Multifunctional Evaluation of Graphene Oxide–Sulfonamide Nanoconjugates: Antimicrobial, Antibiofilm, Cytocompatibility and Xenobiotic Metabolism Gene Expression Insight
Abstract
1. Introduction
2. Results
2.1. Chemical and Structural Characterization
2.2. Biological Activity
2.2.1. Antibacterial and Antibiofilm Activity
2.2.2. Mammalian Cells’ Toxicity of S and GO-Sx
2.2.3. Cell Cycle Analysis
2.2.4. Activation of Metabolism-Specific Gene Expression
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods for Sample Characterization
4.3. Biological Activity
4.3.1. Broth Microdilution Assay
4.3.2. Crystal Violet Assay of Antibiofilm Activity
4.3.3. Analysis of Cytotoxicity Using CellTiter 96® AQueous One Solution Cell Proliferation Kit
4.3.4. Toxicity Evaluation Using Incucyte
4.3.5. Hemolysis Assay
4.3.6. Cell-Cycle Analysis with Flow Cytometry
4.3.7. Gene Expression Analysis by qRT-PCR
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spisz, P.; Chylewska, A.; Krolicka, A.; Ramotowska, S.; Dabrowska, A.; Makowski, M. Stimulation of Sulfonamides Antibacterial Drugs Activity as a Result of Complexation with Ru(III): Physicochemical and Biological Study. Int. J. Mol. Sci. 2021, 22, 13482. [Google Scholar] [CrossRef] [PubMed]
- Ovung, A.; Bhattacharyya, J. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev. 2021, 13, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Asyraf, P.A.; Kusnadi, I.F.; Stefanus, J.; Khairinisa, M.A.; Abdulah, R. Clinical Manifestations and Genetic Influences in Sulfonamide-Induced Hypersensitivity. Drug Healthc. Patient Saf. 2022, 14, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, E.; Bishara, J. Contemporary unconventional clinical use of co-trimoxazole. Clin. Microbiol. Infect. 2012, 18, 8–17. [Google Scholar] [CrossRef]
- Root, H.; Daniels, L.; Marx, A.; Bartelt, L.A.; Lachiewicz, A.M.; van Duin, D. Sulfonamides without trimethoprim in the treatment of Nocardia infections: A case report and literature review. Transpl Infect Dis. 2021, 23, e13452. [Google Scholar] [CrossRef]
- Patient Education: Methicillin-Resistant Staphylococcus aureus (MRSA) (Beyond the Basics). UpToDate. Available online: https://www.uptodate.com/contents/4025 (accessed on 1 May 2025).
- Yekutiel, A.; Shalit, I.; Shadkchan, Y.; Osherov, N. In vitro activity of caspofungin combined with sulfamethoxazole against clinical isolates of Aspergillus spp. Antimicrob. Agents Chemother. 2004, 48, 3279–3283. [Google Scholar] [CrossRef]
- Dideikin, A.T.; Vul’, A.Y. Graphene Oxide and Derivatives: The Place in Graphene Family. Front. Phys. 2019, 6, 00149. [Google Scholar] [CrossRef]
- Liu, F.F.; Zhao, J.; Wang, S.; Xing, B. Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter. Environ. Poll. 2016, 210, 85–93. [Google Scholar] [CrossRef]
- Yao, Q.; Fan, B.; Xiong, Y.; Jin, C.; Sun, Q.; Sheng, C. 3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water. Sci. Rep. 2017, 7, 45914. [Google Scholar] [CrossRef]
- Zhuang, S.; Zhu, X.; Wang, J. Kinetic, equilibrium, and thermodynamic performance of sulfonamides adsorption onto graphene. Environ. Sci. Poll. Res. Int. 2018, 25, 36615–36623. [Google Scholar] [CrossRef]
- Ganesh, M.; Aziz, A.S.; Ubaidulla, U.; Hemalatha, P.; Saravanakumar, A.; Ravikumar, R.; Peng, M.M.; Choi, E.Y.; Jang, H.T. Sulfanilamide and silver nanoparticles-loaded polyvinyl alcohol-chitosan composite electrospun nanofibers: Synthesis and evaluation on synergism in wound healing. J. Ind. Eng. Chem. 2016, 39, 127–135. [Google Scholar] [CrossRef]
- Palomino, J.C.; Martin, A. The potential role of trimethoprim-sulfamethoxazole in the treatment of drug-resistant tuberculosis. Future Microbiol. 2016, 11, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.M.W.; Juurlink, D.N. Considerations when prescribing trimethoprim-sulfamethoxazole. Can. Med. Assoc. J. 2011, 183, 1851–1858. [Google Scholar] [CrossRef]
- Hernandez, A.V.; Thota, P.; Pellegrino, D.; Pasupuleti, V.; Benites-Zapata, V.A.; Deshpande, A.; Penalva Oliveira, A.C.; Vidal, J.E. A systematic review and meta-analysis of the relative efficacy and safety of treatment regimens for HIV-associated cerebral toxoplasmosis: Is trimethoprim-sulfamethoxazole a real option? HIV Med. 2017, 18, 115–124. [Google Scholar] [CrossRef]
- Fernandez-Villa, D.; Aguilar, M.R.; Rojo, L. Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications. Int. J. Mol. Sci. 2019, 20, 4996. [Google Scholar] [CrossRef]
- Yildiz, Z.I.; Celebioglu, A.; Uyar, T. Polymer-free electrospun nanofibers from sulfobutyl ether(7)-beta-cyclodextrin (SBE(7)-beta-CD) inclusion complex with sulfisoxazole: Fast-dissolving and enhanced water-solubility of sulfisoxazole. Int. J. Pharm. 2017, 531, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Aytac, Z.; Sen, H.S.; Durgun, E.; Uyar, T. Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids Surf. B Biointerfaces 2015, 128, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Hastings, J.; Owen, G.; Dekker, A.; Ennis, M.; Kale, N.; Muthukrishnan, V.; Turner, S.; Swainston, N.; Mendes, P.; Steinbeck, C. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016, 44, D1214–D1219. [Google Scholar] [CrossRef]
- Syed, H.; Safa, R.; Chidlow, G.; Osborne, N.N. Sulfisoxazole, an endothelin receptor antagonist, protects retinal neurones from insults of ischemia/reperfusion or lipopolysaccharide. Neurochem. Int. 2006, 48, 708–717. [Google Scholar] [CrossRef]
- Im, E.J.; Lee, C.H.; Moon, P.G.; Rangaswamy, G.G.; Lee, B.; Lee, J.M.; Lee, J.C.; Jee, J.G.; Bae, J.S.; Kwon, T.K.; et al. Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat. Commun. 2019, 10, 1387. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5333, Sulfanilamide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Sulfanilamide (accessed on 19 March 2025).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5329, Sulfamethoxazole. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Sulfamethoxazole (accessed on 19 March 2025).
- Kemnic, T.R.; Coleman, M. Trimethoprim Sulfamethoxazole; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5340, Sulfathiazole. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Sulfathiazole (accessed on 19 March 2025).
- Visentin, M.; Zhao, R.; Goldman, I.D. The antifolates. Hematol. Oncol. Clin. North. Am. 2012, 26, 629–648. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for 5339, Sulfasalazine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Sulfasalazine (accessed on 19 March 2025).
- Kumar, N.; Srivastava, V.C. Simple Synthesis of Large Graphene Oxide Sheets via Electrochemical Method Coupled with Oxidation Process. ACS Omega 2018, 3, 10233–10242. [Google Scholar] [CrossRef] [PubMed]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Shahriary, L.; Athawale, A.A. Graphene Oxide Synthesized by Using Modified Hummers Approach. Int. J. Renew. Energy Environ. Eng. 2014, 2, 58–63. [Google Scholar]
- Guerrero-Contreras, J.; Caballero-Briones, F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 2015, 153, 209–220. [Google Scholar] [CrossRef]
- King, A.A.K.; Davies, B.R.; Noorbehesht, N.; Newman, P.; Church, T.L.; Harris, A.T.; Raza, J.M.; Minett, A.I. A New Raman Metric for the Characterisation of Graphene oxide and its Derivatives. Sci. Rep. 2016, 6, 19491. [Google Scholar] [CrossRef]
- Verma, S.; Dutta, R.K. Development of Cysteine Amide Reduced Graphene Oxide (CARGO) Nano-Adsorbents for Enhanced Uranyl Ions Removal from Aqueous Medium. J. Environ. Chem. Eng. 2017, 5, 4547–4558. [Google Scholar] [CrossRef]
- Negrea, A.; Bacinschi, Z.; Bucurica, I.A.; Teodorescu, S.; Stirbescu, R.M. A New material for bipolar plates used in fuel cells. Rom. J. Phys. 2016, 61, 527–535. Available online: https://rjp.nipne.ro/2016_61_3-4/RomJPhys.61.p527.pdf (accessed on 1 March 2025).
- Kurniasari, K.; Maulana, A.; Nugraheni, A.Y.; Jayanti, D.N.; Mustofa, S.; Baqiya, M.A.; Darminto, D. Defect and Magnetic Properties of Reduced Graphene Oxide Prepared from Old Coconut Shell. IOP Conf. Ser. Mater. Sci. Eng. 2017, 196, 012021. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Childres, I.; Jauregui, L.A.; Park, W.; Cao, H.; Chen, Y.P. Raman Spectroscopy of Graphene and Related Materials. In New Developments in Photon and Materials Research; Jang, J.I., Ed.; NOVA Science Publishers, Inc.: New York, NY, USA, 2013; pp. 403–418. [Google Scholar]
- Kominami, K.; Nakabayashi, J.; Nagai, T.; Tsujimura, Y.; Chiba, K.; Kimura, H.; Miyawaki, A.; Sawasaki, T.; Yokota, H.; Manabe, N.; et al. The molecular mechanism of apoptosis upon caspase-8 activation: Quantitative experimental validation of a mathematical model. Biochim. Biophys. Acta 2012, 1823, 1825–1840. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhou, L.; Zhao, T.; Liu, X.; Zhang, P.; Liu, Y.; Zheng, X.; Li, Q. Caspase-9: Structure, mechanisms and clinical application. Oncotarget 2017, 8, 23996–24008. [Google Scholar] [CrossRef] [PubMed]
- Toplicanin, A.; Toncev, L.; Matovic Zaric, V.; Sokic Milutinovic, A. Autoimmune Hemolytic Anemia in Inflammatory Bowel Disease-Report of a Case and Review of the Literature. Life 2022, 12, 1784. [Google Scholar] [CrossRef] [PubMed]
- Teplitsky, V.; Virag, I.; Halabe, A. Immune complex haemolytic anaemia associated with sulfasalazine. BMJ 2000, 320, 1113. [Google Scholar] [CrossRef]
- Peppercorn, M.A. Sulfasalazine. Pharmacology, clinical use, toxicity, and related new drug development. Ann. Intern. Med. 1984, 101, 377–386. [Google Scholar] [CrossRef]
- Plosker, G.L.; Croom, K.F. Sulfasalazine: A review of its use in the management of rheumatoid arthritis. Drugs 2005, 65, 1825–1849. [Google Scholar] [CrossRef]
- Miller, D.K.; Gillard, J.W.; Vickers, P.J.; Sadowski, S.; Leveille, C.; Mancini, J.A.; Charleson, P.; Dixon, R.A.; Ford-Hutchinson, A.W.; Fortin, R.; et al. Identification and isolation of a membrane protein necessary for leukotriene production. Nature 1990, 343, 278–281. [Google Scholar] [CrossRef]
- Ahnfelt-Ronne, I.; Nielsen, O.H.; Christensen, A.; Langholz, E.; Binder, V.; Riis, P. Clinical evidence supporting the radical scavenger mechanism of 5-aminosalicylic acid. Gastroenterology 1990, 98, 1162–1169. [Google Scholar] [CrossRef]
- Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2014, 14, 329–342. [Google Scholar] [CrossRef]
- Neurath, M.F. Strategies for targeting cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2024, 24, 559–576. [Google Scholar] [CrossRef]
- Stevens, C.; Lipman, M.; Fabry, S.; Moscovitch-Lopatin, M.; Almawi, W.; Keresztes, S.; Peppercorn, M.A.; Strom, T.B. 5-Aminosalicylic acid abrogates T-cell proliferation by blocking interleukin-2 production in peripheral blood mononuclear cells. J. Pharmacol. Exp. Ther. 1995, 272, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Neal, T.M.; Winterbourn, C.C.; Vissers, M.C. Inhibition of neutrophil degranulation and superoxide production by sulfasalazine. Comparison with 5-aminosalicylic acid, sulfapyridine and olsalazine. Biochem. Pharmacol. 1987, 36, 2765–2768. [Google Scholar] [CrossRef] [PubMed]
- Jabri, T.; Khan, N.A.; Makhlouf, Z.; Akbar, N.; Gul, J.; Shah, M.R.; Siddiqui, R. Antibacterial Properties of Ethacridine Lactate and Sulfmethoxazole Loaded Functionalized Graphene Oxide Nanocomposites. Antibiotics 2023, 12, 755. [Google Scholar] [CrossRef] [PubMed]
- AbouAitah, K.; Sabbagh, F.; Kim, B.S. Graphene Oxide Nanostructures as Nanoplatforms for Delivering Natural Therapeutic Agents: Applications in Cancer Treatment, Bacterial Infections, and Bone Regeneration Medicine. Nanomaterials 2023, 13, 2666. [Google Scholar] [CrossRef]
- Gungordu Er, S.; Edirisinghe, M.; Tabish, T.A. Graphene-Based Nanocomposites as Antibacterial, Antiviral and Antifungal Agents. Adv. Healthc. Mater. 2023, 12, e2201523. [Google Scholar] [CrossRef]
- Mohammadi Tabar, M.; Khaleghi, M.; Bidram, E.; Zarepour, A.; Zarrabi, A. Penicillin and Oxacillin Loaded on PEGylated-Graphene Oxide to Enhance the Activity of the Antibiotics against Methicillin-Resistant Staphylococcus aureus. Pharmaceutics 2022, 14, 2049. [Google Scholar] [CrossRef]
- Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R.L.; Cepero, E.; Boise, L.H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013, 14, 32. [Google Scholar] [CrossRef]
- Elzagallaai, A.A.; Sultan, E.A.; Bend, J.R.; Abuzgaia, A.M.; Loubani, E.; Rieder, M.J. Role of Oxidative Stress in Hypersensitivity Reactions to Sulfonamides. J. Clin. Pharmacol. 2020, 60, 409–421. [Google Scholar] [CrossRef]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef]
- Guo, X.; Mei, N. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 2014, 22, 105–115. [Google Scholar] [CrossRef]
- Wadhwa, R.; Aggarwal, T.; Thapliyal, N.; Kumar, A.; Priya; Yadav, P.; Kumari, V.; Charan Reddy, B.S.; Chandra, P.; Maurya, P.K. Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles. 3 Biotech. 2019, 9, 279. [Google Scholar] [CrossRef] [PubMed]
- Bissinger, R.; Bhuyan, A.A.M.; Qadri, S.M.; Lang, F. Oxidative stress, eryptosis and anemia: A pivotal mechanistic nexus in systemic diseases. FEBS J. 2019, 286, 826–854. [Google Scholar] [CrossRef]
- de Sousa Maia, D.L.; Côa, F.; da Silva, K.B.; Martins, C.H.Z.; Franqui, L.S.; Fonseca, L.C.; da Silva, D.S.; de Souza Delite, F.; Martinez, D.S.T.; Alves, O.L. Drying of graphene oxide: Effects on red blood cells and protein corona formation. J. Mater. Sci. 2024, 59, 577–592. [Google Scholar] [CrossRef]
- Kenry. Understanding the hemotoxicity of graphene nanomaterials through their interactions with blood proteins cells. J. Mater. Res. 2018, 33, 44–57. [Google Scholar] [CrossRef]
- Palmieri, V.; Perini, G.; De Spirito, M.; Papi, M. Graphene oxide touches blood: In vivo interactions of bio-coronated 2D materials. Nanoscale Horiz. 2019, 4, 273–290. [Google Scholar] [CrossRef]
- Taneva, S.G.; Krumova, S.; Bogar, F.; Kincses, A.; Stoichev, S.; Todinova, S.; Danailova, A.; Horvath, J.; Nasztor, Z.; Kelement, L.; et al. Insights into graphene oxide interaction with human serum albumin in isolated state and in blood plasma. Int. J. Biol. Macromol. 2021, 175, 19–29. [Google Scholar] [CrossRef]
- Ding, Z.; Ma, H.; Chen, Y. Interaction of graphene oxide with human serum albumin and its mechanism. RSC Adv. 2014, 4, 55290–55295. [Google Scholar] [CrossRef]
- Esteves, F.; Rueff, J.; Kranendonk, M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism-A Brief Review on a Fascinating Enzyme Family. J. Xenobiot. 2021, 11, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Sim, E.; Abuhammad, A.; Ryan, A. Arylamine N-acetyltransferases: From drug metabolism and pharmacogenetics to drug discovery. Br. J. Pharmacol. 2014, 171, 2705–2725. [Google Scholar] [CrossRef]
- Phang-Lyn, S.; Llerena, V.A. Biochemistry, Biotransformation; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Iacopetta, D.; Ceramella, J.; Catalano, A.; Scali, E.; Scumaci, D.; Pellegrino, M.; Aquaro, S.; Saturnino, C.; Sinicropi, M.S. Impact of Cytochrome P450 Enzymes on the Phase I Metabolism of Drugs. Appl. Sci. 2023, 13, 6045. [Google Scholar] [CrossRef]
- Lu, J.; Shang, X.; Zhong, W.; Xu, Y.; Shi, R.; Wang, X. New insights of CYP1A in endogenous metabolism: A focus on single nucleotide polymorphisms and diseases. Acta Pharm. Sin. B 2020, 10, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Sim, E.; Fakis, G.; Laurieri, N.; Boukouvala, S. Arylamine N-acetyltransferases—from drug metabolism and pharmacogenetics to identification of novel targets for pharmacological intervention. Adv. Pharmacol. 2012, 63, 169–205. [Google Scholar] [CrossRef] [PubMed]
- Tabish, T.A.; Pranjol, M.Z.I.; Jabeen, F.; Abdullah, T.; Latif, A.; Khalid, A.; Ali, M.; Hayat, H.; Winyard, P.G.; Whatmore, J.L.; et al. Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues. Appl. Mater. Today 2018, 12, 389–401. [Google Scholar] [CrossRef]
- Valdehita, A.; Fernandez-Cruz, M.L.; Navas, J.M. The Potentiating Effect of Graphene Oxide on the Arylhydrocarbon Receptor (AhR)-Cytochrome P4501A (Cyp1A) System Activated by Benzo(k)fluoranthene (BkF) in Rainbow Trout Cell Line. Nanomaterials. 2023, 13, 2501. [Google Scholar] [CrossRef]
- Peng, G.; Sinkko, H.M.; Alenius, H.; Lozano, N.; Kostarelos, K.; Brautigam, L.; Fadeel, B. Graphene oxide elicits microbiome-dependent type 2 immune responses via the aryl hydrocarbon receptor. Nat. Nanotechnol. 2023, 18, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xia, B.; Chen, B.; Guo, Q.; Li, J.; Ye, M.; Hu, Z. N-acetyltransferase 2 slow acetylator genotype associated with adverse effects of sulphasalazine in the treatment of inflammatory bowel disease. Can. J. Gastroenterol. 2007, 21, 155–158. [Google Scholar] [CrossRef]
- Tanaka, E.; Taniguchi, A.; Urano, W.; Nakajima, H.; Matsuda, Y.; Kitamura, Y.; Saito, M.; Yamanaka, H.; Saito, T.; Kamatani, N. Adverse effects of sulfasalazine in patients with rheumatoid arthritis are associated with diplotype configuration at the N-acetyltransferase 2 gene. J. Rheumatol. 2002, 29, 2492–2499. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12465141 (accessed on 1 February 2025).
- Cribb, A.E.; Nakamura, H.; Grant, D.M.; Miller, M.A.; Spielberg, S.P. Role of polymorphic and monomorphic human arylamine N-acetyltransferases in determining sulfamethoxazole metabolism. Biochem. Pharmacol. 1993, 45, 1277–1282. [Google Scholar] [CrossRef]
- Avramescu, S.; Petrescu, S.; Culita, D.C.; Tudose, M.; Hanganu, A.; Zarafu, I.; Ionita, P. A mixed organic functionalized silica-graphene oxide as advanced material for pollutant removal. J. Nanopart Res. 2020, 22, 194. [Google Scholar] [CrossRef]
- Zarafu, I.; Turcu, I.; Culita, D.C.; Petrescu, S.; Popa, M.; Chifiriuc, M.C.; Limban, C.; Telehoiu, A.; Ionita, P. Antimicrobial Features of Organic Functionalized Graphene-Oxide with Selected Amines. Materials 2018, 11, 1704. [Google Scholar] [CrossRef]
- Zarafu, I.; Limban, C.; Radulescu, C.; Dulama, I.D.; Nuta, D.C.; Chirita, C.; Chifiriuc, M.C.; Badiceanu, C.D.; Popa, M.; Bleotu, C.; et al. Novel Structures of Functionalized Graphene Oxide with Hydrazide: Characterization and Bioevaluation of Antimicrobial and Cytocompatibility Features. Coatings 2022, 12, 45. [Google Scholar] [CrossRef]
- Mük, G.R.; Popa, M.; Chifiriuc, M.C.; Voicu, S.N.; Florea, M.; Neatu, F.; Mihalache, I.; Anghel, E.M.; Culita, D.C.; Mitran, R.A.; et al. Aminocoumarin Derivatives Grafted on Graphene Oxide—New Antimicrobial Agents to Combat the Resistance of Mycobacterium Tuberculosis and Eskape Pathogens. Appl. Surf. Sci. 2023, 369, 158224. [Google Scholar] [CrossRef]
- Tudose, M.; Anghel, E.M.; Culita, D.C.; Somacescu, S.; Calderon-Moreno, J.; Tecuceanu, V.; Dumitrascu, F.D.; Dracea, O.; Popa, M.; Marutescu, L.; et al. Covalent coupling of tuberculostatic agents and graphene oxide: A promising approach for enhancing and extending their antimicrobial applications. Appl. Surf. Sci. 2021, 471, 553–565. [Google Scholar] [CrossRef]
- Lourenco, A.L.; Saito, M.S.; Dorneles, L.E.; Viana, G.M.; Sathler, P.C.; Aguiar, L.C.; de Padula, M.; Souza Domingos, T.F.; Manssour Fraga, A.G.; Rodrigues, C.R.; et al. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: Biological and structure-activity relationship studies. Molecules 2015, 20, 7174–7200. [Google Scholar] [CrossRef] [PubMed]
- Stoica, S.I.; Onose, G.; Pitica, I.M.; Neagu, A.I.; Ion, G.; Matei, L.; Dragu, L.D.; Radu, L.E.; Chivu-Economescu, M.; Necula, L.G.; et al. Molecular Aspects of Hypoxic Stress Effects in Chronic Ethanol Exposure of Neuronal Cells. Curr. Issues Mol. Biol. 2023, 45, 1655–1680. [Google Scholar] [CrossRef]
Samples | EDS Elemental Composition [wt.% ± S.D.%] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | N | O | Na | Al | Si | S | Cl | K | Ca | |
GOS1 | 53.87 ± 0.29 | 5.77 ± 0.39 | 9.93 ± 0.13 | nd | 0.17 ± 0.01 | 0.19 ± 0.02 | 24.55 ± 0.11 | 5.29 ± 0.08 | 0.24 ± 0.03 | nd |
GOS2 | 58.24 ± 0.35 | 6.02 ± 0.41 | 11.23 ± 0.12 | 0.24 ± 0.02 | nd | nd | 14.71 ± 0.55 | 4.63 ± 0.07 | 2.49 ± 0.07 | 2.43 ± 0.08 |
GOS3 | 61.10 ± 0.36 | 6.44 ± 0.53 | 6.77 ± 0.13 | nd | nd | 0.86 ± 0.05 | 15.07 ± 0.09 | 6.28 ± 0.13 | 3.47 ± 0.14 | nd |
GOS4 | 67.87 ± 0.33 | 6.99 ± 0.66 | 8.69 ± 0.13 | nd | nd | nd | 11.88 ± 0.06 | 4.57 ± 0.06 | nd | nd |
GOS5 | 61.87 ± 0.35 | 6.79 ± 0.59 | 6.44 ± 0.12 | nd | 0.19 ± 0.02 | nd | 12.92 ± 0.07 | 2.04 ± 0.08 | 2.03 ± 0.05 | 7.73 ± 0.15 |
GO | 62.84 ± 0.29 | nd | 33.42 ± 0.22 | nd | 0.14 ± 0.01 | nd | 2.15 ± 0.04 | 0.82 ± 0.05 | 0.63 ± 0.03 | nd |
Wavenumber [cm−1] & Relative Intensity * | Vibrational Assignment | |||||
---|---|---|---|---|---|---|
GO | GOS1 | GOS2 | GOS3 | GOS4 | GOS5 | |
- | - | - | 3709 w | - | - | NH2 symmetric/asymmetric group |
3680 w | - | 3690 w | 3687 w | - | - | NH2 symmetric/asymmetric group |
3641 w | 3646 w | 3645 w | 3647 w | 3647 w | 3645 w | NH2 symmetric/asymmetric group |
3620 w | 3624 w | 3626 w | 3627 w | 3627 w | - | NH2 symmetric/asymmetric group |
3408 m | 3392 m | 3397 m | 3398 m | 3392 m | 3389 m | OH stretching vibration of GO |
3322 s | - | - | - | - | N-H stretching vibration of sulfonamide | |
- | 3210 m | - | - | 3208 m | - | N-H stretching vibration of sulfonamide |
3169 m | 3161 m | 3170 m | - | - | - | C=O stretching vibration |
2987 m | 2978 w | 2980 m | - | 2985 m | - | C-H stretching vibration |
- | - | - | - | - | 2365 w | O=C=O stretching vibration |
2350 w | 2355 m | 2354 m | 2352 w | 2354 m | 2350 w | C=O stretching vibration of GO; C=C-O or O=C=O stretching vibration |
- | - | - | 2254 w | - | - | C-N stretching vibration |
- | - | - | 2201 w | - | - | C-S-N stretching vibration of sulfonamide |
- | - | - | 2142 w | 2165 w | 2171 w | C-S-N stretching vibration of sulfonamide |
- | - | - | 2124 w | - | 2121 w | C-S-N stretching vibration of sulfonamide |
- | - | - | 2103 w | - | - | C-S-N stretching vibration of sulfonamide |
- | - | - | 2085 w | - | - | C-S-N stretching vibration of sulfonamide |
- | - | - | 2070 w | - | - | C-S-N stretching vibration of sulfonamide |
- | 2037 w | 2045 w | - | - | C-S-N stretching vibration of sulfonamide | |
- | 2003 w | 2003 w | - | 2003 w | N=C- stretching vibration | |
1984 w | - | 1982 w | N=C- stretching vibration | |||
1720 m | 1724 m | 1714 m | 1730 m | 1715 m | 1722 m | C=C aromatic stretch (GO and sulfonamide); C=O stretching vibration of GO |
- | - | 1694 w | 1696 w | 1696 w | - | N-C-O stretching vibration of sulfamethoxazole; C=O and C=C stretching vibration of GO |
- | - | 1680 w | - | - | 1680 w | N-C-O stretching vibration of sulfamethoxazole; C=C stretching vibration of aromatic ring |
- | - | 1650 w | - | 1644 w | 1642 w | N-C-O stretching vibration of sulfamethoxazole; C=C aromatic stretch of GO |
1630 s | 1634 s | 1622 s | - | 1633 s | 1632 s | C=C stretching vibration of aromatic ring of GO and sulfonamide |
1616 m | 1595 s | 1620 m | - | 1593 m | 1615 m | C=C stretching vibration of aromatic ring of GO and sulfonamide |
1562 w | 1545 w | 1555 w | 1556 w | 1566 w | 1564 w | C=C stretching vibration (GO); C-N, N-H stretching vibration |
- | 1538 w | 1537 w | 1538 w | 1539 w | 1537 w | C-N, N-H stretching vibration |
- | 1504 m | 1503 m | - | 1504 w | 1502 w | C-N, N-H stretching vibration |
- | 1474 m | 1470 m | - | 1471 m | 1472 m | C=C aromatic stretch (GO and sulfonamide); C-H stretching vibration of amide |
- | - | 1453 w | 1454 w | 1453 w | 1442 w | C-H stretching vibration |
1404 m | 1405 m | 1408 m | 1417 m | 1417 m | 1415 m | C-O stretching vibration (GO); N-H stretching vibration |
1388 m | 1394 m | 1389 m | - | 1394 w | 1389 m | C-O stretching vibration (GO) |
1357 w | 1362 m | 1358 w | - | - | 1347 w | C-OH stretching vibration of GO; S=O stretching of –SO2-NH- group |
- | 1313 m | 1312 m | - | 1313 w | 1326 m | C-N stretching vibration; N-H stretching vibration |
1238 m | 1240 m | 1239 m | 1243 m | 1240 m | 1236 m | C-O-C stretching vibration (GO) |
1221 m | 1217 m | 1221 m | - | 1229 m | C-O stretching vibration (GO) | |
- | 1182 s | 1184 s | - | 1181 s | - | S=O stretch from –SO2-NH- group |
1142 m | 1142 m | - | 1132 m | S=O stretch from –SO2-NH- group | ||
1085 m | 1082 s | 1088 m | - | 1083 m | 1086 m | C-O stretching vibration (GO); S=O stretch from –SO2-NH- group |
- | 903 m | - | - | - | - | S-N stretching vibration from –SO2-N |
- | 897 m | - | - | - | - | S-N stretching vibration from –SO2-N |
- | 831 w | - | - | 832 w | - | C-H stretching vibration |
- | 675 m | - | - | 667 w | - | S=O stretch from –SO2-NH- group |
605 m | 614 w | 624 w | S=O stretch from –SO2-NH- group | |||
- | - | 558 w | 564 w | - | C-O stretching vibration of amide group | |
536 s | - | 539 w | 532 m | - | S=O stretch from –SO2-NH- group |
Microbial Strains Tested | DMSO [%] | GO | GOS1 | SS1 | GOS2 | SS2 | GOS3 | SS3 | GOS4 | S4 | GGOS5 | S5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C. albicans ATCC 10231 | 12.5 | 0.625 | 1.25 | 0.62 | 0.625 | 0.625 | 0.625 | 10.25 | 1.25 | 1.25 | 11.25 | 1.25 |
E. coli ATCC 25922 | 50 | 5 | 5 | 0.625 | 5 | 0.019 | 5 | 0.019 | 5 | 0.019 | 11.25 | 1.25 |
E. faecalis ATCC 29212 | 12.5 | 0.625 | 1.25 | 11.25 | 1.25 | 11.25 | 1.25 | 11.25 | 1.25 | 1.25 | 11.25 | 11.25 |
P. aeruginosa ATCC 27853 | 50 | 1.25 | 2.5 | 0.156 | 1.25 | 0.078 | 5 | 0.312 | 1.25 | 0.039 | 22.5 | 0.625 |
S. aureus ATCC 25923 | 50 | 5 | 5 | 11.25 | 5 | 0.312 | 5 | 0.078 | 5 | 0.078 | 55 | 2.5 |
Microbial Strains Tested | DMSO [%] | GO | GOS1 | S1 | GOS2 | S2 | GOS3 | S3 | GOS4 | S4 | GOS5 | S5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C. albicans ATCC 10231 | 6.25 | 0.31 | 0.625 | 0.625 | 0.625 | 0.625 | 0.625 | 1.25 | 0.625 | 1.25 | 0.625 | 1.25 |
E. coli ATCC 25922 | 12.5 | 1.25 | 1.25 | 1.25 | 1.25 | 0.625 | 1.25 | 0.625 | 1.25 | 0.625 | 1.25 | 1.25 |
E. faecalis ATCC 29212 | 12.5 | 1.25 | 1.25 | 2.5 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
P. aeruginosa ATCC 27853 | 6.25 | 0.625 | 0.625 | 0.312 | 0.625 | 0.156 | 0.625 | 0.312 | 0.31 | 0.078 | 0.625 | 0.625 |
S. aureus ATCC 25923 | 12.5 | 2.5 | 2.5 | 2.5 | 2.5 | 1.25 | 2.5 | 1.25 | 2.5 | 1.25 | 1.25 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarafu, I.; Mușat, I.; Limban, C.; Nuță, D.C.; Dulama, I.D.; Radulescu, C.; Stirbescu, R.M.; Tatibouet, A.; Chifiriuc, C.M.; Marutescu, L.; et al. Multifunctional Evaluation of Graphene Oxide–Sulfonamide Nanoconjugates: Antimicrobial, Antibiofilm, Cytocompatibility and Xenobiotic Metabolism Gene Expression Insight. Molecules 2025, 30, 2585. https://doi.org/10.3390/molecules30122585
Zarafu I, Mușat I, Limban C, Nuță DC, Dulama ID, Radulescu C, Stirbescu RM, Tatibouet A, Chifiriuc CM, Marutescu L, et al. Multifunctional Evaluation of Graphene Oxide–Sulfonamide Nanoconjugates: Antimicrobial, Antibiofilm, Cytocompatibility and Xenobiotic Metabolism Gene Expression Insight. Molecules. 2025; 30(12):2585. https://doi.org/10.3390/molecules30122585
Chicago/Turabian StyleZarafu, Irina, Irina Mușat, Carmen Limban, Diana C. Nuță, Ioana Daniela Dulama, Cristiana Radulescu, Raluca Maria Stirbescu, Arnaud Tatibouet, Carmen M. Chifiriuc, Luminita Marutescu, and et al. 2025. "Multifunctional Evaluation of Graphene Oxide–Sulfonamide Nanoconjugates: Antimicrobial, Antibiofilm, Cytocompatibility and Xenobiotic Metabolism Gene Expression Insight" Molecules 30, no. 12: 2585. https://doi.org/10.3390/molecules30122585
APA StyleZarafu, I., Mușat, I., Limban, C., Nuță, D. C., Dulama, I. D., Radulescu, C., Stirbescu, R. M., Tatibouet, A., Chifiriuc, C. M., Marutescu, L., Popa, M., Dragu, L. D., Radu, E., Nicolau, I., Bleotu, C., & Ionita, P. (2025). Multifunctional Evaluation of Graphene Oxide–Sulfonamide Nanoconjugates: Antimicrobial, Antibiofilm, Cytocompatibility and Xenobiotic Metabolism Gene Expression Insight. Molecules, 30(12), 2585. https://doi.org/10.3390/molecules30122585