Synthesis, Antibacterial Evaluation and Molecular Modeling of Novel Chalcone Derivatives Incorporating the Diphenyl Ether Moiety
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antibacterial Activity
2.2.1. Minimum Inhibitory Concentration of the Target Compounds 5a-5u
2.2.2. Concentration Time-Kill Curves of Compound 5u
2.3. Molecular Docking Comparison of Compound 5u and Chalcone
2.4. Molecular Modeling of Compound 5u
3. Materials and Methods
3.1. General Chemical Procedures
3.2. Bacterial Strains
3.3. General Procedure of for the Synthesis of Compounds 5a-5u
3.3.1. Synthesis of Intermediate Compound 3
3.3.2. Synthesis of Target Compounds 5a-5u
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(2-fluorophenyl)prop-2-en-1-one 5a, yellow powder, m.p. 110–112 °C, Yield: 83%. IR(KBr): ʋmax 3069, 1664, 1605, 1504, 1280, 1258, 975, 868, 822, 750, 697, 708 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.21 (dt, J = 9.2, 2.9 Hz, 2H), 8.16–8.08 (m, 1H), 8.04–7.94 (m, 1H), 7.86 (dt, J = 6.1, 2.7 Hz, 1H), 7.84–7.78 (m, 1H), 7.54 (dd, J = 6.3, 2.7 Hz, 1H), 7.52–7.44 (m, 1H), 7.38–7.35 (m, 1H), 7.35–7.29 (m, 1H), 7.11 (d, J = 2.9 Hz, 1H), 7.09 (t, J = 2.7 Hz, 2H); 13C NMR (100 MHz, DMSO-d6) δ 187.87 (s, 1C), 161.39 (d, 1C), 161.00 (s, 1C), 149.68 (s, 1C), 135.38 (d, 1C), 133.15 (d, 1C), 133.00 (s, 1C), 131.79 (s, 2C), 130.92 (s, 1C), 130.48 (s, 1C), 129.67 (d, 1C), 127.14 (s, 1C), 125.46 (d, 1C), 124.46 (d, 1C), 122.77 (d, 1C), 122.23 (s, 1C), 118.09 (s, 1C), 117.03 (s, 2C), 116.57 (d, 1C). ESI-HRMS: m/z [M + H]+ calcd. for C21H14Cl2FO2 387.0355, found 387.0358.
- (E)-3-(2-Chlorophenyl)-1-(4-(2,4-dichlorophenoxy)phenyl)prop-2-en-1-one 5b, yellow powder, m.p. 117–119 °C, Yield: 86%. IR (KBr): ʋmax 3063, 1681, 1594, 1502, 1308, 1254, 979, 867, 829, 749, 685, 705 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.25 (d, J = 2.0 Hz, 1H), 8.23 (q, J = 2.8 Hz, 2H), 8.10–7.96 (m, 2H), 7.86 (d, J = 2.5 Hz, 1H), 7.60–7.56 (m, 1H), 7.54 (dd, J = 8.7, 2.5 Hz, 1H), 7.50–7.47 (m, 1H), 7.48–7.44 (m, 1H), 7.36 (d, J = 8.7 Hz, 1H), 7.15–7.04 (m, 2H); 13C NMR (100 MHz, DMSO-d6) δ 187.80 (s, 1C), 161.03 (s, 1C), 149.68 (s, 1C), 138.76 (s, 1C), 134.83 (s, 1C), 132.96 (s, 1C), 132.76 (s, 1C), 132.45 (s, 1C), 131.87 (s, 2C), 130.91 (s, 1C), 130.51 (s, 1C), 130.48 (s, 1C), 129.70 (s, 1C), 129.07 (s, 1C), 128.15 (s, 1C), 127.14 (s, 1C), 125.06 (s, 1C), 124.45 (s, 1C), 117.00 (s, 2C). ESI-HRMS: m/z [M + H]+ calcd. for C21H14Cl3O2 403.0059, found 403.0063.
- (E)-3-(2-Bromophenyl)-1-(4-(2,4-dichlorophenoxy)phenyl)prop-2-en-1-one 5c, yellow powder, m.p. 119–121 °C, Yield: 87%. IR (KBr): ʋmax 3060, 1659, 1596, 1503, 1310, 1240, 973, 867, 828, 749, 702, 660 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.28–8.22 (m, 2H), 8.20 (dd, J = 7.9, 1.8 Hz, 1H), 7.99 (d, J = 4.5 Hz, 2H), 7.87 (d, J = 2.6 Hz, 1H), 7.75 (dd, J = 8.0, 1.3 Hz, 1H), 7.60–7.52 (m, 1H), 7.49 (dd, J = 7.6, 1.3 Hz, 1H), 7.41 (dd, J = 7.7, 1.7 Hz, 1H), 7.36 (d, J = 8.8 Hz, 1H), 7.11 (d, J = 2.1 Hz, 1H), 7.09 (d, J = 2.0 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ 187.80 (s, 1C), 161.04 (s, 1C), 149.67 (s, 1C), 141.51 (s, 1C), 134.43 (s, 1C), 133.78 (s, 1C), 132.96 (s, 1C), 132.65 (s, 1C), 131.89 (s, 2C), 130.92 (s, 1C), 130.48 (s, 1C), 129.72 (s, 1C), 129.25 (s, 1C), 128.71 (s, 1C), 127.14 (s, 1C), 125.86 (s, 1C), 125.23 (s, 1C), 124.48 (s, 1C), 117.01 (s, 2C). ESI-HRMS: m/z [M + H]+ calcd. for C21H14BrCl2O2 446.9554, found 446.9556.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(o-tolyl)prop-2-en-1-one 5d, light yellow powder, m.p. 105–107 °C, Yield: 81%. IR (KBr): ʋmax 3060, 2971, 1656, 1592, 1482, 1379, 1318, 1253, 978, 867, 827, 755, 698, 669 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.22 (dq, J = 9.2, 2.4 Hz, 2H), 8.05–8.00 (m, 1H), 7.99 (d, J = 2.0 Hz, 1H), 7.89–7.84 (m, 1H), 7.83 (dq, J = 4.6, 2.1 Hz, 1H), 7.55–7.49 (m, 1H), 7.35 (d, J = 2.1 Hz, 1H), 7.34 (d, J = 1.5 Hz, 1H), 7.30 (d, J = 6.6 Hz, 1H), 7.28 (d, J = 1.7 Hz, 1H), 7.14–7.04 (m, 2H), 2.45 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 193.76 (s, 1C), 188.00 (s, 1C), 160.81 (s, 1C), 149.74 (s, 1C), 141.27 (s, 1C), 138.45 (s, 1C), 133.77 (s, 1C), 131.70 (s, 2C), 131.25 (s, 1C), 130.87 (s, 1C), 130.80 (s, 1C), 129.64 (s, 1C), 127.32 (s, 1C), 127.12 (s, 1C), 126.83 (s, 1C), 124.35 (s, 1C), 123.15 (s, 1C), 122.13 (s, 1C), 116.96 (s, 2C), 19.81 (s, 1C). ESI-HRMS: m/z [M + H]+ calcd. for C22H17Cl2O2 383.0606, found 383.0608.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(2-methoxyphenyl)prop-2-en-1-one 5e, orange powder, m.p. 107–109 °C, Yield: 84%. IR (KBr): ʋmax 3071, 2962, 1653, 1599, 1435, 1414, 1335, 1315, 1241, 970, 870, 825, 745, 702, 670 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.28–8.14 (m, 2H), 8.07 (d, J = 15.7 Hz, 1H), 8.01–7.94 (m, 1H), 7.90 (d, J = 15.7 Hz, 1H), 7.85 (d, J = 2.5 Hz, 1H), 7.53 (dt, J = 8.9, 2.7 Hz, 1H), 7.46 (ddd, J = 8.7, 7.3, 1.6 Hz, 1H), 7.35 (d, J = 8.7 Hz, 1H), 7.16–7.12 (m, 1H), 7.12–7.06 (m, 2H), 7.04 (d, J = 7.4 Hz, 1H), 3.91 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 188.14 (s, 1C), 160.73 (s, 1C), 158.72 (s, 1C), 149.76 (s, 1C), 138.80 (s, 1C), 132.76 (s, 1C), 131.59 (s, 2C), 130.88 (s, 1C), 130.40 (s, 1C), 129.66 (s, 1C), 129.02 (s, 1C), 127.12 (s, 1C), 124.38 (s, 1C), 123.40 (s, 1C), 122.10 (s, 1C), 121.15 (s, 1C), 118.04 (s, 1C), 116.97 (s, 2C), 112.23 (s, 1C), 56.16 (s, 1C). ESI-HRMS: m/z [M + H]+ calcd. for C22H17Cl2O3 399.0555, found 399.0557.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(2-(trifluoromethyl)phenyl)prop-2-en-1-one 5f, light yellow powder, m.p. 120–122 °C, Yield: 82%. IR (KBr): ʋmax 2972, 1663, 1601, 1576, 1483, 1416, 1384, 1330, 1311, 1280, 974, 872, 829, 751, 703, 651 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.34 (d, J = 7.2 Hz, 1H), 8.31–8.16 (m, 2H), 8.13–8.03 (m, 1H), 7.98 (d, J = 14.5 Hz, 1H), 7.86 (dd, J = 9.9, 4.6 Hz, 1H), 7.81 (t, J = 6.8 Hz, 1H), 7.68 (t, J = 7.1 Hz, 1H), 7.54 (ddt, J = 9.1, 6.6, 3.3 Hz, 1H), 7.38 (dd, J = 8.9, 4.9 Hz, 1H), 7.18–7.07 (m, 2H), 7.08–6.99 (m, 1H); 13C NMR (100 MHz, DMSO-d6) δ 187.67 (s, 1C), 161.13 (s, 1C), 149.64 (s, 1C), 138.02 (s, 1C), 133.43 (s, 1C), 132.77 (s, 1C), 131.95 (s, 2C), 130.96 (s, 1C), 130.91 (s, 1C), 130.69 (s, 1C), 130.51 (s, 1C), 129.70 (s, 1C), 129.26 (s, 1C), 127.15 (s, 1C), 126.64 (dd, J = 6 Hz, 1C), 126.51 (s, 1C), 124.47 (s, 1C), 122.22 (s, 1C), 118.05 (s, 1C), 117.00 (s, 2C). ESI-HRMS: m/z [M + H]+ calcd. for C22H14Cl2F3O2 437.0323, found 437.0325.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(3-fluorophenyl)prop-2-en-1-one 5g, light yellow powder, m.p. 114–116 °C, Yield: 80%. IR (KBr): ʋmax 2972, 1664, 1599, 1502, 1304, 1234, 979, 865, 805, 752, 691, 691 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.32–8.14 (m, 2H), 8.02 (dd, J = 15.7, 3.4 Hz, 1H), 7.89–7.85 (m, 1H), 7.85 (s, 1H), 7.76 (d, J = 3.4 Hz, 1H), 7.73–7.67 (m, 1H), 7.52 (s, 1H), 7.51 (s, 1H), 7.35 (dd, J = 8.7, 3.5 Hz, 1H), 7.33–7.23 (m, 1H), 7.10 (dd, J = 8.6, 3.5 Hz, 2H); 13C NMR (100 MHz, DMSO-d6) δ 187.95 (s, 1C), 162.97 (d, J = 242 Hz, 1C), 160.94 (s, 1C), 149.72 (s, 1C), 142.78 (d, J = 3 Hz, 1C), 137.75 (d, J = 7 Hz, 1C), 133.11 (s, 1C), 131.83 (s, 2C), 131.32(d, J = 9 Hz, 1C), 130.90 (s, 1C), 130.44 (s, 1C), 129.69 (s, 1C), 127.11 (s, 1C), 126.07 (s, 1C), 124.41 (s, 1C), 123.79 (s, 1C), 117.72 (d, J = 22 Hz, 1C), 116.99 (s, 2C), 115.14 (d, J = 22 Hz, 1C). ESI-HRMS: m/z [M + H]+ calcd. for C21H14Cl2FO2 387.0355, found 387.0357.
- (E)-3-(3-Chlorophenyl)-1-(4-(2,4-dichlorophenoxy)phenyl)prop-2-en-1-one 5h, light yellow powder, m.p. 120–122 °C, Yield: 80%. IR (KBr): ʋmax 3097, 1663, 1594, 1503, 1311, 1262, 976, 869, 814, 750, 685, 685 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.29–8.20 (m, 2H), 8.09 (d, J = 2.0 Hz, 1H), 8.08–8.00 (m, 1H), 7.87 (dd, J = 2.5, 0.9 Hz, 1H), 7.83 (dt, J = 6.6, 1.9 Hz, 1H), 7.72 (d, J = 15.6 Hz, 1H), 7.57–7.52 (m, 1H), 7.51 (q, J = 1.5 Hz, 1H), 7.48 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.7 Hz, 1H), 7.14–7.03 (m, 2H); 13C NMR (100 MHz, DMSO-d6) δ 187.93 (s, 1C), 160.96 (s, 1C), 149.72 (s, 1C), 142.54 (s, 1C), 137.44 (s, 1C), 134.27 (s, 1C), 133.10 (s, 1C), 131.87 (s, 2C), 131.17 (s, 1C), 130.92 (s, 1C), 130.61 (s, 1C), 130.45 (s, 1C), 129.71 (s, 1C), 128.43 (s, 1C), 128.40 (s, 1C), 127.12 (s, 1C), 124.44 (s, 1C), 123.89 (s, 1C), 116.99 (s, 2C). ESI-HRMS: m/z [M + H]+ calcd. for C21H14Cl3O2 403.0059, found 403.0063.
- (E)-3-(3-Bromophenyl)-1-(4-(2,4-dichlorophenoxy)phenyl)prop-2-en-1-one 5i, yellow powder, m.p. 124–126 °C, Yield: 84%. IR (KBr): ʋmax 3403, 1652, 1601, 1557, 1307, 1241, 943, 867, 817, 752, 690, 662 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.26 (t, J = 2.8 Hz, 1H), 8.23 (dd, J = 6.1, 3.1 Hz, 2H), 8.04 (d, J = 15.6 Hz, 1H), 7.87 (d, J = 3.3 Hz, 1H), 7.86–7.80 (m, 1H), 7.71 (dt, J = 15.6, 2.9 Hz, 1H), 7.64 (dt, J = 8.2, 2.6 Hz, 1H), 7.53 (dt, J = 8.8, 3.1 Hz, 1H), 7.45–7.30 (m, 2H), 7.10 (q, J = 3.1 Hz, 1H), 7.09–7.02 (m, 1H); 13C NMR (100 MHz, DMSO-d6) δ 187.90 (s, 1C), 160.95 (s, 1C), 149.72 (s, 1C), 142.49 (s, 1C), 137.69 (s, 1C), 133.49 (s, 1C), 133.10 (s, 1C), 131.87 (s, 2C), 131.42 (s, 1C), 131.28 (s, 1C), 130.91 (s, 1C), 130.44 (s, 1C), 129.70 (s, 1C), 128.77 (s, 1C), 127.12 (s, 1C), 124.43 (s, 1C), 123.85 (s, 1C), 122.88 (s, 1C), 116.98 (s, 2C). ESI-HRMS: m/z [M + H]+ calcd. for C21H14BrCl2O2 446.9554, found 446.9556.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(m-tolyl)prop-2-en-1-one 5j, yellow powder, m.p. 108–110 °C, Yield: 80%. IR (KBr): ʋmax 3680, 2920, 1660, 1595, 1470, 1379, 1314, 1255, 978, 861, 817, 751, 692, 666 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.26–8.18 (m, 2H), 7.98–7.88 (m, 1H), 7.75–7.71 (m, 1H), 7.69–7.64 (m, 1H), 7.53 (s, 1H), 7.51 (s, 1H), 7.36 (ddd, J = 9.4, 6.7, 2.0 Hz, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.20 (q, J = 2.0 Hz, 1H), 7.19 (t, J = 2.0 Hz, 1H), 7.16–7.10 (m, 2H), 2.37 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 188.06 (s, 1C), 161.27 (s, 1C), 154.53 (s, 1C), 144.40 (s, 1C), 138.64 (s, 1C), 135.08 (s, 1C), 133.22 (s, 1C), 131.81 (s, 1C),131.70 (s, 1C), 131.67 (s, 1C), 130.91 (s, 1C), 130.69 (s, 2C), 129.62 (s, 1C), 129.29 (s, 1C), 129.03 (s, 1C), 126.80 (s, 1C), 122.16 (s, 1C), 122.12 (s, 1C), 118.07 (s, 2C), 21.35 (s, 1C). ESI-HRMS: m/z [M + H]+ calcd. for C22H17Cl2O2 383.0606, found 383.0608.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(3-methoxyphenyl)prop-2-en-1-one 5k, light yellow powder, m.p. 110–112 °C, Yield: 85%. IR (KBr): ʋmax 3065, 2937, 1660, 1598, 1470, 1432, 1415, 1291, 1235, 979, 870, 828, 733, 693, 670 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.28–8.17 (m, 2H), 7.95 (ddt, J = 15.5, 6.3, 3.1 Hz, 1H), 7.86 (p, J = 3.5 Hz, 1H), 7.72 (dd, J = 15.5, 2.6 Hz, 1H), 7.50–7.47 (m, 1H), 7.46–7.41 (m, 1H), 7.40–7.36 (m, 1H), 7.36–7.31 (m, 1H), 7.22–7.13 (m, 1H), 7.08 (ddt, J = 12.9, 8.9, 3.1 Hz, 2H), 7.03 (dd, J = 5.6, 2.8 Hz, 1H), 3.84 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 188.10 (s, 1C), 160.84 (s, 1C), 160.11 (s, 1C), 149.75 (s, 1C), 144.28 (s, 1C), 136.56 (s, 1C), 133.27 (s, 1C), 131.76 (s, 1C), 130.90 (s, 1C), 130.69 (s, 1C), 130.42 (s, 2C), 129.70 (s, 1C), 127.11 (s, 1C), 124.41 (s, 1C), 122.63 (s, 1C), 122.15 (s, 1C), 117.14 (s, 1C), 116.98 (s, 2C), 113.87 (s, 1C), 55.77 (s, 1C). ESI-HRMS: m/z [M + H]+ calcd. for C22H17Cl2O3 399.0555, found 399.0557.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(3-(trifluoromethyl)phenyl)prop-2-en-1-one 5l, light yellow powder, m.p. 124–126 °C, Yield: 83%. IR (KBr): ʋmax 3068, 1665, 1601, 1578, 1483, 1417, 1327, 1237, 1214, 984, 869, 830, 751, 702, 658 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.47–8.23 (m, 1H), 8.14 (d, J = 29.0 Hz, 1H), 8.01–7.85 (m, 1H), 7.85–7.74 (m, 1H), 7.75–7.61 (m, 1H), 7.60–7.44 (m, 2H), 7.43–7.25 (m, 2H), 7.18 (d, J = 21.3 Hz, 1H), 7.15–7.06 (m, 1H), 7.06–6.96 (m, 1H), 6.82 (s, 1H); 13C NMR (100 MHz, DMSO-d6) δ 187.98 (s, 1C), 160.98 (s, 1C), 149.72 (s, 1C), 142.41 (s, 1C), 136.35 (s, 1C), 133.34 (s, 1C), 131.91 (s, 1C), 130.90 (s, 1C), 130.68 (s, 1C), 130.45 (s, 1C), 130.40 (s, 2C), 129.69 (s, 1C), 127.12 (s, 1C), 125.58 (s, 1C), 124.90 (s, 1C), 124.41 (s, 1C), 123.24 (d, J = 215 Hz, 1C), 118.25 (s, 1C), 118.05 (s, 1C), 116.98 (s, 2C). ESI-HRMS: m/z [M + H]+ calcd. for C22H14Cl2F3O2 437.0323, found 437.0326.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(4-fluorophenyl)prop-2-en-1-one 5m, light yellow powder, m.p. 120–122 °C, Yield: 85%. IR (KBr): ʋmax 3066, 1655, 1597, 1504, 1301, 1234, 991, 870, 813, 757, 699, 659 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.29–8.14 (m, 2H), 7.97 (qd, J = 7.4, 3.3 Hz, 2H), 7.92–7.81 (m, 1H), 7.75 (dd, J = 15.6, 3.9 Hz, 1H), 7.52 (dp, J = 10.0, 3.3 Hz, 1H), 7.36–7.28 (m, 2H), 7.18 (dt, J = 10.3, 3.7 Hz, 1H), 7.09 (ddq, J = 10.2, 6.5, 3.4 Hz, 2H), 7.03 (dt, J = 7.7, 4.3 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ 187.97 (s, 1C), 163.92 (d, 1C), 160.83 (s, 1C), 149.73 (s, 1C), 143.04 (s, 1C), 131.85 (d, 1C), 131.76 (s, 1C), 131.72 (s, 2C), 131.68 (s, 2C), 130.89 (s, 1C), 130.68 (s, 1C), 129.69 (s, 1C), 124.41 (s, 1C), 122.16 (s, 1C), 118.04 (s, 1C), 116.97 (s, 2C), 116.52 (s, 1C), 116.30 (s, 1C). ESI-HRMS: m/z [M + H]+ calcd. for C21H14Cl2FO2 387.0355, found 387.0353.
- (E)-3-(4-Chlorophenyl)-1-(4-(2,4-dichlorophenoxy)phenyl)prop-2-en-1-one 5n, light yellow powder, m.p. 125–127 °C, Yield: 80%. IR (KBr): ʋmax 3066, 1678, 1599, 1502, 1317, 1255, 978, 867, 867, 752, 705, 658 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.22 (dd, J = 8.9, 3.4 Hz, 2H), 7.99 (s, 1H), 7.94 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 2.5 Hz, 1H), 7.73 (d, J = 15.6 Hz, 1H), 7.55–7.52 (m, 2H), 7.35 (d, J = 8.8 Hz, 1H), 7.22–7.12 (m, 1H), 7.12–7.06 (m, 2H); 13C NMR (100 MHz, DMSO-d6) δ 187.97 (s, 1C), 160.91 (s, 1C), 149.72 (s, 1C), 142.80 (s, 1C), 135.55 (s, 1C), 134.14 (s, 1C), 133.16 (s, 1C), 131.78 (s, 2C), 131.06 (s, 2C), 130.91 (s, 1C), 129.71 (s, 1C), 129.44 (s, 2C), 127.13 (s, 1C), 124.45 (s, 1C), 123.09 (s, 1C), 118.06 (s, 1C), 116.98 (s, 2C). ESI-HRMS: m/z [M + H]+ calcd. for C21H14Cl3O2 403.0059, found 403.0058.
- (E)-3-(4-Bromophenyl)-1-(4-(2,4-dichlorophenoxy)phenyl)prop-2-en-1-one 5o, light yellow powder, m.p. 130–132 °C, Yield: 86%. 1H NMR (400 MHz, DMSO-d6) δ 8.26–8.18 (m, 1H), 8.04–7.95 (m, 2H), 7.85 (tt, J = 5.4, 2.6 Hz, 2H), 7.76–7.68 (m, 1H), 7.67 (dd, J = 8.5, 2.8 Hz, 1H), 7.51 (ddt, J = 8.3, 5.4, 2.5 Hz, 1H), 7.33 (ddd, J = 11.7, 8.7, 2.8 Hz, 1H), 7.13 (qd, J = 25.2, 11.5, 7.2, 2.7 Hz, 2H), 7.07–6.95 (m, 2H). ESI-HRMS: m/z [M + H]+ calcd. for C21H14BrCl2O2 446.9554, found 446.9555.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(p-tolyl)prop-2-en-1-one 5p, orange powder, m.p. 108–110 °C, Yield: 84%. IR (KBr): ʋmax 3062, 2916, 1654, 1593, 1469, 1380, 1303, 1253, 982, 857, 838, 749, 696, 670 cm-1; 1H NMR (400 MHz, DMSO-d6) δ 8.20 (dt, J = 9.5, 3.0 Hz, 2H), 7.89–7.83 (m, 1H), 7.78 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 15.7 Hz, 1H), 7.56–7.47 (m, 1H), 7.34 (dd, J = 8.8, 3.7 Hz, 1H), 7.27 (d, J = 8.2 Hz, 2H), 7.21–7.11 (m, 1H), 7.11–6.99 (m, 2H), 3.40 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 188.02 (s, 1C), 160.74 (s, 1C), 149.78 (s, 1C), 144.35 (s, 1C), 141.15 (s, 1C), 133.39 (s, 1C), 132.44 (s, 1C), 131.65 (s, 2C), 130.89 (s, 1C), 130.67 (s, 1C), 130.02 (s, 2C), 129.68 (s, 1C), 129.39 (s, 1C), 127.10 (s, 1C), 124.38 (s, 1C), 122.14 (s, 1C), 121.27 (s, 1C), 116.98 (s, 2C), 21.57 (s, 1C). ESI-HRMS: m/z [M + H]+ calcd. for C22H17Cl2O2 383.0606, found 383.0608.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one 5q, yellow powder, m.p. 114–116 °C, Yield: 85%. IR (KBr): ʋmax 3085, 2910, 1675, 1598, 1470, 1413, 1386, 1293, 1232, 959, 881, 832, 751, 697, 670 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.25–8.14 (m, 2H), 7.85 (d, J = 2.0 Hz, 1H), 7.85–7.82 (m, 2H), 7.80 (d, J = 15.5 Hz, 1H), 7.72 (d, J = 15.5 Hz, 1H), 7.52 (dd, J = 8.7, 2.6 Hz, 1H), 7.34 (d, J = 8.7 Hz, 1H), 7.12–7.06 (m, 2H), 7.04–6.98 (m, 2H), 3.83 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 187.92 (s, 1C), 161.83 (s, 1C), 160.64 (s, 1C), 149.82 (s, 1C), 144.28 (s, 1C), 133.58 (s, 1C), 131.56 (s, 2C), 131.27 (s, 2C), 130.90 (s, 1C), 130.35 (s, 1C), 129.68 (s, 1C), 127.79 (s, 1C), 127.08 (s, 1C), 124.35 (s, 1C), 119.81 (s, 1C), 116.98 (s, 2C), 116.78 (s, 1C), 114.88 (s, 2C). ESI-HRMS: m/z [M + H]+ calcd. for C22H17Cl2O3 399.0555, found 399.0554.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one 5r, light yellow powder, m.p. 132–134 °C, Yield: 81%. IR (KBr): ʋmax 3070, 1677, 1601, 1578, 1483, 1416, 1323, 1234, 1161, 989, 870, 830, 750, 673, 622 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.98 (ddd, J = 9.1, 4.9, 2.6 Hz, 2H), 7.84 (t, J = 2.5 Hz, 1H), 7.58 (d, J = 3.5 Hz, 1H), 7.54–7.48 (m, 2H), 7.31 (dd, J = 8.8, 5.7 Hz, 2H), 7.18–7.13 (m, 1H), 7.08 (d, J = 8.8 Hz, 1H), 7.05–7.01 (m, 2H), 7.00–6.97 (m, 1H). ESI-HRMS: m/z [M + H]+ calcd. for C22H13Cl2F3NaO2 459.0142, found 459.0149.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(3-nitrophenyl)prop-2-en-1-one 5s, yellow powder, m.p. 125–127 °C, Yield: 87%. IR (KBr): ʋmax 3071, 1652, 1599, 1570, 1484, 1418, 1348, 1221, 1169, 984, 874, 837, 745, 677, 640 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.79 (s, 1H), 8.34 (d, J = 5.7 Hz, 1H), 8.28 (d, J = 3.0 Hz, 1H), 8.26 (q, J = 3.2 Hz, 2H), 8.17 (dt, J = 15.6, 3.0 Hz, 1H), 7.86 (ddd, J = 12.3, 6.9, 3.4 Hz, 1H), 7.75 (td, J = 8.0, 3.5 Hz, 1H), 7.53 (dq, J = 10.2, 3.3 Hz, 1H), 7.36 (dt, J = 8.8, 3.4 Hz, 1H), 7.22–7.14 (m, 1H), 7.11 (dt, J = 6.5, 4.7 Hz, 2H); 13C NMR (100 MHz, DMSO-d6) δ 187.93 (s, 1C), 161.03 (s, 1C), 149.69 (s, 1C), 148.88 (s, 1C), 141.71 (s, 1C), 137.07 (s, 1C), 135.58 (s, 1C), 131.93 (s, 2C),130.91 (s, 1C), 130.83 (s, 1C), 130.69 (s, 1C), 129.70 (s, 1C), 127.13 (s, 1C), 125.12 (s, 1C), 124.44 (s, 1C), 123.47 (s, 1C), 122.19 (s, 1C), 118.04 (s, 1C), 116.98 (s, 2C). ESI-HRMS: m/z [M + H]+ calcd. for C21H14Cl2NO4 414.0300, found 414.0295.
- (E)-1-(4-(2,4-Dichlorophenoxy)phenyl)-3-(4-nitrophenyl)prop-2-en-1-one 5t, orange powder, m.p. 148–150 °C, Yield: 82%. IR (KBr): ʋmax 3075, 1658, 1599, 1577, 1484, 1415, 1415, 1219, 1168, 983, 875, 830, 747, 660, 626 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.31–8.27 (m, 1H), 8.24 (dt, J = 9.1, 2.6 Hz, 2H), 8.16 (dd, J = 9.1, 2.3 Hz, 2H), 8.10 (d, J = 2.1 Hz, 1H), 7.87–7.76 (m, 2H), 7.53 (ddd, J = 8.9, 4.6, 2.4 Hz, 1H), 7.36 (dd, J = 8.8, 2.3 Hz, 1H), 7.22–7.12 (m, 1H), 7.10 (dd, J = 8.9, 2.2 Hz, 2H); 13C NMR (100 MHz, DMSO-d6) δ 187.94 (s, 1C), 161.13 (s, 1C), 149.61 (s, 1C), 148.52 (s, 1C), 141.62 (s, 1C), 141.41 (s, 1C), 132.84 (s, 1C), 131.94 (s, 2C), 130.91 (s, 1C), 130.52 (s, 1C), 130.32 (s, 2C), 129.73 (s, 1C), 127.16 (s, 1C), 126.37 (s, 1C), 124.52 (s, 1C), 124.42 (s, 2C), 116.99 (s, 2C). ESI-HRMS: m/z [M + H]+ calcd. for C21H14Cl2NO4 414.0300, found 414.0299.
- (E)-3-(4-(4-Chlorophenoxy)phenyl)-1-(4-(2,4-dichlorophenoxy)phenyl)prop-2-en-1-one 5u, yellow powder, m.p. 129–131 °C, Yield: 82%. IR (KBr): ʋmax 2980, 1657, 1600, 1580, 1481, 1419, 1293, 1155, 980, 870, 746, 666, 623 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.19–8.10 (m, 2H), 7.99–7.92 (m, 1H), 7.89 (dp, J = 5.9, 2.9 Hz, 2H), 7.76 (dd, J = 15.6, 2.4 Hz, 1H), 7.71–7.64 (m, 1H), 7.62–7.55 (m, 2H), 7.46 (dt, J = 6.4, 3.9 Hz, 3H), 7.43–7.35 (m, 1H), 7.32–7.21 (m, 1H), 7.21–7.12 (m, 1H), 7.12–7.02 (m, 1H), 6.84 (dd, J = 26.0, 7.6 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ 188.02 (s, 1C), 160.78 (s, 1C), 158.96 (s, 1C), 155.15 (s, 1C), 143.55 (s, 1C), 133.33 (s, 1C), 131.65 (s, 2C), 131.49 (s, 2C), 130.88 (s, 1C), 130.69 (s, 1C), 130.55 (s, 2C), 129.70 (s, 1C), 128.46 (s, 1C), 127.11 (s, 1C), 124.42 (s, 1C), 122.16 (s, 1C), 121.52 (s, 2C), 121.41 (s, 1C), 118.99 (s, 2C), 118.06 (s, 1C), 116.97 (s, 2C). HRMS (ESI) m/z calcd for C27H18Cl3O3 (M + H)+ 495.0322, found 495.0320.
3.4. Compounds MIC Testing
3.5. Constant Concentration Time-Kill Curves
3.6. Molecular Docking of Compound 5u and Chalcone
3.7. Molecular Modeling of Compound 5u
3.7.1. Molecular Docking
3.7.2. Molecular Dynamics
3.7.3. Binding Free Energy and Energy Decomposition per Residue Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- George, S.; Muhaj, F.F.; Nguyen, C.D.; Tyring, S.K. Part I antimicrobial resistance: Bacterial pathogens of dermatologic significance and implications of rising resistance. J. Am. Acad. Dermatol. 2022, 86, 1189–1204. [Google Scholar] [CrossRef] [PubMed]
- Falkow, S. Is persistent bacterial infection good for your health? Cell 2006, 124, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Shanbhag, C.; Saraogi, I.; Bacterial, G.T. Pases as druggable targets to tackle antimicrobial resistance. Bioorg. Med. Chem. Lett. 2023, 87, 129276. [Google Scholar] [CrossRef]
- Ao, S.; Linke, L.; Magnuson, R.; Jauch, L.; Hyatt, D.R. Antimicrobial resistance and genetic diversity of Staphylococcus aureus collected from livestock, poultry and humans. One Health 2022, 15, 100407. [Google Scholar]
- Chahouri, A.; Radouane, N.; Yacoubi, B.; Moukrim, A.; Banaoui, A. Microbiological assessment of marine and estuarine ecosystems using fecal indicator bacteria, Salmonella, Vibrio and antibiotic resistance pattern. Mar. Pollut. Bull. 2022, 180, 113824. [Google Scholar] [CrossRef]
- González-Bello, C. Antibiotic adjuvants-A strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett. 2017, 27, 4221–4228. [Google Scholar] [CrossRef]
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, X.; Luo, Z.; Wu, X.; Zhao, Z. Synthesis and antibacterial activity of novel 2-fluoro ketolide antibiotics with 11,12-quinoylalkyl side chains. Bioorg. Med. Chem. Lett. 2023, 80, 129115. [Google Scholar] [CrossRef]
- El-Barasi, N.M.; Miloud, M.M.; El-ajaily, M.M.; Mohapatra, R.K.; Sarangi, A.; Das, D.; Mahal, A.; Parhi, P.K.; Pintilie, L.; Barik, S.R.; et al. Synthesis, structural investigations and antimicrobial studies of hydrazone based ternary complexes with Cr(III), Fe(III) and La(III) ions. J. Saudi Chem. Soc. 2020, 24, 492–503. [Google Scholar] [CrossRef]
- Duan, M.; Mahal, A.; Mohammed, B.; Zhu, Y.; Tao, H.; Mai, S.; Al-Haideri, M.; Zhu, Q. Synthesis and antitumor activity of new tetrahydrocurcumin derivatives via click reaction. Nat. Prod. Res. 2022, 36, 5268–5276. [Google Scholar] [CrossRef]
- Zinad, D.S.; Mahal, A.; Mohapatra, R.K.; Sarangi, A.K.; Pratama, M.R.F. Medicinal chemistry of oxazines as promising agents in drug discovery. Chem. Biol. Drug Des. 2020, 95, 16–47. [Google Scholar] [CrossRef] [PubMed]
- WHO. World AMR Awareness Week: Preventing Antimicrobial Resistance Together; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Zhuang, C.L.; Zhang, W.; Sheng, C.Q.; Zhang, W.N.; Xing, C.G.; Miao, Z.Y. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Y.; Yang, L.Q.; Li, Y.Z.; Nan, Z.B.; Gao, K. Biological activities of flavonoids from pathogenic-infected Astragalus adsurgens. Food Chem. 2012, 131, 546–551. [Google Scholar] [CrossRef]
- Dan, W.J.; Dai, J.K. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur. J. Med. Chem. 2020, 187, 111980. [Google Scholar] [CrossRef]
- Zhao, X.; Mei, W.; Gong, M.; Zuo, W.; Bai, H.; Dai, H. Antibacterialactivity of the flavonoids from Dalbergia odorifera on Ralstoniasolanacearum. Molecules 2011, 16, 9775–9782. [Google Scholar] [CrossRef]
- Sufian, A.S.; Ramasamy, K.; Ahmat, N.; Zakaria, Z.A.; Yusof, M.I.M. Isolation and identification of antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L. J. Ethnopharmacol. 2013, 146, 198–204. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Bharti, S.K.; Asati, V.; Singh, S.K. Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur. J. Med. Chem. 2019, 174, 142–158. [Google Scholar] [CrossRef]
- Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: A patent review (from June 2011–2014). Expert. Opin. Ther. Pat. 2005, 25, 351–366. [Google Scholar] [CrossRef]
- Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem. 2012, 19, 209–225. [Google Scholar] [CrossRef]
- Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 2007, 42, 125–137. [Google Scholar] [CrossRef]
- Xin, Y.; Jin, H.; Hou, R.T.; Chen, L.; Chen, F.L.; Wu, K.Q.; Wang, Y.L.; Yang, Z.R. Synthesis and antimicrobial activities of brominated dihydroxy diphenyl ethers. Chem. Res. Appl. 2006, 18, 1346–1348. [Google Scholar]
- Jin, H.; Chen, S.; Hou, R.T.; Wang, Y.L.; Chen, S.H.; Yang, Z.R. Study on the synthesis and antimicrobial activities of brominated dihydroxy diphenyl ethers. Chin. J. Org. Chem. 2006, 26, 1424–1428. [Google Scholar]
- Jin, H.; Zhou, J.; Pu, T.; Zhang, A.; Gao, X.; Tao, K.; Hou, T. Synthesis of novel fenfuram-diarylether hybrids as potent succinate dehydrogenase inhibitors. Bioorg. Chem. 2017, 73, 76–82. [Google Scholar] [CrossRef]
- Wen, F.; Jin, H.; Tao, K.; Hou, T.P. Design, synthesis and antifungal activity of novel furancarboxamide derivatives. Eur. J. Med. Chem. 2016, 120, 244–251. [Google Scholar] [CrossRef]
- Zhu, J.J.; Huang, Q.S.; Liu, S.Q.; Ding, W.J.; Xiong, Y.H.; Li, C.Y. Four new diphenyl ether derivatives from a mangrove endophytic fungus Epicoccum sorghinum. Chin. J. Nat. Med. 2022, 20, 537–540. [Google Scholar] [CrossRef]
- Chen, T.; Xiong, H.; Yang, J.F.; Zhu, X.L.; Qu, R.Y.; Yang, G.F. Diaryl ether: A privileged scaffold for drug and agrochemical discovery. J. Agric. Food Chem. 2020, 68, 9839–9877. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Z.; Lu, H.; Liu, S.; Ding, W.; Li, J.; Xiong, Y.; Li, C. New diphenyl ethers from a fungus Epicoccum sorghinum L28 and their antifungal activity against phytopathogens. Bioorg. Chem. 2021, 115, 105232. [Google Scholar] [CrossRef]
- Jin, H.; Geng, Y.C.; Yu, Z.Y.; Tao, K.; Hou, T.P. Lead optimization and anti-plant pathogenic fungi activities of daphneolone analogues from Stellera chamaejasme L. Pestic. Biochem. Phys. 2009, 93, 133–137. [Google Scholar]
- Liu, W.; Shi, H.M.; Jin, H.; Zhao, H.Y.; Zhou, G.P.; Wen, F.; Yu, Z.Y.; Hou, T.P. Design, synthesis and antifungal activity of a series of novel analogs based on diphenyl ketones. Chem. Biol. Drug Des. 2009, 73, 61–67. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, H.; Ji, L.Z.; Tao, K.; Liu, W.; Zhao, H.Y.; Hou, T.P. Design, synthesis, and bioactivities screening of a diaryl ketone-inspired pesticide molecular library as derived from natural products. Chem. Biol. Drug Des. 2011, 78, 94–100. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Liu, N.; Yan, J.Y.; Ren, Z.L.; Wang, L. Visible light- and heat-promoted C−O coupling reaction of phenols and aryl halides. Asian. J. Org. Chem. 2020, 9, 116–120. [Google Scholar] [CrossRef]
- Walsh, S.; Severino, A.; Zhou, C.Y.; He, J.F.; Liang, G.B.; Tan, C.P.; Cao, J.; Eiermann, G.J.; Xu, L.; Salituro, G.; et al. 3-Substituted 3-(4-aryloxyaryl)-propanoic acids as GPR40 agonists. Bioorg. Med. Chem. Lett. 2011, 21, 3390–3394. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Jin, H. Preparation of Diphenyl Ether Chalcone Derivatives and Its Application. China patent CN 119859095, 24 March 2025. [Google Scholar]
- Kozłowska, J.; Potaniec, B.; Baczyńska, D.; Żarowska, B.; Anioł, M. Synthesis and biological evaluation of novel aminochalcones as potential anticancer and antimicrobial agents. Molecules 2019, 24, 4129. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Lai, L.; Sun, W.; Lu, Z.; Hao, J.; Liu, Y.; Wu, W.; Guan, S.; Su, X. Discovery of novel tetrahydrobenzothiophene derivatives as, M.S.;BA inhibitors for antimicrobial agents. Bioorg. Chem. 2024, 142, 106932. [Google Scholar] [CrossRef]
- Liu, X.W.; Yang, Y.J.; Zhe Qin, Z.; Li, S.H.; Bai, L.X.; Ge, W.B.; Li, J.Y. Isobavachalcone from cullen corylifolium presents significant antibacterial activity against clostridium difficile through disruption of the cell membrane. Front. Pharmacol. 2022, 13, 914188. [Google Scholar] [CrossRef]
- Okolo, E.; Ugwu, D.I.; Ezema, B.E.; Ndefo, J.C.; Eze, F.U.; Ezema, C.G.; Ezugwu, J.A.; Ujam, O. New chalcone derivatives as potential antimicrobial and antioxidant agent. Sci. Rep. 2021, 11, 21781. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph Model. 1999, 17, 57–61. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools 4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Pierce, L.C.; Salomon-Ferrer, R.; Augusto, F.; de Oliveira, C.; McCammon, J.A.; Walker, R.C. Routine access to millisecond time scale events with accelerated molecular dynamics. J. Chem. Theory Comput. 2012, 8, 2997–3002. [Google Scholar] [CrossRef]
- Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012, 8, 1542–1555. [Google Scholar] [CrossRef] [PubMed]
- Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with Amber on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.W.S.; Vranken, W.F. ACPYPE-Antechamber python parser interface. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.L.; Li, Y.; Wang, R.X. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
Compd | R | MW | logP | HBA | HBD |
---|---|---|---|---|---|
5a | 2-F | 387.23 | 4.82 | 3 | 0 |
5b | 2-Cl | 403.68 | 5.66 | 2 | 0 |
5c | 2-Br | 448.14 | 5.60 | 2 | 0 |
5d | 2-CH3 | 383.27 | 4.73 | 2 | 0 |
5e | 2-CH3O | 399.27 | 4.40 | 3 | 0 |
5f | 2-CF3 | 437.24 | 5.32 | 2 | 0 |
5g | 3-F | 387.23 | 4.82 | 3 | 0 |
5h | 3-Cl | 403.68 | 5.66 | 2 | 0 |
5i | 3-Br | 448.14 | 5.60 | 2 | 0 |
5j | 3-CH3 | 383.27 | 5.01 | 2 | 0 |
5k | 3-CH3O | 399.27 | 4.40 | 3 | 0 |
5l | 3-CF3 | 437.24 | 5.32 | 2 | 0 |
5m | 4-F | 387.23 | 4.82 | 3 | 0 |
5n | 4-Cl | 403.68 | 5.66 | 2 | 0 |
5o | 4-Br | 448.14 | 5.60 | 2 | 0 |
5p | 4-CH3 | 383.27 | 4.73 | 2 | 0 |
5q | 4-CH3O | 399.27 | 4.40 | 3 | 0 |
5r | 4-CF3 | 437.24 | 5.32 | 2 | 0 |
5s | 3-NO2 | 414.24 | 4.20 | 4 | 0 |
5t | 4-NO2 | 414.24 | 4.18 | 6 | 0 |
5u | 4-(4-ClPh)O | 495.78 | 6.82 | 3 | 0 |
Compd | MIC (μM) | |||
---|---|---|---|---|
S. aureus | E. coli | Salmonella | P. aeruginosa | |
5a | 68.85 | 45.09 | 45.09 | 45.09 |
5b | 58.65 | 39.10 | 39.10 | 39.10 |
5c | 33.48 | 33.48 | 33.48 | 33.48 |
5d | 34.80 | 34.80 | 34.80 | 34.80 |
5e | 66.80 | 33.40 | 33.40 | 33.40 |
5f | 76.25 | 50.83 | 50.83 | 50.83 |
5g | 68.85 | 45.90 | 45.90 | 45.90 |
5h | 44.60 | 29.73 | 29.73 | 29.73 |
5i | 55.05 | 27.53 | 36.70 | 27.53 |
5j | 66.10 | 44.07 | 44.07 | 44.07 |
5k | 83.50 | 33.40 | 33.40 | 33.40 |
5l | 76.25 | 38.13 | 38.13 | 38.13 |
5m | 71.73 | 71.73 | 71.73 | 71.73 |
5n | 71.00 | 47.33 | 47.33 | 47.33 |
5o | 67.25 | 44.83 | 44.83 | 44.83 |
5p | 77.40 | 51.60 | 51.60 | 51.60 |
5q | 66.80 | 44.53 | 44.53 | 44.53 |
5r | 50.83 | 76.25 | 50.83 | 50.83 |
5s | 60.35 | 40.23 | 40.23 | 40.23 |
5t | 64.40 | 42.93 | 42.93 | 32.20 |
5u | 25.23 | 33.63 | 33.63 | 33.63 |
chalcone | 80.03 | 106.70 | 106.70 | 106.70 |
ciprofloxacin | 9.72 | 0.78 | 259.17 | 388.75 |
gentamycin | 6.51 | 1.04 | 52.11 | 521.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Jin, H. Synthesis, Antibacterial Evaluation and Molecular Modeling of Novel Chalcone Derivatives Incorporating the Diphenyl Ether Moiety. Molecules 2025, 30, 2575. https://doi.org/10.3390/molecules30122575
Li S, Jin H. Synthesis, Antibacterial Evaluation and Molecular Modeling of Novel Chalcone Derivatives Incorporating the Diphenyl Ether Moiety. Molecules. 2025; 30(12):2575. https://doi.org/10.3390/molecules30122575
Chicago/Turabian StyleLi, Shiyuan, and Hong Jin. 2025. "Synthesis, Antibacterial Evaluation and Molecular Modeling of Novel Chalcone Derivatives Incorporating the Diphenyl Ether Moiety" Molecules 30, no. 12: 2575. https://doi.org/10.3390/molecules30122575
APA StyleLi, S., & Jin, H. (2025). Synthesis, Antibacterial Evaluation and Molecular Modeling of Novel Chalcone Derivatives Incorporating the Diphenyl Ether Moiety. Molecules, 30(12), 2575. https://doi.org/10.3390/molecules30122575