Phytochemical Profile and Selective Anticancer Activity of Parietaria judaica L. Extracts
Abstract
1. Introduction
2. Results and Discussion
2.1. Phytochemical Composition and Implications for Activity
2.2. Differential Cytotoxicity of Extracts and Cancer Cell Line Sensitivity
2.3. Selectivity Toward Cancer Cells and Comparison with Other Natural Products
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Preparation of the Extracts
3.4. LC-ESI-MS/MS Analysis of Phenolic Acids and Flavonoids
3.5. Reagents and Cell Culture
3.6. Cell Viability Assay
3.7. The SRB Assay
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural products as anticancer agents: Current status and future perspectives. Molecules 2022, 27, 8367. [Google Scholar] [CrossRef]
- Camejo-Rodrigues, J.S. Recolha dos ‘Saber-Fazer’ Tradicionais das Plantas Aromáticas e Medicinais, Concelhos de Aljezur, Lagos e Vila do Bispo; Associação dos Produtores Florestais do Sudoeste Algarvio: Bordeira, Portugal, 2006. [Google Scholar]
- Silva, J.M.V. Conservação e uso Sustentável das Plantas Medicinais de Cabo Verde: Valor Terapêutico. Master’s Thesis, Universidade NOVA de Lisboa, Lisbon, Portugal, 2019. [Google Scholar]
- Parietaria: Use, Properties, and Tradition. Available online: https://www.inherba.it/en/parietaria-use-properties-and-tradition/#:~:text=Main%20Activities%3A%20Diuretic%2C%20cutaneous%20purifier%2C,inflammatory (accessed on 1 April 2025).
- Qadi, M.; Jaradat, N.; Al-Lahham, S.; Ali, I.; Abualhasan, M.N.; Shraim, N.; Hussein, F.; Issa, L.; Mousa, A.; Zarour, A.; et al. Antibacterial, anticandidal, phytochemical, and biological evaluations of pellitory plant. Biomed. Res. Int. 2020, 21, 6965306. [Google Scholar] [CrossRef] [PubMed]
- Khaledi, M.; Khaledi, F.; Asadi-Samani, M.; Gholipour, A.; Kouhi, A.M. Phytochemical evaluation and antibacterial effects of Medicago sativa, Onosma sericeum, Parietaria judaica L., Phlomis persica and Echinophora platyloba DC. on Enterococcus faecalis. Biomed. Res. Ther. 2018, 5, 1941–1951. [Google Scholar] [CrossRef]
- Maciel, J.D.S.; Ramos, C.C.; De Sousa, A.L.; De Almeida, C.M.S.; Feitoza, R.B.B.; Lima, H.R.P.; de Oliveira, R.R. Chemosystematics micromolecular evolutionary trends relevant to the Urticaceae family. Plant Syst. Evol. 2023, 309, 32. [Google Scholar] [CrossRef]
- Arcus, M.; Lilios, G.; Negreanu-Pîrjol, T.; Zaharia, A. Facts regarding the pharmacognostic and phytochemical study of the plant Parietaria lusitanica L. Sci. Stud. Res. Chem. Chem. 2011, 12, 141–146. [Google Scholar]
- Fikjvar, E.M.; Golmohammadi, S.; Jalali, A. The volatile constituents and antimicrobial analysis of Parietaria officinalis from the northern part of Iran, Guilan Province. Iran. J. Pharm. Sci. 2024, 20, 423–432. [Google Scholar] [CrossRef]
- Budzianowki, J.; Skrzypczak, L.; Walkowiak, D. Flavonoids of Parietaria officinalis. J. Nat. Prod. 1985, 48, 336–337. [Google Scholar] [CrossRef]
- Otles, S.; Yalcin, B. Phenolic compounds analysis of root, stalk and leaves of nettle. Sci. World J. 2012, 2012, 564367. [Google Scholar] [CrossRef]
- Rajput, P.; Chaudhary, M.; Sharma, R.A. Phytochemical and pharmacological importance of genus Urtica-A review. Int. J. Pharm. Sci. Res. 2018, 9, 1387–1396. [Google Scholar]
- Kartika, H.; Li, Q.X.; Wall, M.M.; Nakamoto, S.T.; Iwaoka, W.T. Major phenolic acids and total antioxidant activity in Mamaki leaves Pipturus albidus. J. Food Sci. 2007, 72, 696–701. [Google Scholar] [CrossRef]
- Li, J.; Coleman, C.M.; Wu, H.; Burandt, C.L.; Ferreira, D.; Zjawiony, J.K. Triterpenoids and flavonoids from Cecropia schreberiana Miq. (Urticaceae). Biochem. Syst. Ecol. 2013, 48, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Islam, M.S.; Rahman, M.; Zaman, T.; Haque, E.; Rahman, M. Sub-acute toxicological studies 2α,3β,21β,23,28-penta hydroxyl 12-oleanene isolated from roots of Laportea crenulata Gaud. Asian Biomed. 2011, 5, 595–599. [Google Scholar] [CrossRef]
- Aishan, H.; Baba, M.; Iwasaki, N.; Kuang, H.; Okuyama, T. The constituents of Urtica cannabina used in Uighur medicine. Pharm. Biol. 2010, 48, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Semwal, D.K.; Rawat, U.; Semwal, R.; Singh, R.; Krishan, P.; Singh, M.; Singh, G.J.P. Chemical constituents from the leaves of Boehmeria rugulosa with antidiabetic and antimicrobial activities. J. Asian Nat. Prod. Res. 2009, 11, 1045–1055. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, W.; Tang, L.; Yan, X.G.; Shi, L.Y.; Wang, Y.Q.; Feng, B.M. Lignan and flavonoid glycosides from Urtica laetevirens Maxim. J. Nat. Med. 2009, 63, 100–101. [Google Scholar] [CrossRef]
- Cho, S.; Lee, D.G.; Jung, Y.S.; Kim, H.B.; Cho, E.J.; Lee, S. Phytochemical identification from Boehmeria nivea leaves and analysis of (−)-loliolide by HPLC. Nat. Prod. Sci. 2016, 22, 134–139. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, G.; Fan, J.; Zhang, M.; Li, X.; Yang, S.; Li, X. Chemical constituents of roots of Boehmeria nivea. Zhongguo Zhong Yao Za Zhi 2009, 34, 2610–2612. [Google Scholar]
- Rastrelli, L.; De Simone, F.; Mora, G.; Poveda, J.L.; Aquino, R. Phenolic constituents of Phenax angustifolius. J. Nat. Prod. 2001, 64, 79–81. [Google Scholar] [CrossRef]
- Bansal, P.; Paul, P.; Shankar, G.; Munjal, D.; Nayak, P.G.; Priyadarsini, K.I.; Unnikrishnan, M.K. Flavonoid rich fraction of Pilea microphylla (L.) attenuates metabolic abnormalities and improves pancreatic function in C57BL/KsJ-db/db mice. Biomed. Prev. Nutr. 2011, 1, 268–272. [Google Scholar] [CrossRef]
- Amuthan, A.; Devi, V.; Shreedhara, C.S.; Rao, V.; Lobo, R. Cytoprotective activity of neichitti (Vernonia cinerea) in human embryonic kidney (HEK293) normal cells and human cervix epitheloid carcinoma (HeLa) cells against cisplatin induced toxicity: A comparative study. J. Clin. Diagn. Res. 2019, 13, KC01–KC06. [Google Scholar] [CrossRef]
- Carmichael, J.; Mitchell, J.B.; DeGraff, W.G.; Gamson, J.; Gazdar, A.F.; Johnson, B.E.; Glatstein, E.; Minna, J.D. Chemosensitivity testing of human lung cancer cell lines using the MTT assay. Br. J. Cancer 1988, 57, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, J.; Xia, S.; Cheng, S.; Shi, Y. 1,2,3-Triazole derivatives with anti-breast cancer potential. Curr. Top. Med. Chem. 2022, 22, 1406–1425. [Google Scholar] [CrossRef]
- Becit, M.; Dilsiz, S.A.; Başaran, N. Interaction of curcumin on cisplatin cytotoxicity in HeLa and HepG2 carcinoma cells. Istanbul J. Pharm. 2020, 50, 202–210. [Google Scholar] [CrossRef]
- Guo, L.; Xie, J.; Fan, W.; Chen, W.; Dai Bin, M.Q. Synthesis and antitumor activities of novel bivalent 1-heterocyclic-β-carbolines linked by alkylamino spacer. Chin. J. Org. Chem. 2017, 37, 1741–1747. [Google Scholar] [CrossRef]
- Artanti, A.N.; Pujiastuti, U.H.; Prihapsara, F.; Rakhmawati, R. Synergistic cytotoxicity effect by combination of methanol extract of parijoto fruit (Medinilla speciosa Reinw. ex. Bl) and cisplatin against HeLa cell line. Indones. J. Cancer Chemoprevent. 2020, 11, 16–21. [Google Scholar] [CrossRef]
- Ishitsuka, A.; Fujine, E.; Mizutani, Y.; Tawada, C.; Kanoh, H.; Banno, Y.; Seishima, M. FTY720 and cisplatin synergistically induce the death of cisplatin-resistant melanoma cells through the downregulation of the PI3K pathway and the decrease in epidermal growth factor receptor expression. Int. J. Mol. Med. 2014, 34, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Gautam, M.; Gabrani, R. Combinatorial effect of temozolomide and naringenin in human glioblastoma multiforme cell lines. Nutr. Cancer 2022, 74, 1071–1078. [Google Scholar] [CrossRef]
- Mutlu, D. Cytotoxic activity, anti-migration and in silico study of o-coumaric acid on H1975 non-small cell lung cancer cells. Cumhur. Sci. J. 2025, 46, 35–40. [Google Scholar] [CrossRef]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, T.; Fu, Y.; Yu, T.; Ding, Y.; Nie, H. Ferulic acid: A review of pharmacology, toxicology, and therapeutic effects on pulmonary diseases. Int. J. Mol. Sci. 2023, 24, 8011. [Google Scholar] [CrossRef]
- Abi Sleiman, M.; Younes, M.; Hajj, R.; Salameh, T.; Abi Rached, S.; Abi Younes, R.; Daoud, L.; Doumiati, J.L.; Frem, F.; Ishak, R.; et al. Urtica dioica: Anticancer properties and other systemic health benefits from in vitro to clinical trials. Int. J. Mol. Sci. 2024, 25, 7501. [Google Scholar] [CrossRef]
- Chu, M.; Ji, H.; Li, K.; Liu, H.; Peng, M.; Wang, Z.; Zhu, X. Investigating the potential mechanism of quercetin against cervical cancer. Discov. Oncol. 2023, 14, 170. [Google Scholar] [CrossRef] [PubMed]
- Double, J.A. Selectivity and potency; are we doing the right things to find anti-cancer agents with these properties? Br. J. Cancer 1992, 65, 143. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Bianco, A.; Russo, R.; Di Maro, A.; Isernia, C.; Pedone, P.V. Therapeutic perspectives of molecules from Urtica dioic a extracts for cancer treatment. Molecules 2019, 24, 2753. [Google Scholar] [CrossRef]
- Mirzaei, H.; Naseri, G.; Rezaee, R.; Mohammadi, M.; Banikazemi, Z.; Mirzaei, H.R.; Salehi, H.; Peyvandi, M.; Pawelek, J.M.; Sahebkar, A. Curcumin: A new candidate for melanoma therapy? Int. J. Cancer 2016, 139, 1683–1695. [Google Scholar] [CrossRef]
- Kim, E.; Hwang, K.; Lee, J.; Han, S.Y.; Kim, E.-M.; Park, J.; Cho, J.Y. Skin protective effect of epigallocatechin gallate. Int. J. Mol. Sci. 2018, 19, 173. [Google Scholar] [CrossRef] [PubMed]
- Brindhadevi, K.; Chidambaram, M.; Kavitha, R.; Govindaraj, R.; Chinnathambi, A.; Salmen, S.H.; Prabakaran, D.S.; Natesan, V. Extraction, antioxidant, and anticancer activity of saponins extracted from Curcuma angustifolia. Appl. Nanosci. 2023, 13, 2063–2071. [Google Scholar] [CrossRef]
- Lateh, L.; Yuenyongsawad, S.; Chen, H.; Panichayupakaranant, P. A green method for preparation of curcuminoid-rich Curcuma longa extract and evaluation of its anticancer activity. Pharmacogn. Mag. 2019, 15, 730–735. [Google Scholar]
- Butt, M.S.; Ahmad, R.S.; Sultan, M.T.; Qayyum, M.M.; Naz, A. Green tea and anticancer perspectives: Updates from last decade. Crit. Rev. Food Sci. Nutr. 2015, 55, 792–805. [Google Scholar] [CrossRef]
- Cooper, R.; Morré, D.J.; Morré, D.M. Medicinal benefits of green tea: Part II. review of anticancer properties. J. Altern. Complement. Med. 2005, 11, 639–652. [Google Scholar] [CrossRef]
- Rani, A.; Sharma, A. The genus Vitex: A review. Pharmacogn. Rev. 2013, 7, 188–198. [Google Scholar] [CrossRef]
- Sultan Aslantürk, Ö.; Aşkın Çelik, T. Antioxidant activity and anticancer effect of Vitex agnus-castus L. (Verbenaceae) seed extracts on MCF–7 breast cancer cells. Caryologia 2013, 66, 257–267. [Google Scholar] [CrossRef]
- Asadi-Samani, M.; Rafieian-Kopaei, M.; Lorigooini, Z.; Shirzad, H. A screening of growth inhibitory activity of Iranian medicinal plants on prostate cancer cell lines. Biomedicine 2018, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Nowacka, N.; Nowak, R.; Drozd, M.; Olech, M.; Łoś, R.; Malm, A. Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT-Food Sci. Technol. 2014, 59, 689–694. [Google Scholar] [CrossRef]
- Pietrzak, W.; Nowak, R.; Gawlik-Dziki, U.; Lemieszek, M.K.; Rzeski, W. LC-ESI-MS/MS identification of biologically active phenolic compounds in mistletoe berry extracts from different host trees. Molecules 2017, 22, 624. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.; Fang, R.; Techatanawat, I.; Steventon, G.; Hylands, P.J.; Lee, C.C. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods 2007, 42, 377–387. [Google Scholar] [CrossRef]
- Orellana, E.A.; Kasinski, A.L. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio Protoc. 2016, 6, e1984. [Google Scholar] [CrossRef]
Compound | PJ-H | PJ-M | PJ-E | PJ-W |
---|---|---|---|---|
Phenolic Acids [µg/g DE] | ||||
Gallic acid | 855.29 ± 45.76 | 165.14 ± 1.36 | 52.47 ± 0.62 | 14.13 ± 0.32 |
3-O-caffeoylquinic acid (neochlorogenic acid) | 15.88 ± 0.82 | 1.86 ± 0.05 | 0.36 ± 0.03 | 0.98 ± 0.04 |
Protocatechuic acid | 58.02 ± 0.98 | 75.97 ± 1.59 | 59.83 ± 1.24 | 197.71 ± 4.51 |
5-caffeoylquinic acid (chlorogenic acid) | 284.56 ± 5.56 | 77.10 ± 4.09 | 33.90 ± 1.21 | 14.79 ± 0.08 |
4-caffeoylquinic acid (cryptochlorogenic acid | 4.83 ± 0.29 | 1.15 ± 0.15 | <LOQ | <LOQ |
Gentisic acid | <LOQ | <LOQ | <LOQ | <LOQ |
Caffeic acid | 83.68 ± 1.31 | 69.55 ± 1.59 | 72.15 ± 2.49 | 83.02 ± 2.92 |
Syringic acid | nd | 21.23 ± 0.68 | 7.94 ± 0.34 | 49.28 ± 1.32 |
Vanilic acid | nd | nd | nd | 22.54 ± 1.14 |
p-Coumaric acid | 5.73 ± 0.45 | 42.24 ± 0.23 | 64.67 ± 1.24 | 228.45 ± 11.39 |
Ferulic acid | nd | 698.68 ± 29.53 | <LOQ | 1216.27 ± 23.85 |
Rosmarinic acid | nd | nd | <LOQ | nd |
Salicylic acid | <LOQ | 39.82 ± 2.29 | <LOQ | <LOQ |
Flavonoid aglycones [µg/g dry extract] | ||||
Catechin | <LOQ | nd | nd | nd |
EGCG | nd | <LOQ | 4.63 ± 0.21 | nd |
Dihydromyricetin | nd | 5.86 ± 0.20 | 6.29 ± 0.25 | nd |
Myricetin | <LOQ | <LOQ | <LOQ | nd |
Eriodictyol | <LOQ | <LOQ | <LOQ | <LOQ |
Luteolin | <LOQ | <LOQ | <LOQ | <LOQ |
Quercetin | 21.12 ± 0.13 | 20.22 ± 1.34 | 7.46 ± 0.59 | 13.76 ± 0.53 |
3-O-Methylquercetin | <LOQ | nd | <LOQ | nd |
Apigenin | <LOQ | <LOQ | <LOQ | <LOQ |
Kaempferol | <LOQ | <LOQ | <LOQ | <LOQ |
Isorhamnetin | <LOQ | <LOQ | <LOQ | <LOQ |
Flavonoid glycosides [µg/g dry extract] | ||||
Luteolin 3’,7’-diglucoside | nd | <LOQ | nd | nd |
Quercetin-3-O-rutinoside (Rutin) | 119.97 ± 3.60 | 1249.60 ± 4.54 | 1003.08 ± 68.44 | 215.14 ± 0.10 |
Apigenin—6-C-glucoside (Isovitexin) | 5.012 ± 0.16 | 5.38 ± 0.11 | 71.27 ± 3.11 | 9.56 ± 1.70 |
Luteolin-7-O-glucoside (Luteoloside) | 18.84 ± 0.95 | <LOQ | <LOQ | 47.98 ± 2.65 |
Quercetin-3-O-glucoside (Isoquercetin) | 850.67 ± 32.69 | 2942.50 ± 95.40 | 3143.42 ± 77.77 | 347.45 ± 11.66 |
Eriodictyol-7-O-glucopyranoside | nd | <LOQ | <LOQ | nd |
Kaempferol—3-O-rutinoside (Nicotiflorin) | nd | 252.17 ± 8.63 | 166.52 ± 7.16 | <LOQ |
Isorhamnetin-3-O-rutinoside (Narcissoside) | 15.33 ± 0.03 | 78.22 ± 3.41 | 53.45 ± 0.93 | 19.53 ± 0.37 |
Kaempferol—3-O-glucoside (Astragalin) | 266.99 ± 8.17 | 1235.14 ± 34.07 | 932.69 ± 24.89 | 11.09 ± 0.32 |
Isorhamnetin-3-glucoside | <LOQ | 124.00 ± 2.73 | 115.48 ± 7.16 | nd |
Quercetin 3-O-rhamnoside (Quercitrin) | 3194.64 ± 124.26 | 581.43 ± 13.63 | 706.11 ±03.11 | 391.69 ± 18.56 |
Apigenin 7-O-glucoside (Apigetrin, Cosmosiin) | <LOQ | nd | nd | <LOQ |
Naringenin 7-O-glucoside | 11.03 ± 0.75 | 4.26 ± 0.57 | 4.73 ± 0.53 | nd |
Compound | Species | Part of the Plant | Reference(s) |
---|---|---|---|
Ferulic acid | Urtica dioica | leaves | [11,12] |
Gallic acid | |||
Gentisic acid | |||
Syringic acid | |||
Caffeic acid | Urtica dioica | leaves | [11] |
Urtica artichocaulis Hand.-Mazz | aerial parts | [12] | |
Chlorogenic acid | Urtica artichocaulis | aerial parts | [12] |
Pipturus albidus Hook. & Arn. | leaves | [13] | |
Catechin | Cecropia schreberiana Miq. | leaves | [14] |
Luteolin | Urtica artichocaulis | aerial parts | [12] |
Urtica dioica | leaves | [15] | |
Isorhamnetin | Urtica dioica | seeds | [12] |
Kaempferol | |||
Quercetin | Urtica artichocaulis | aerial parts | [12] |
Urtica cannabina L. | fruits | [16] | |
Urtica dioica | aerial parts | [15] | |
Boehmeria rugulosa Wedd. | leaves | [17] | |
Luteolin-7-O-β-D-glucopyranoside | Urtica laetevirens Maxim. | aerial parts | [18] |
Rutin | Boehmeria nivea L. | leaves | [19] |
Boehmeria nivea | roots | [20] | |
Urtica artichocaulis | aerial parts | [12] | |
Urtica laetevirens | aerial parts | [18] | |
Isovitexin | Urtica cannabina | fruits | [16] |
Phenax angustifolius Wedd. | leaves | [21] | |
Astragalin | Urtica cannabina | fruits | [16] |
Urtica dioica | seeds | [12] | |
Apigenin-7-O-glucoside | Pilea microphylla L. | leaves | [22] |
Quercetin | Boehmeria rugulosa | leaves | [17] |
Urtica artichocaulis | aerial parts | [12] | |
Urtica cannabina | fruits | [16] | |
Urtica dioica | aerial parts | [15] | |
Quercetin-3-O-α-L-rhamnopyranoside | Phenax angustifolius | leaves | [21] |
IC50 [μg/mL] | ||||||||
---|---|---|---|---|---|---|---|---|
Extract | HEK-293 | LN-229 | NCI-H1563 | MDA-MB-231 | HepG2 | 769-P | HeLa | A-375 |
PJ-H | >300.00 | 115.62 | 133.12 | 122.92 | 107.86 | 128.51 | 112.45 | 113.68 |
PJ-M | 202.34 | 74.18 | 121.13 | 141.29 | 102.17 | 144.12 | 63.21 | 93.06 |
PJ-E | 139.42 | 21.27 | 18.97 | 19.54 | 49.57 | 27.82 | 11.82 | 14.09 |
PJ-W | 253.35 | 93.68 | 87.69 | 126.83 | 133.41 | 142.78 | 146.67 | 188.78 |
Cisplatin | 4.72 [23] | - | 0.90 [24] | 9.21 [25] | 7.65 [26] | 5.76 [27] | 12.80 [28] | 0.39 [29] |
Temozolomide | - | 87.84 [30] | - | - | - | - | - | - |
IC50 [μg/mL] | ||||||||
---|---|---|---|---|---|---|---|---|
Extract | HEK-293 | LN-229 | NCI-H1563 | MDA-MB-231 | HepG2 | 769-P | HeLa | A-375 |
PJ-H | 270.62 | 132.78 | 108.16 | 139.17 | 81.89 | 107.99 | 115.59 | 53.51 |
PJ-M | >300.00 | 105.39 | 133.40 | 165.91 | 57.16 | 68.29 | 78.52 | 33.17 |
PJ-E | 228.83 | 46.54 | 34.72 | 49.15 | 16.12 | 22.24 | 28.71 | 8.29 |
PJ-W | >300.00 | 108.97 | 92.51 | 123.69 | 83.46 | 96.56 | 168.03 | 112.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecka, I.; Natorska-Chomicka, D.; Dołomisiewicz, W.; Rodrigues Fortes, A.; Dos Santos Szewczyk, K. Phytochemical Profile and Selective Anticancer Activity of Parietaria judaica L. Extracts. Molecules 2025, 30, 2739. https://doi.org/10.3390/molecules30132739
Bielecka I, Natorska-Chomicka D, Dołomisiewicz W, Rodrigues Fortes A, Dos Santos Szewczyk K. Phytochemical Profile and Selective Anticancer Activity of Parietaria judaica L. Extracts. Molecules. 2025; 30(13):2739. https://doi.org/10.3390/molecules30132739
Chicago/Turabian StyleBielecka, Izabela, Dorota Natorska-Chomicka, Wioleta Dołomisiewicz, Arlindo Rodrigues Fortes, and Katarzyna Dos Santos Szewczyk. 2025. "Phytochemical Profile and Selective Anticancer Activity of Parietaria judaica L. Extracts" Molecules 30, no. 13: 2739. https://doi.org/10.3390/molecules30132739
APA StyleBielecka, I., Natorska-Chomicka, D., Dołomisiewicz, W., Rodrigues Fortes, A., & Dos Santos Szewczyk, K. (2025). Phytochemical Profile and Selective Anticancer Activity of Parietaria judaica L. Extracts. Molecules, 30(13), 2739. https://doi.org/10.3390/molecules30132739