Food Chem. 2004, 86, 113–118. [Google Scholar] [CrossRef]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene—What are the potential health benefits of this flavouring and aroma agent? Front. Nutr. 2021, 8, 699666. [Google Scholar] [CrossRef]
- Berger, R.G.; Fruits, I. Volatile Compounds in Foods and Beverages; Routledge: Oxfordshire, UK, 2017; pp. 283–304. [Google Scholar]
- Negro, V.; Mancini, G.; Ruggeri, B.; Fino, D. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization. Bioresour. Technol. 2016, 214, 806–815. [Google Scholar] [CrossRef]
- Li, Y.; Ran, W.; He, C.; Zhou, J.; Chen, Y.; Yu, Z.; Ni, D. Effects of different tea tree varieties on the color, aroma, and taste of Chinese Enshi green tea. Food Chem. X 2022, 14, 100289. [Google Scholar] [CrossRef]
- Kiełtyka-Dadasiewicz, A.; Kubat-Sikorska, A. Chemical diversity of mint essential oils and their significance for aromatherapy. Arch. Physiother. Glob. Res. 2018, 22, 53–59. [Google Scholar] [CrossRef]
- Siano, F.; Catalfamo, M.; Cautela, D.; Servillo, L.; Castaldo, D. Analysis of pulegone and its enanthiomeric distribution in mint-flavoured food products. Food Addit. Contam. 2005, 22, 197–203. [Google Scholar] [CrossRef]
- Ferrer, V.; Paymal, N.; Quinton, C.; Tomi, F.; Luro, F. Investigations of the chemical composition and aromatic properties of peel essential oils throughout the complete phase of fruit development for two cultivars of sweet orange (Citrus sinensis (L.) Osb.). Plants 2022, 11, 2747. [Google Scholar] [CrossRef]
- Darwish, A.G.; Das, P.R.; Olaoye, E.; Gajjar, P.; Ismail, A.; Mohamed, A.G.; Tsolova, V.; Hassan, N.A.; El Kayal, W.; Walters, K.J. Untargeted flower volatilome profiling highlights differential pollinator attraction strategies in muscadine. Front. Plant Sci. 2025, 16, 1548564. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Majumder, S.; Ghosh, A.; Bhattacharya, M. Comprehensive profiling of aroma imparting biomolecules in foliar extract of Hibiscus fragrans Roxburgh: A metabologenesis perspective. J. Biomol. Struct. Dyn. 2022, 40, 10345–10358. [Google Scholar] [CrossRef] [PubMed]
- Thathachar, M.A.; Sastry, P.S. Varieties of learning automata: An overview. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2002, 32, 711–722. [Google Scholar] [CrossRef] [PubMed]
- El Maouardi, M.; De Braekeleer, K.; Bouklouze, A.; Vander Heyden, Y. Comparison of Near-Infrared and Mid-Infrared spectroscopy for the identification and quantification of argan oil adulteration through PCA, PLS-DA and PLS. Food Control 2024, 165, 110671. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
Alcohol Compounds | Value (µg/kg) | Aldehyde Compounds | Value (µg/kg) | Ketone Compounds | Value (µg/kg) |
---|---|---|---|---|---|
1-Pentanol | 15.72 | Hexanal | 229.6 | Heptan-2-one | 9.13 |
n-Hexanol | 17.75 | Pentanal | 15.21 | 6-Methyl-Hept-5-en-2-one | 10.14 |
n-Heptanol | 1.52 | n-Heptanal | 58.82 | Oct-3-en-2-one | 47.66 |
1-Octen-3-ol | 65.41 | Benzaldehyde | 63.38 | Acetophenone | 8.11 |
Menthol | 40.56 | n-Octanal | 6.08 | Menthone | 1.01 |
Ester Compounds | Value (µg/kg) | n-Nonanal | 259.61 | Terpene and Aromatic Hydrocarbon Compounds | Value (µg/kg) |
Hexyl acetate | 42.59 | n-Decanal | 84.82 | Sabinene | 5.58 |
Hydrocarbon Compounds | Value (µg/kg) | (2E)-Nonenal | 140.96 | Myrcene | 17.75 |
Octane, 4-methyl- | 1.52 | Dec-(2E)-enal | 180.51 | p-Cymene Limonene | 141.47 66.42 |
n-Undecane | 511.61 | Phenolic and Aromatic Compounds | Value (µg/kg) | ||
Dodecane | 1210.3 | Benzene, 1-(1E)-1-butenyl-4-methoxy- | 9.13 | Pulegone | 2.03 |
n-Tetradecane | 105.97 | Sulfur Compounds | Value (µg/kg) | Verdoracine | 3.55 |
Disulfide, dimethyl | 1.01 | (E,E)-α-Farnesene | 1.01 | ||
Perhydrofarnesyl acetone | 1.01 |
Chemical Compound | Value (µg/kg) | Chemical Compound | Value (µg/kg) |
---|---|---|---|
Pentanal | 15.21 | Sabinene | 5.58 |
Limonene | 66.42 | Nonanal | 259.61 |
Dodecane | 1210.32 | Menthone | 1.01 |
Benzaldehyde | 63.38 | Menthol | 40.56 |
Acetophenone | 8.11 | Myrcene | 17.75 |
1-Octen-3-ol | 65.41 | Pulegone | 2.03 |
Hexyl acetate | 42.59 | Decanal | 94.82 |
Farnesene | 1.01 | Cymene (para-) | 141.47 |
Raw Data | LV | Range (cm−1) | R2C | R2p | R2CV | RMSEC | RMSEP | RMSECV | RPD |
---|---|---|---|---|---|---|---|---|---|
HRY | 7 | 100–3700 | 0.9412 | 0.8137 | 0.9119 | 1.1641 | 2.1285 | 1.4252 | 4.12 |
SG | 5 | 100–3700 | 0.9767 | 0.9190 | 0.9542 | 2.6628 | 4.7969 | 3.7395 | 6.56 |
1-Octen-3-ol | 5 | 100–3700 | 0.9726 | 0.9551 | 0.9528 | 0.0751 | 0.1083 | 0.0986 | 6.04 |
Acetophenone | 5 | 100–3700 | 0.9777 | 0.9781 | 0.9565 | 0.194 | 0.1120 | 0.1132 | 6.70 |
Benzaldehyde | 5 | 100–3700 | 0.9746 | 0.9410 | 0.9525 | 0.0427 | 0.0654 | 0.0584 | 6.27 |
p-Cymene | 5 | 100–3700 | 0.9916 | 0.9859 | 0.9814 | 0.0295 | 0.0392 | 0.0440 | 10.93 |
Decanal | 5 | 100–3700 | 0.9579 | 0.9183 | 0.9201 | 0.1012 | 0.1597 | 0.1395 | 4.87 |
Dodecane | 5 | 100–3700 | 0.9842 | 0.9524 | 0.9714 | 1.2943 | 2.1705 | 1.7455 | 7.98 |
Farnesene | 5 | 100–3700 | 0.9792 | 0.9468 | 0.9454 | 0.267 | 0.2113 | 0.2108 | 6.94 |
Hexyl acetate | 5 | 100–3700 | 0.9816 | 0.9301 | 0.9652 | 0.3711 | 0.7316 | 0.5114 | 7.38 |
Limonene | 5 | 100–3700 | 0.9884 | 0.9586 | 0.9761 | 0.1561 | 0.3115 | 0.2243 | 9.30 |
Menthol | 5 | 100–3700 | 0.9811 | 0.9026 | 0.9497 | 0.1186 | 0.1347 | 0.1304 | 7.28 |
Menthone | 5 | 100–3700 | 0.9759 | 0.9299 | 0.9420 | 0.222 | 0.239 | 0.235 | 6.45 |
Myrcene | 5 | 100–3700 | 0.9651 | 0.8745 | 0.9288 | 0.0352 | 0.0767 | 0.0504 | 5.35 |
Nonanal | 5 | 100–3700 | 0.9832 | 0.9222 | 0.9695 | 0.2706 | 0.4793 | 0.4645 | 7.72 |
Pentanal | 5 | 100–3700 | 0.9791 | 0.9452 | 0.9476 | 0.0294 | 0.0489 | 0.0467 | 6.92 |
Pulegone | 5 | 100–3700 | 0.9848 | 0.9560 | 0.9601 | 0.0261 | 0.0456 | 0.0453 | 8.11 |
Sabinene | 5 | 100–3700 | 0.9594 | 0.9227 | 0.9173 | 0.1803 | 0.112 | 0.1114 | 4.96 |
Raw Data | LV | Range “cm−1” | R2C | RMSEC | RPD | R2CV | RMSECV | RPD |
---|---|---|---|---|---|---|---|---|
HRY | 3 | 4000–12,000 | 0.8066 | 2.1259 | 2.74 | 0.7773 | 2.3335 | 2.43 |
SG | 3 | 4000–12,000 | 0.9763 | 2.5646 | 3.32 | 0.9696 | 2.9727 | 3.03 |
1-Octen-3-ol | 3 | 4000–12,000 | 0.9629 | 0.0911 | 3.27 | 0.9558 | 0.1016 | 2.99 |
Acetophenone | 3 | 4000–12,000 | 0.881 | 0.0239 | 2.99 | 0.8526 | 0.0272 | 2.66 |
Benzaldehyde | 3 | 4000–12,000 | 0.9484 | 0.061 | 3.22 | 0.9362 | 0.0694 | 2.93 |
p-Cymene | 3 | 4000–12,000 | 0.8729 | 1.1614 | 2.97 | 0.8499 | 1.2909 | 2.66 |
Decanal | 3 | 4000–12,000 | 0.8903 | 0.1712 | 3.03 | 0.8683 | 0.1919 | 2.71 |
Dodecane | 3 | 4000–12,000 | 0.6313 | 6.232 | 2.15 | 0.5613 | 6.9519 | 1.75 |
Farnesene | 3 | 4000–12,000 | 0.0331 | 0.0466 | 0.11 | NA | 0.0516 | 0.12 |
Hexyl acetate | 3 | 4000–12,000 | 0.8619 | 1.0219 | 2.93 | 0.82 | 1.1934 | 2.56 |
Limonene | 3 | 4000–12,000 | 0.9165 | 0.4269 | 3.11 | 0.9015 | 0.4744 | 2.82 |
Menthol | 3 | 4000–12,000 | 0.0527 | 0.1258 | 0.18 | NA | 0.1378 | 0.17 |
Menthone | 3 | 4000–12,000 | 0.0474 | 0.0143 | 0.16 | NA | 0.0158 | 0.15 |
Myrcene | 3 | 4000–12,000 | 0.8582 | 0.0746 | 2.92 | 0.8334 | 0.0827 | 2.60 |
Nonanal | 3 | 4000–12,000 | 0.9339 | 0.5179 | 3.17 | 0.9139 | 0.6045 | 2.86 |
Pentanal | 3 | 4000–12,000 | 0.9387 | 0.0511 | 3.19 | 0.9205 | 0.0595 | 2.88 |
Pulegone | 3 | 4000–12,000 | 0.444 | 0.0159 | 1.51 | 0.3781 | 0.0172 | 1.18 |
Sabinene | 3 | 4000–12,000 | 0.9035 | 0.0127 | 3.07 | 0.8897 | 0.0139 | 2.78 |
Raw Data | Selected EWs (cm−1)—Raman (100–3700 cm−1) | NIR (4000–12,000 cm−1) |
---|---|---|
HRY | 824.35, 3562.8, 2313.2, 3024.8, 3261, 2908.1, 2408.6, 3163.6, 2289, 3263.9 | 6915, 4239, 5199, 7674, 6865, 4744, 6773, 6912, 5200, 11,582 |
SG | 2801.1, 2784.7, 2041.2, 1236.1, 3351.7, 1165.7, 3353.6, 3436.5, 3396, 2328.6 | 6999, 6961, 6948, 6923, 10,534, 6745, 4665, 4907, 6572, 4274 |
1-Octen-3-ol | 3616.8, 2307.4, 2010.4, 1662.3, 3259.1, 1731.7, 2388.4, 2796.2, 2549.4, 3650.6 | 6747, 4389, 6797, 6932, 5379, 4433, 6875, 4446, 6924, 9819 |
Acetophenone | 3522.3, 872.57, 2373.9, 3089.4, 3154.9, 3524.3, 651.75, 2777, 2508.9, 2337.3 | 6632, 4461, 5049, 4848, 6880, 4571, 4867, 4835, 6819, 6974 |
Benzaldehyde | 2767.3, 3065.3, 1825.2, 2742.2, 2438.5, 2040.3, 2628.5, 1781.9, 2182, 2353.7 | 8063, 9573, 6973, 9735, 9872, 8297, 6921, 5769, 7243, 6922 |
p-Cymene | 2912, 3179.1, 1282.4, 922.71, 2144.4, 2944.7, 2395.1, 1788.6, 798.32, 3451 | 5474, 4690, 4735, 6648, 6625, 6872, 5149, 6556, 4925, 6969 |
Decanal | 1628.5, 2845.4, 3023.8, 2442.4, 2000.7, 3578.3, 1402.9, 2102.9, 1032.6, 2034.5 | 6840, 6976, 7093, 8287, 6894, 8213, 8827, 7132, 9380, 9647 |
Dodecane | 1978.6, 1133.9, 2229.3, 1804, 780.96, 3428.8, 2762.5, 3098.1, 2912.9, 3171.3 | 4738, 6698, 4515, 6827, 4879, 4920, 4467, 5109, 4854, 6571 |
Farnesene | 1805, 1626.6, 2291.9, 3316, 2772.1, 896.67, 3046, 1563.9, 1891.8, 2132.8 | 7695, 7415, 11,224, 8069, 6290, 6104, 4926, 8368, 8155, 4879 |
Hexyl acetate | 2279.4, 1678.7, 647.9, 1694.1, 2796.2, 1199.4, 2758.6, 2957.3, 3144.3, 2212.9 | 6938, 4773, 10,229, 6799, 6817, 5956, 6910, 6242, 6356, 7135 |
Limonene | 3488.6, 2373.9, 2700.8, 3199.3, 2363.3, 2664.1, 3562.8, 3236.9, 3081.7, 2501.2 | 7616, 6810, 8867, 6430, 4849, 7000, 6809, 5188, 6469, 6950 |
Menthol | 2074, 2832.9, 268.95, 3674.7, 2774.1, 123.34, 1687.4, 1660.4, 2960.2, 3104.8 | 5290, 7403, 7602, 8838, 8596, 9014, 8958, 5396, 8937, 7774 |
Menthone | 2439.5, 3187.7, 2306.4, 2635.2, 3515.6, 2284.2, 2467.4, 3397, 2138.6, 632.47 | 11,963, 10,033, 7719, 6021, 11,606, 10,410, 8547, 5971, 5965, 11,433 |
Myrcene | 1856.1, 2736.5, 1438.6, 2858, 2360.4, 591.01, 1465.6, 1011.4, 1926.5, 3319.8 | 6726, 5206, 6695, 6766, 6952, 4625, 6934, 7183, 6688, 6158 |
Nonanal | 1662.3, 3493.4, 2831.9, 3037.3, 1762.6, 2920.6, 2955.3, 1476.2, 3200.3, 1408.7 | 5802, 6821, 4869, 6957, 8568, 6520, 6627, 6988, 5466, 6836 |
Pentanal | 2836.7, 2381.6, 1941.9, 2378.7, 2419.2, 3441.3, 3491.5, 671.04, 2819.4, 2348.8 | 6710, 4433, 4821, 7986, 6884, 6759, 4408, 4522, 6752, 6251 |
Pulegone | 2007.5, 2150.2, 2609.2, 2122.2, 3506.9, 2345, 2342.1, 2119.3, 2292.9, 1768.4 | 5121, 11,821, 6989, 5247, 5853, 5930, 5143, 11,332, 5033, 10,154 |
Sabinene | 1857.1, 3690.1, 3631.3, 3674.7, 3662.1, 1927.5, 1788.6, 2533, 1547.5, 3586 | 5049, 11,397, 4707, 4541, 5937, 4940, 5767, 8698, 5996, 4113 |
Technology | RAMAN | NIR | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LV | R2 | RMSE | RPD | R2 | RMSE | RPD | LV | R2 | RMSE | RPD | R2 | RMSE | RPD | |
HRY | 1 | 0.8559 | 1.835 | 3.62 | 0.8449 | 1.9472 | 3.38 | 2 | 0.8109 | 2.1025 | 2.73 | 0.787 | 2.2822 | 2.30 |
SG | 1 | 0.9406 | 4.0641 | 3.98 | 0.9365 | 4.2976 | 3.75 | 3 | 0.9788 | 2.4271 | 3.30 | 0.9743 | 2.7317 | 2.85 |
1-Octen-3-ol | 2 | 0.8197 | 0.2009 | 3.47 | 0.7511 | 0.2415 | 3.01 | 2 | 0.9615 | 0.0928 | 3.24 | 0.954 | 0.1037 | 2.79 |
Acetophenone | 2 | 0.7825 | 0.0323 | 3.31 | 0.6977 | 0.039 | 2.79 | 2 | 0.8798 | 0.024 | 2.97 | 0.8559 | 0.0269 | 2.50 |
Benzaldehyde | 2 | 0.8975 | 0.086 | 3.80 | 0.8629 | 0.1017 | 3.46 | 2 | 0.9488 | 0.0607 | 3.20 | 0.9404 | 0.0671 | 2.75 |
p-Cymene | 1 | 0.9336 | 0.08392 | 3.95 | 0.9303 | 0.8795 | 3.73 | 3 | 0.8793 | 1.132 | 2.97 | 0.8618 | 1.2388 | 2.52 |
Decanal | 2 | 0.8688 | 0.1872 | 3.68 | 0.8413 | 0.2106 | 3.37 | 2 | 0.8915 | 0.1703 | 3.01 | 0.8762 | 0.186 | 2.56 |
Dodecane | 1 | 0.6799 | 5.8066 | 2.88 | 0.6718 | 6.0133 | 2.69 | 2 | 0.6296 | 6.2458 | 2.12 | 0.5724 | 6.8631 | 1.67 |
Farnesene | 1 | 0.0644 | 0.0458 | 0.27 | 0.01785 | 0.048 | 0.07 | 1 | 0.0046 | 0.0473 | 0.02 | NA | 0.0514 | 0.03 |
Hexyl acetate | 2 | 0.8786 | 0.9581 | 3.72 | 0.859 | 1.0562 | 3.44 | 1 | 0.8239 | 1.1541 | 2.78 | 0.8164 | 1.2053 | 2.39 |
Limonene | 1 | 0.8633 | 0.5463 | 3.65 | 0.8504 | 0.5845 | 3.41 | 3 | 0.9199 | 0.418 | 3.10 | 0.9085 | 0.4572 | 2.66 |
Menthol | 4 | 0.4156 | 0.0988 | 1.76 | 0.1073 | 0.1249 | 0.43 | 1 | 0.0469 | 0.1261 | 0.16 | 0.0119 | 0.1314 | 0.03 |
Menthone | 1 | 0.0501 | 0.0143 | 0.21 | NA | 0.0152 | 0.23 | 6 | 0.3272 | 0.012 | 1.10 | 0.1295 | 0.014 | 0.38 |
Myrcene | 2 | 0.7913 | 0.09055 | 3.35 | 0.7254 | 0.1062 | 2.90 | 2 | 0.8564 | 0.0751 | 2.89 | 0.8348 | 0.0823 | 2.44 |
Nonanal | 2 | 0.9216 | 0.5641 | 3.90 | 0.9042 | 0.6375 | 3.62 | 2 | 0.9351 | 0.5132 | 3.15 | 0.9223 | 0.5743 | 2.70 |
Pentanal | 1 | 0.9184 | 0.059 | 3.89 | 0.9133 | 0.0622 | 3.66 | 2 | 0.9454 | 0.0482 | 3.19 | 0.9337 | 0.0544 | 2.73 |
Pulegone | 1 | 0.3871 | 0.01673 | 1.64 | 0.34 | 0.0177 | 1.36 | 3 | 0.4491 | 0.0158 | 1.51 | 0.3365 | 0.0178 | 0.98 |
Sabinene | 1 | 0.5701 | 0.0268 | 2.41 | 0.5248 | 0.0289 | 2.10 | 4 | 0.9015 | 0.0128 | 3.04 | 0.865 | 0.0154 | 2.53 |
Technology | RAMAN | NIR | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | Validation | Test | Training | Validation | Test | |||||||||||||
R2 | RMSE | RPD | R2 | RMSE | RPD | R2 | RMSE | RPD | R2 | RMSE | RPD | R2 | RMSE | RPD | R2 | RMSE | RPD | |
HRY | 0.93 | 2.1436 | 3.93 | 0.82 | 1.3218 | 3.84 | 0.94 | 2.6747 | 3.66 | 0.99 | 0.58 | 5.37 | 0.98 | 0.77 | 4.90 | 0.97 | 1.09 | 4.21 |
SG | 0.95 | 5.7048 | 4.03 | 0.83 | 7.8689 | 3.88 | 0.89 | 5.7450 | 3.91 | 0.99 | 1.52 | 5.58 | 0.99 | 2.28 | 4.93 | 0.97 | 3.31 | 4.41 |
1-Octen-3-ol | 0.76 | 0.2265 | 3.71 | 0.75 | 0.3089 | 3.53 | 0.72 | 0.2706 | 3.59 | 1.00 | 0.02 | 5.80 | 0.97 | 0.08 | 4.86 | 0.97 | 0.11 | 4.23 |
Acetophenone | 0.86 | 0.0332 | 3.66 | 0.73 | 0.0200 | 3.43 | 0.81 | 0.0224 | 2.15 | 0.98 | 0.01 | 5.33 | 0.97 | 0.01 | 4.85 | 0.79 | 0.06 | 2.22 |
Benzaldehyde | 0.92 | 0.0980 | 3.89 | 0.85 | 0.1192 | 3.67 | 0.96 | 0.0566 | 3.72 | 0.99 | 0.03 | 5.36 | 0.97 | 0.07 | 4.82 | 0.96 | 0.05 | 4.19 |
p-Cymene | 1.00 | 0.0000 | ∞ | 0.98 | 0.4407 | 4.01 | 0.92 | 0.9635 | 3.58 | 1.00 | 0.05 | 5.41 | 0.92 | 1.10 | 4.58 | 0.99 | 0.33 | 4.31 |
Decanal | 0.88 | 0.2594 | 3.44 | 0.84 | 0.2304 | 3.33 | 0.91 | 0.2100 | 3.52 | 1.00 | 0.02 | 5.40 | 0.99 | 0.05 | 4.93 | 0.91 | 0.17 | 3.98 |
Dodecane | 1.00 | 0.0000 | ∞ | 0.84 | 3.2998 | 2.31 | 0.66 | 7.2673 | 1.56 | 0.95 | 2.36 | 5.15 | 0.83 | 5.88 | 4.16 | 0.53 | 7.33 | 2.31 |
Farnesene | 0.24 | 0.0458 | 1.00 | 0.09 | 0.0374 | 0.41 | 0.01 | 0.0678 | 0.02 | 0.34 | 0.03 | 1.13 | 0.13 | 0.05 | 0.63 | 0.36 | 0.06 | 1.06 |
Hexyl acetate | 1.00 | 0.0520 | 4.24 | 0.97 | 0.8691 | 4.55 | 0.96 | 0.7977 | 3.74 | 0.99 | 0.43 | 5.38 | 0.95 | 0.56 | 4.75 | 0.99 | 0.63 | 4.33 |
Limonene | 1.00 | 0.0000 | ∞ | 0.96 | 0.7690 | 4.49 | 0.84 | 0.6178 | 3.27 | 0.99 | 0.24 | 5.33 | 0.97 | 0.29 | 4.85 | 0.99 | 0.20 | 4.33 |
Menthol | 0.61 | 0.0678 | 2.60 | 0.17 | 0.1476 | 0.81 | 0.07 | 0.1761 | 0.28 | 0.46 | 0.10 | 1.12 | 0.29 | 0.09 | 1.06 | 0.05 | 0.14 | 0.22 |
Menthone | 0.03 | 0.0140 | 0.14 | 0.32 | 0.0107 | 1.02 | 0.04 | 0.0207 | 0.14 | 0.39 | 0.01 | 1.10 | 0.58 | 0.01 | 1.31 | 0.15 | 0.02 | 0.66 |
Myrcene | 0.99 | 0.0173 | 4.21 | 0.88 | 0.1034 | 4.12 | 0.67 | 0.1655 | 1.61 | 0.97 | 0.04 | 5.27 | 0.99 | 0.03 | 4.92 | 0.86 | 0.06 | 2.73 |
Nonanal | 1.00 | 0.0000 | ∞ | 0.96 | 0.4512 | 4.51 | 0.87 | 0.5860 | 2.37 | 0.97 | 0.43 | 5.23 | 0.95 | 0.42 | 4.72 | 0.99 | 0.39 | 4.30 |
Pentanal | 0.98 | 0.0500 | 4.15 | 0.97 | 0.0332 | 4.52 | 0.93 | 0.0906 | 3.63 | 1.00 | 0.01 | 5.40 | 1.00 | 0.02 | 4.97 | 1.00 | 0.02 | 4.34 |
Pulegone | 0.43 | 0.0174 | 1.22 | 0.73 | 0.0102 | 2.13 | 0.69 | 0.0128 | 1.98 | 0.71 | 0.01 | 1.86 | 0.68 | 0.01 | 1.41 | 0.53 | 0.01 | 1.31 |
Sabinene | 0.81 | 0.0201 | 2.11 | 0.58 | 0.0249 | 1.23 | 0.68 | 0.0297 | 1.63 | 0.95 | 0.01 | 5.16 | 0.94 | 0.01 | 4.89 | 0.96 | 0.04 | 4.16 |
Soaking Method | Temperature (°C) | Soaking Time (min) | Steaming Time (min) |
---|---|---|---|
First | 60 | 15, 30, 60, 120, 240 | 0 |
65 | 15, 30, 50, 95, 180 | ||
70 | 15, 25, 40, 70, 120 | ||
Second | Temperature (°C) | Drying temperature(°C) | Drying time (min) |
60 | 50 | 10, 40, 70, 95, 120 | |
60 | 10, 35, 60, 75, 90 | ||
70 | 10, 20, 30, 40, 50 | ||
65 | 50 | 10, 40, 70, 95, 120 | |
60 | 10, 35, 60, 75, 90 | ||
70 | 10, 20, 30, 40, 50 | ||
70 | 50 | 10, 40, 70, 95, 120 | |
60 | 10, 35, 60, 75, 90 | ||
70 | 10, 20, 30, 40, 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghinezhad, E.; Szumny, A.; Figiel, A.; Sheidaee, E.; Mazurek, S.; Latifi-Amoghin, M.; Bagherpour, H.; Pachura, N.; Blasco, J. Non-Destructive Determination of Starch Gelatinization, Head Rice Yield, and Aroma Components in Parboiled Rice by Raman and NIR Spectroscopy. Molecules 2025, 30, 2938. https://doi.org/10.3390/molecules30142938
Taghinezhad E, Szumny A, Figiel A, Sheidaee E, Mazurek S, Latifi-Amoghin M, Bagherpour H, Pachura N, Blasco J. Non-Destructive Determination of Starch Gelatinization, Head Rice Yield, and Aroma Components in Parboiled Rice by Raman and NIR Spectroscopy. Molecules. 2025; 30(14):2938. https://doi.org/10.3390/molecules30142938
Chicago/Turabian StyleTaghinezhad, Ebrahim, Antoni Szumny, Adam Figiel, Ehsan Sheidaee, Sylwester Mazurek, Meysam Latifi-Amoghin, Hossein Bagherpour, Natalia Pachura, and Jose Blasco. 2025. "Non-Destructive Determination of Starch Gelatinization, Head Rice Yield, and Aroma Components in Parboiled Rice by Raman and NIR Spectroscopy" Molecules 30, no. 14: 2938. https://doi.org/10.3390/molecules30142938
APA StyleTaghinezhad, E., Szumny, A., Figiel, A., Sheidaee, E., Mazurek, S., Latifi-Amoghin, M., Bagherpour, H., Pachura, N., & Blasco, J. (2025). Non-Destructive Determination of Starch Gelatinization, Head Rice Yield, and Aroma Components in Parboiled Rice by Raman and NIR Spectroscopy. Molecules, 30(14), 2938. https://doi.org/10.3390/molecules30142938