Efficient Removal of Ciprofloxacin from Water Using High-Surface-Area Activated Carbon Derived from Rice Husks: Adsorption Isotherms, Kinetics, and Thermodynamic Evaluation
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Adsorption Experiments
2.3. Adsorption Isotherms
2.4. Kinetic Modeling
2.5. Adsorption Thermodynamic Results
2.6. Literature Review
Activated Carbon Source | Activation Process | Surface Area of Adsorbent (m2/g) | Maximum Adsorption Capacity (mg·g−1) | Equilibrium Time | Reference |
---|---|---|---|---|---|
Cupuaçu (Theobroma grandiflorum) bark | H3PO4 | 1335.66 | 6.02 | 266.4 min | [48] |
Kiwi peels | - | 0.5 | 40.0 | 60 min | [49] |
Jerivá (Syagrus romanzoffiana) | ZnCl2 | 1435 | 335.8 | 360 min | [46] |
Albizia lebbeck seed pods | Microwave-assisted KOH activation | 1824.88 | 131.14 | 90 min | [47] |
Bamboo | Na2SiO3 | 312.7 | 17.12 | 60 min | [50] |
Bamboo | H3PO4 and K2CO3 | 2237 | 613 | 5 day | [45] |
Rice husks | KOH | 1539.7 | 398.4 | 15 min | This work |
3. Materials and Methods
3.1. Materials
3.2. Activated Carbon Production from Rice Husks
3.3. Adsorbent Characterization
3.4. Adsorption/Desorption Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erol, K.; Yıldız, E.; Alacabey, İ.; Karabörk, M.; Uzun, L. Magnetic diatomite for pesticide removal from aqueous solution via hydrophobic interactions. Environ. Sci. Pollut. Res. 2019, 26, 33631–33641. [Google Scholar] [CrossRef] [PubMed]
- Alacabey, İ. Endosulfan elimination using amine-modified magnetic diatomite as an adsorbent. Front. Chem. 2022, 10, 907302. [Google Scholar] [CrossRef] [PubMed]
- Teğin, İ.; Akdeniz, S.; Alacabey, İ.; Erol, K.; Acar, O. Preconcentration and determination of Cu (II) and Cd (II) ions from wastewaters by using hazelnut shell biosorbent immobilized on Amberlite XAD-4 resin. MANAS J. Eng. 2023, 11, 177–189. [Google Scholar] [CrossRef]
- Kızıl, Y.; Benek, V.; Teğin, İ.; Önal, Y.; Erol, K.; Alacabey, İ. Reactive Blue 19 adsorption on activated carbon from pumpkin (Cucurbita pepo) seed waste: Kinetic, isotherm and thermodynamic studies. Environ. Res. Eng. Manag. 2024, 80, 7–20. [Google Scholar] [CrossRef]
- Kireç, O.; Alacabey, İ.; Erol, K.; Alkan, H. Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres. J. Polym. Eng. 2021, 41, 226–234. [Google Scholar] [CrossRef]
- Teğin, İ.; Demirel, M.F.; Alacabey, İ.; Yabalak, E. Investigation of the effectiveness of waste nut shell–based hydrochars in water treatment: A model study for the adsorption of methylene blue. Biomass Convers. Biorefinery 2024, 14, 10399–10412. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, Z.; Lu, B.; Zhao, Y.; Zhang, H. Effects of mixed LED light wavelengths and strigolactone analog concentrations on integral biogas upgrading and antibiotic removal from piggery wastewater by different microalgae-bacteria-fungi consortia. Algal Res. 2024, 82, 103622. [Google Scholar] [CrossRef]
- Guo, N.; Zhang, H.; Wang, L.; Yang, Z.; Li, Z.; Wu, D.; Chen, F.; Zhu, Z.; Song, L. Metagenomic insights into the influence of pH on antibiotic removal and antibiotic resistance during nitritation: Regulations on functional genus and genes. Environ. Res. 2024, 261, 119689. [Google Scholar] [CrossRef]
- Alacabey, İ. Antibiotic removal from the aquatic environment with activated carbon produced from pumpkin seeds. Molecules 2022, 27, 1380. [Google Scholar] [CrossRef]
- Wang, K.; Tong, L.; Yu, J.; Zhou, Z.; Sheng, J.; Ji, H.; Wang, Z.; Wang, H. Supplementation of diethyl aminoethyl hexanoate for enhancing antibiotics removal by different microalgae-based system. Bioresour. Technol. 2024, 408, 131231. [Google Scholar] [CrossRef]
- Feitosa, M.H.; Santos, A.M.; Wong, A.; Moraes, C.A.; Grosseli, G.M.; Nascimento, O.R.; Fadini, P.S.; Moraes, F.C. Photoelectrocatalytic removal of antibiotic ciprofloxacin using a photoanode based on Z-scheme heterojunction. Chem. Eng. J. 2024, 493, 152291. [Google Scholar] [CrossRef]
- Zhang, C.-M.; Yan, Y.-H.; Li, L.; Liang, J. Effects of gradual increase of ciprofloxacin and cefotaxime on nitrogen and phosphorus removal and microbial community in moving bed biofilm reactor. J. Water Process Eng. 2024, 66, 106032. [Google Scholar] [CrossRef]
- Duong, H.A.; Pham, N.H.; Nguyen, H.T.; Hoang, T.T.; Pham, H.V.; Pham, V.C.; Berg, M.; Giger, W.; Alder, A.C. Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam. Chemosphere 2008, 72, 968–973. [Google Scholar] [CrossRef]
- Ripanda, A.; Rwiza, M.J.; Nyanza, E.C.; Bih, L.N.; Hossein, M.; Bakari, R.; Sigh, S.K.; Reddy, G.; Ravikumar, C.; Murthy, H.A. Optimizing ciprofloxacin removal from water using jamun seed (Syzygium cumini) biochar: A sustainable approach for ecological protection. HydroResearch 2024, 7, 164–180. [Google Scholar] [CrossRef]
- Çok, S.S.; Koç, F.; Len, A.; Almásy, L.; Dudás, Z. Silica aerogels modified with vinyl, epoxide, methacrylate moieties for the removal of ciprofloxacin by adsorption from water. Sep. Purif. Technol. 2025, 354, 129112. [Google Scholar]
- Yang, M.; He, J.; He, J.; Cao, J. Removal of tetracycline and ciprofloxacin from aqueous solutions using magnetic copper ferrite nanoparticles. J. Sci. Adv. Mater. Devices 2024, 9, 100717. [Google Scholar] [CrossRef]
- Wolska, J.; Frankowski, M.; Jenczyk, J.; Wolski, L. Highly sulfonated hyper-cross-linked polymers as promising adsorbents for efficient and selective removal of ciprofloxacin from water. Sep. Purif. Technol. 2024, 343, 127147. [Google Scholar] [CrossRef]
- Mollaei, M.; Karbasi, F.; Haddad, A.S.; Baniasadi, H. Fabrication of biocomposite materials with polycaprolactone and activated carbon extracted from agricultural waste. Colloids Surf. A Physicochem. Eng. Asp. 2024, 702, 135175. [Google Scholar] [CrossRef]
- Tang, X.; Yao, M.; Li, J. Boric acid-modified activated carbon for glycerol removal from high-salt wastewater. Appl. Surf. Sci. 2024, 670, 160660. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, T.S.; Hu, J.Y. Antibiotics removal and antimicrobial resistance control by ozone/peroxymonosulfate-biological activated carbon: A novel treatment process. Water Res. 2024, 261, 122069. [Google Scholar] [CrossRef]
- Sousa, É.M.; Otero, M.; Gil, M.V.; Ferreira, P.; Esteves, V.I.; Calisto, V. Evaluation of different functionalization methodologies for improving the removal of three target antibiotics from wastewater by a brewery waste activated carbon. Sci. Total Environ. 2024, 912, 169437. [Google Scholar] [CrossRef]
- Özsin, G.; Kılıç, M.; Apaydın-Varol, E.; Pütün, A.E. Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: Equilibrium, kinetic, and thermodynamic studies. Appl. Water Sci. 2019, 9, 56. [Google Scholar] [CrossRef]
- Meseguer, V.F.; Ortuño, J.F.; Aguilar, M.I.; Lloréns, M.; Pérez-Marín, A.B.; Fuentes, E. Ciprofloxacin uptake from an aqueous solution via adsorption with K2CO3-activated biochar derived from brewing industry bagasse. Processes 2024, 12, 199. [Google Scholar] [CrossRef]
- Dhaneswara, D.; Fatriansyah, J.F.; Situmorang, F.W.; Haqoh, A.N. Synthesis of amorphous silica from rice husk ash: Comparing HCl and CH3COOH acidification methods and various alkaline concentrations. Int. J. Technol. 2020, 11, 200–208. [Google Scholar] [CrossRef]
- Kowalczuk, D. FTIR characterization of the development of antimicrobial catheter coatings loaded with fluoroquinolones. Coatings 2020, 10, 818. [Google Scholar] [CrossRef]
- Ma, S.; Si, Y.; Wang, F.; Su, L.; Xia, C.; Yao, J.; Chen, H.; Liu, X. Interaction processes of ciprofloxacin with graphene oxide and reduced graphene oxide in the presence of montmorillonite in simulated gastrointestinal fluids. Sci. Rep. 2017, 7, 2588. [Google Scholar] [CrossRef]
- Selmi, T.; Gentil, S.; Fierro, V.; Celzard, A. Key factors in the selection, functionalization and regeneration of activated carbon for the removal of the most common micropollutants in drinking water. J. Environ. Chem. Eng. 2024, 12, 113105. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Pakade, V.E. Trends in removal of pharmaceuticals in contaminated water using waste coffee and tea-based materials with their derivatives. Water Environ. Res. 2023, 95, e10857. [Google Scholar] [CrossRef]
- Mopoung, S.; Dejang, N. Activated carbon preparation from eucalyptus wood chips using continuous carbonization–steam activation process in a batch intermittent rotary kiln. Sci. Rep. 2021, 11, 13948. [Google Scholar] [CrossRef]
- Zhang, B.; Han, X.; Gu, P.; Fang, S.; Bai, J. Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J. Mol. Liq. 2017, 238, 316–325. [Google Scholar] [CrossRef]
- Yasmin, S.; Azam, M.G.; Hossain, M.S.; Akhtar, U.S.; Kabir, M.H. Efficient removal of ciprofloxacin from aqueous solution using Zn–C battery derived graphene oxide enhanced by hydrogen bonding, electrostatic and π–π interaction. Heliyon 2024, 10, e33317. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Y.; Wang, S.; Bai, L.; Deng, Y.; Tao, J. Effect of pore size distribution and amination on adsorption capacities of polymeric adsorbents. Molecules 2021, 26, 5267. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Nguyen, H. Activated carbon based rice husk for highly efficient adsorption of methylene blue: Kinetic and isotherm. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1092, 12078. [Google Scholar] [CrossRef]
- El-Bahy, Z.M.; Ismail, A.A.; Mohamed, R.M. Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J. Hazard. Mater. 2009, 166, 138–143. [Google Scholar] [CrossRef]
- Garba, Z.N.; Tanimu, A.; Zango, Z.U. Borassus aethiopum shell-based activated carbon as efficient adsorbent for carbofuran. Bull. Chem. Soc. Ethiop. 2019, 33, 425–436. [Google Scholar] [CrossRef]
- Tran, Q.T.; Do, T.H.; Ha, X.L.; Nguyen, H.P.; Nguyen, A.T.; Ngo, T.C.Q.; Chau, H.D. Study of the ciprofloxacin adsorption of activated carbon prepared from mangosteen peel. Appl. Sci. 2022, 12, 8770. [Google Scholar] [CrossRef]
- Wang, M.; Li, G.; Huang, L.; Xue, J.; Liu, Q.; Bao, N.; Huang, J. Study of ciprofloxacin adsorption and regeneration of activated carbon prepared from Enteromorpha prolifera impregnated with H3PO4 and sodium benzenesulfonate. Ecotoxicol. Environ. Saf. 2017, 139, 36–42. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Thavorn-Amornsri, T.; Pereira, M.F.R.; Figueiredo, J.L. Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res. 2011, 45, 4583–4591. [Google Scholar] [CrossRef]
- Liu, T.; Liu, W.; Li, X.; Zhang, Y.; Zhao, J.; Chen, M. Effect of environmental factors on adsorption of ciprofloxacin from wastewater by microwave alkali modified fly ash. Sci. Rep. 2024, 14, 19831. [Google Scholar] [CrossRef]
- Alacabey, İ.; Acet, Ö.; Önal, B.; Dikici, E.; Karakoç, V.; Gürbüz, F.; Alkan, H.; Odabaşı, M. Pumice particle interface: A case study for immunoglobulin G purification. Polym. Bull. 2021, 78, 5593–5607. [Google Scholar] [CrossRef]
- Acet, Ö.; Baran, T.; Erdönmez, D.; Aksoy, N.H.; Alacabey, İ.; Menteş, A.; Odabaşi, M. O-carboxymethyl chitosan Schiff base complexes as affinity ligands for immobilized metal-ion affinity chromatography of lysozyme. J. Chromatogr. A 2018, 1550, 21–27. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef]
- Cheruiyot, G.K.; Wanyonyi, W.C.; Kiplimo, J.J.; Maina, E.N. Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Sci. Afr. 2019, 5, e00116. [Google Scholar] [CrossRef]
- Ullah, R.; Ahmad, W.; Ahmad, I.; Khan, M.; Iqbal Khattak, M.; Hussain, F. Adsorption and recovery of hexavalent chromium from tannery wastewater over magnetic max phase composite. Sep. Sci. Technol. 2021, 56, 439–452. [Google Scholar] [CrossRef]
- do Nascimento, R.A.; de Oliveira Novaes, N.R.; Morilla, D.P.; da Luz, P.T.S.; Costa, C.M.L.; de Faria, L.J.G. Removal of ciprofloxacin and norfloxacin from aqueous solution with activated carbon from cupuaçu (Theobroma grandiflorum) bark. Molecules 2024, 29, 5853. [Google Scholar] [CrossRef] [PubMed]
- Gubitosa, J.; Rizzi, V.; Cignolo, D.; Fini, P.; Fanelli, F.; Cosma, P. From agricultural wastes to a resource: Kiwi peels, as long-lasting, recyclable adsorbent, to remove emerging pollutants from water. The case of ciprofloxacin removal. Sustain. Chem. Pharm. 2022, 29, 100749. [Google Scholar] [CrossRef]
- de Oliveira Carvalho, C.; Costa Rodrigues, D.L.; Lima, É.C.; Santanna Umpierres, C.; Caicedo Chaguezac, D.F.; Machado Machado, F. Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana). Environ. Sci. Pollut. Res. 2019, 26, 4690–4702. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Theydan, S.K. Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis. J. Taiwan Inst. Chem. Eng. 2014, 45, 219–226. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Q. Exploring the adsorption potential of Na2SiO3-activated porous carbon materials from waste bamboo biomass for ciprofloxacin rapid removal in wastewater. Environ. Technol. Innov. 2023, 32, 103318. [Google Scholar] [CrossRef]
- Wang, Y.X.; Ngo, H.H.; Guo, W.S. Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal. Sci. Total Environ. 2015, 533, 32–39. [Google Scholar] [CrossRef]
- Yılmaz, N.; Alagöz, O. Nar kabuklarından kimyasal aktivasyon ile hazırlanan aktif karbon üzerinde metilen mavisinin adsorpsiyonu. El-Cezerî J. Sci. Eng. 2019, 6, 817–829. [Google Scholar] [CrossRef]
- Shin, H.S.; Kim, J.H. Isotherm, Kinetic and Thermodynamic Characteristics of Adsorption of Paclitaxel onto Diaion HP-20. Process Biochem. 2016, 51, 917–924. [Google Scholar] [CrossRef]
- Caliskan, N.; Kul, A.R.; Alkan, S.; Gokirmak Sogut, E.; Alacabey, I. Adsorption of Zinc(II) on Diatomite and Manganese-Oxide-Modified Diatomite: A Kinetic and Equilibrium Study. J. Hazard. Mater. 2011, 193, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Alacabey, I.; Kul, A.; Ece, M.; Alkan, H. Chrome(III) Adsorption on Van Lake Natural Sediment and Modified Sediment (Isotherm and Thermodynamic Analysis Study). DÜMF Eng. J. 2020, 11, 1225–1232. [Google Scholar]
- Lee, J.J. Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon. Korean Chem. Eng. Res. 2015, 53, 64–70. [Google Scholar] [CrossRef]
- Alacabey, I. Adsorptive Removal of Cationic Dye from Aqueous Solutions Using Bardakçı Clay. Int. J. Agric. Environ. Food Sci. 2022, 6, 80–90. [Google Scholar] [CrossRef]
Isotherm | Parameters | Temperature (K) | ||
---|---|---|---|---|
298 | 303 | 318 | ||
Langmuir | qm (mg g−1) | 2272.28 | 2329.55 | 2345.43 |
KL (L mg−1) | 0.1060 | 0.1195 | 0.1371 | |
R2 | 0.9631 | 0.9737 | 0.9833 | |
Freundlich | KF [(mg g−1)(L mg−1)]1/n | 436.43 | 459.84 | 474.33 |
1/n | 0.3856 | 0.3909 | 0.3856 | |
n | 2.59 | 2.55 | 2.50 | |
R2 | 0.9933 | 0.9970 | 0.9966 | |
Temkin | B (J mol−1) | 6.18 | 6.19 | 6.24 |
KT (L mg−1) | 1.9996 | 2.1779 | 2.2162 | |
R2 | 0.9339 | 0.9463 | 0.9663 | |
Dubinin–Radushkevich | qm (mg g−1) | 243.57 | 234.17 | 219.39 |
E (kJ mol−1) | 1.02 | 1.14 | 1.22 | |
R2 | 0.8248 | 0.8295 | 0.8395 |
Model | qexp (mg·g−1) | qe (mg·g−1) | k | R2 |
Pseudo first order | 95.1 | 45.56 | 0.1174 | 0.8862 |
Pseudo second order | 100.15 | 0.0051 | 0.9981 |
T (K) | ΔG° (kJ·mol−1) | ΔH° (kJ·mol−1) | ΔS° (J·mol−1·K−1) |
---|---|---|---|
298 | −9.1295 | 6.6114 | 52.9223 |
303 | −9.7529 | ||
318 | −10.1838 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirdağ, E.; Demirel, M.F.; Benek, V.; Doğru, E.; Önal, Y.; Alkan, M.H.; Erol, K.; Alacabey, İ. Efficient Removal of Ciprofloxacin from Water Using High-Surface-Area Activated Carbon Derived from Rice Husks: Adsorption Isotherms, Kinetics, and Thermodynamic Evaluation. Molecules 2025, 30, 2501. https://doi.org/10.3390/molecules30122501
Demirdağ E, Demirel MF, Benek V, Doğru E, Önal Y, Alkan MH, Erol K, Alacabey İ. Efficient Removal of Ciprofloxacin from Water Using High-Surface-Area Activated Carbon Derived from Rice Husks: Adsorption Isotherms, Kinetics, and Thermodynamic Evaluation. Molecules. 2025; 30(12):2501. https://doi.org/10.3390/molecules30122501
Chicago/Turabian StyleDemirdağ, Esra, Mehmet Ferit Demirel, Veysel Benek, Elif Doğru, Yunus Önal, Mehmet Hüseyin Alkan, Kadir Erol, and İhsan Alacabey. 2025. "Efficient Removal of Ciprofloxacin from Water Using High-Surface-Area Activated Carbon Derived from Rice Husks: Adsorption Isotherms, Kinetics, and Thermodynamic Evaluation" Molecules 30, no. 12: 2501. https://doi.org/10.3390/molecules30122501
APA StyleDemirdağ, E., Demirel, M. F., Benek, V., Doğru, E., Önal, Y., Alkan, M. H., Erol, K., & Alacabey, İ. (2025). Efficient Removal of Ciprofloxacin from Water Using High-Surface-Area Activated Carbon Derived from Rice Husks: Adsorption Isotherms, Kinetics, and Thermodynamic Evaluation. Molecules, 30(12), 2501. https://doi.org/10.3390/molecules30122501