Next Article in Journal
A Comparative Study on Absorption of Gaseous Formaldehyde by Electrospun Biomass Carbon Nanofiber Membranes Modified by Plasma Activation and Chemical Treatment
Previous Article in Journal
Dual-Engineering Tailored Co3O4 Hollow Microspheres Assembled by Nanosheets for Boosting Oxygen Evolution Reaction
Previous Article in Special Issue
Discovery of Isobavachin, a Natural Flavonoid, as an Apolipoprotein E4 (ApoE4) Structure Corrector for Alzheimer’s Disease
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Pharmacophore Modeling of Janus Kinase Inhibitors: Tools for Drug Discovery and Exposition Prediction

Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Research and Innovation Center for Regenerative Medicine and Novel Therapies, Paracelsus Medical University, 5020 Salzburg, Austria
*
Author to whom correspondence should be addressed.
Molecules 2025, 30(10), 2183; https://doi.org/10.3390/molecules30102183
Submission received: 26 February 2025 / Revised: 14 April 2025 / Accepted: 15 April 2025 / Published: 16 May 2025

Abstract

:
Pesticides are essential in agriculture for protecting crops and boosting productivity, but their widespread use may pose significant health risks. Farmworkers face direct exposure through skin contact and inhalation, which may lead to hormonal imbalances, neurological disorders, and elevated cancer risks. Moreover, pesticide residues in food and water may affect surrounding communities. One of the lesser investigated issues is immunotoxicity, mostly because the chronic effects of compound exposure are very complex to study. As a case study, this work utilized pharmacophore modeling and virtual screening to identify pesticides that may inhibit Janus kinases (JAK1, JAK2, JAK3) and tyrosine kinase 2 (TYK2), which are pivotal in immune response regulation, and are associated with cancer development and increased infection susceptibility. We identified 64 potential pesticide candidates, 22 of which have previously been detected in the human body, as confirmed by the Human Metabolome Database. These results underscore the critical need for further research into potential immunotoxic and chronic impacts of the respective pesticides on human health.

1. Introduction

According to the European Commission (EC) (https://food.ec.europa.eu/plants/pesticides_en, accessed on 14 April 2025), pesticides are used to prevent, destroy, or control harmful organisms (‘pests’) or diseases, and to protect plants or plant products during production, storage, and transport. This category includes various agents, such as herbicides, fungicides, insecticides, and biocides. In daily agriculture, pesticides play a vital role in safeguarding crops from insects, weeds, and other detrimental organisms, which ultimately profoundly enhances agricultural yields and food security. However, the extensive application of these agrochemicals may have notable consequences, particularly for farmworkers, who are the most exposed group [1,2,3]. This exposure can occur through various pathways, with dermal contact being a prevalent route. When substances touch the skin, they can be absorbed into the bloodstream, potentially causing localized or systemic effects. Inhalation of pesticide vapors or aerosols represents another significant exposure route, which can lead to respiratory issues and further systemic absorption [1,4,5].
Moreover, the broad and often uncontrolled use of biocides can lead to significant bioaccumulation and persistent residues in key environmental matrices, including food, feed, animal-derived products, soil, and water [6,7]. These chemicals can persist in crops and animal products, entering the food chain and posing a potential public health risk. As a result, even urban consumers who are not directly involved in agriculture can be exposed to pesticides through contaminated food and water. Over time, this indirect exposure can accumulate and contribute to various health problems, including endocrine disruptions, neurological disorders, and an elevated risk of cancers, such as prostate, lung, liver, breast, and colon cancer, as well as non-Hodgkin lymphoma and leukemia [5,8,9,10,11,12]. Experimental studies have also reported that exposure to pesticides can exert damaging effects on the immune system [13,14].
Our immune system is a highly sophisticated network that coordinates various pathways and specialized cells to defend the organism against pathogens and cancerous cells. Cytokines, produced by immune cells, are crucial for regulating immune functions, inflammation, and hematopoiesis. They exert their effects by binding to specific receptors, which in turn activate JAKs. These intracellular enzymes consist of four subtypes: Janus kinase 1 (JAK1), Janus kinase 2 (JAK2), Janus kinase 3 (JAK3), and tyrosine kinase 2 (TYK2). Each of these kinases contributes to the complex signaling pathways that manage immune responses and other vital biological processes [15,16,17].
Cytokines bind to the extracellular domains of their receptors, triggering conformational changes that activate associated JAK proteins. These JAKs undergo mutual transphosphorylation, enhancing their catalytic function. Subsequently, activated JAKs phosphorylate specific tyrosine residues on the receptor, creating binding sites for signal transducer and activator of transcription proteins (STATs). The STAT family involves seven subtypes: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6, each with distinct roles in cellular processes, such as immune regulation, growth, and differentiation. Once phosphorylated, STAT proteins form dimers, translocate to the nucleus, and bind to gene promoter regions, initiating transcriptional changes in target cells [18].
By intervening in this system, for example with approved JAK inhibitors (jakibs) such as tofacitinib, baricitinib, and filgotinib, a state of immunosuppression can be induced. This mechanism is therapeutically exploited in treating conditions like rheumatoid arthritis and ulcerative colitis, where effectively controlling inflammation can lead to significant improvements in patient health and quality of life [19].
However, interfering with this signaling cascade can also lead to various health risks. The inhibition of JAKs may disrupt the regulation of blood cell production and immune response, resulting in complications such as increased susceptibility to infections, thrombosis, and potentially the development of malignancies [20].
This prospective computational study was based on the hypothesis that some pesticides, though designed for agricultural use, may interfere with the JAK signaling pathways akin to jakibs. In general, the health effects of pesticide exposure are difficult to assess, mainly due to the lack of long-term exposure data. Addressing this gap is crucial, since it could provide valuable insights into the broader activity spectra and to the risks of pesticides.
Assessing the effects of pesticide exposure poses considerable challenges, as in vitro and in vivo experiments are not only expensive, but raise ethical concerns. To address these issues, in silico methods, such as pharmacophore modeling and virtual screening, can offer a highly effective complement. These computational approaches provide predictive insights, allowing for the early identification of potential hazards. By enabling the targeted prioritization of biological tests, they reduce the reliance on animal experiments and promote efficient resource deployment.
In this study, we developed and optimized pharmacophore-based models for potential jakibs, leveraging known jakibs from the literature as training data. These models are designed to identify compounds with structural features that align with the binding site of the target protein, allowing for the efficient virtual screening of large compound databases. By prioritizing compounds that match the pharmacophore model, the likelihood of testing compounds that exhibit the desired biological activity is increased.
Moreover, pharmacophore-based virtual screening (PBVS) facilitates the discovery of biologically active compounds by enabling early-stage predictions of both the desired biological activities and the potential off-target effects or toxicological risks. This approach is not limited to pharmaceutical research but is equally valuable in the development and monitoring of agrochemicals, such as herbicides or insecticides, where high target specificity and minimal impact on non-target organisms are essential. PBVS aids in the prioritization of candidates for biological testing, thereby accelerating the overall development process and lowering costs in both pharmaceutical and agrochemical contexts [21].

2. Results

2.1. Datasets

As a basis for model development, literature-based datasets were assembled. In order to train a model to distinguish active and inactive compounds, data sets of active compounds (ACs) and inactive compounds (IAs) were collected. To qualify a model’s performance in a larger database, sets of probable inactive compounds, so-called decoys (DCs), were generated. The dataset sizes of ACs, IAs, and DCs corresponding to the assigned kinase subtype are shown in Table 1. Exemplary 2D structures of representative ACs used in this project are shown in Figure 1.

2.2. Pharmacophore Modeling

“A pharmacophore is the ensemble of steric and electronic features that is necessary to ensure the optimal supramolecular interactions with a specific biological target and to trigger (or block) its biological response” [22]. Therefore, pharmacophore modeling is based on the theory that shared chemical functionalities and similar localization of features lead to biological activity on the same target. The chemical properties of a molecule that is able to interact with its ligand are shown in the pharmacophore model as geometric features, such as spheres and vectors, as illustrated in Figure 2, Figure 3, Figure 4 and Figure 5, and in the Supplementary Materials (Figures S1–S29).
In this project, we use structure-based (SB) and ligand-based (LB) pharmacophore modeling as part of the virtual screening approach [23]. SB modeling involves generating models based on the 3D structure of the target protein, identifying key binding sites and interactions. LB pharmacophore modeling, on the other hand, is based on the alignment of known ligands’ structures to identify common features critical for binding to the target. Both approaches are used to predict potential interactions between compounds and the target protein during virtual screening [23].
The models in this project consist of hydrogen bond donors (HBDs), hydrogen bond acceptors (HBAs), aromatic interactions (AIs), hydrophobic contacts (HCs), residue bonding points (RBPs), and exclusion volumes (Xvols). For better clarity, Xvols are specified numerically in this publication instead of being shown graphically.
Multiple pharmacophore models are used to capture the diversity of compounds in the training set. In this project, both structure-based (SB) and ligand-based (LB) pharmacophore models were generated [24]. In total, eight models for JAK1 (four SB + four LB), ten models for JAK2 (two SB + eight LB), ten models for JAK3 (three SB + seven LB), and nine models for TYK2 (three SB + six LB) were generated. Examples of SB- and LB-based models in complex with identified training set hits are presented in Figure 2, Figure 3, Figure 4 and Figure 5.
The 2D structures of the literature-known Janus kinase inhibitors, used specifically for the generation of the pharmacophore models presented in the manuscript, are shown in Figure 1.
These molecules served as the basis for the generation of the displayed pharmacophore models. The complete datasets used for the development and training of the models are provided in the Supplementary Materials section (Tables S1–S8). The remaining pharmacophore models, along with the structures they are based on, are presented in the Supplementary Materials (Figures S1–S29).
Figure 1. 2D structures of the pharmacophore modeling training compounds for JAK1 (1 [25], 2 [26], 3 [27], 4 [28]) JAK2 (5 [29], 6 [30], 7 [31], 8 [32], 9 [33], 10 [34]), JAK3 (11 [35], 12 [36], 13 [30]), and TYK2 (14 [37], 15 [38], 16 [39]) used to develop the shown pharmacophore models, along with their corresponding IC50 values.
Figure 1. 2D structures of the pharmacophore modeling training compounds for JAK1 (1 [25], 2 [26], 3 [27], 4 [28]) JAK2 (5 [29], 6 [30], 7 [31], 8 [32], 9 [33], 10 [34]), JAK3 (11 [35], 12 [36], 13 [30]), and TYK2 (14 [37], 15 [38], 16 [39]) used to develop the shown pharmacophore models, along with their corresponding IC50 values.
Molecules 30 02183 g001
Figure 2. Two exemplary pharmacophore models for JAK1, illustrating key interactions and structural features. (a) JAK1_SB1 developed from the X-ray structure PDB: 5HX8 [25] in complex with its co-crystallized ligand compound 1 [25]. The model consists of one HBD with Glu957 and one HBA with Leu959, as well as two HCs. Furthermore, the model includes 66 Xvols. (b) Shows LB pharmacophore model JAK1_LB1 in complex with compound 2 [26]. This model was generated through alignment and merging of features from compound 2 [26], compound 3 [27], and compound 4 [28] JAK1_LB1 includes three HBAs, two AIs, and forty-seven Xvols. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Figure 2. Two exemplary pharmacophore models for JAK1, illustrating key interactions and structural features. (a) JAK1_SB1 developed from the X-ray structure PDB: 5HX8 [25] in complex with its co-crystallized ligand compound 1 [25]. The model consists of one HBD with Glu957 and one HBA with Leu959, as well as two HCs. Furthermore, the model includes 66 Xvols. (b) Shows LB pharmacophore model JAK1_LB1 in complex with compound 2 [26]. This model was generated through alignment and merging of features from compound 2 [26], compound 3 [27], and compound 4 [28] JAK1_LB1 includes three HBAs, two AIs, and forty-seven Xvols. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Molecules 30 02183 g002
Figure 3. Two exemplary pharmacophore models for JAK2, illustrating key interactions and structural features. (a) JAK2_SB1, developed from the X-ray structure PDB: 6VNB [29] in complex with its co-crystallized ligand compound 5 [29]. This model consisted of one HBD with Leu932, one HBA with Glu930, two HCs, and nine Xvols. (b) Shows the LB pharmacophore model JAK2_LB1 in complex with compound 6 [30]. This model was generated through alignment and merging of features from compound 7 [31], compound 8 [32], compound 9 [33], and compound 10 [37]. JAK2_LB1 includes one HBD, two HBAs, two AIs, and nine Xvols. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Figure 3. Two exemplary pharmacophore models for JAK2, illustrating key interactions and structural features. (a) JAK2_SB1, developed from the X-ray structure PDB: 6VNB [29] in complex with its co-crystallized ligand compound 5 [29]. This model consisted of one HBD with Leu932, one HBA with Glu930, two HCs, and nine Xvols. (b) Shows the LB pharmacophore model JAK2_LB1 in complex with compound 6 [30]. This model was generated through alignment and merging of features from compound 7 [31], compound 8 [32], compound 9 [33], and compound 10 [37]. JAK2_LB1 includes one HBD, two HBAs, two AIs, and nine Xvols. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Molecules 30 02183 g003
Figure 4. Two pharmacophore models for JAK3, illustrating key interactions and structural features. (a) JAK3_SB1, developed from the X-ray structure PDB: 4Z16 [35] in complex with its co-crystallized ligand compound 11 [35]. This model includes one HBD with Leu905, one HBA, three HCs, and twenty Xvols. (b) Shows LB pharmacophore model JAK3_LB1 in complex with compound 12. This model was generated through alignment and merging of features from compound 12 [36] and compound 13 [40]. JAK3_LB1 includes one HBA, two AIs, two HCs, and twenty-nine Xvols. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Figure 4. Two pharmacophore models for JAK3, illustrating key interactions and structural features. (a) JAK3_SB1, developed from the X-ray structure PDB: 4Z16 [35] in complex with its co-crystallized ligand compound 11 [35]. This model includes one HBD with Leu905, one HBA, three HCs, and twenty Xvols. (b) Shows LB pharmacophore model JAK3_LB1 in complex with compound 12. This model was generated through alignment and merging of features from compound 12 [36] and compound 13 [40]. JAK3_LB1 includes one HBA, two AIs, two HCs, and twenty-nine Xvols. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Molecules 30 02183 g004
Figure 5. Two pharmacophore models for TYK2, illustrating key interactions and structural features. (a) TYK2_SB1, based on the X-ray structure PDB: 6VNS [37] in complex with the co-crystallized ligand compound 14 [37]. This model consists of one HBD with Val981, one HBA and two HBAs directed to Ser985, two HCs, and twenty-six Xvols. (b) Shows LB pharmacophore model TYK2_LB1 in complex with compound 15 [38]. This model was generated through alignment and merging of features from compound 15 [38] and compound 16 [39] TYK2_LB1 includes one HBD, two HBAs, one HC, one AI, and thirty-five Xvols. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Figure 5. Two pharmacophore models for TYK2, illustrating key interactions and structural features. (a) TYK2_SB1, based on the X-ray structure PDB: 6VNS [37] in complex with the co-crystallized ligand compound 14 [37]. This model consists of one HBD with Val981, one HBA and two HBAs directed to Ser985, two HCs, and twenty-six Xvols. (b) Shows LB pharmacophore model TYK2_LB1 in complex with compound 15 [38]. This model was generated through alignment and merging of features from compound 15 [38] and compound 16 [39] TYK2_LB1 includes one HBD, two HBAs, one HC, one AI, and thirty-five Xvols. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Molecules 30 02183 g005

2.3. Theoretical Evaluation of the Generated Pharmacophore Models

Each model was optimized to maximize the identification of ACs from the training set while excluding a high number of IAs and DCs. Table 1 presents the results of the theoretical evaluation for the overall models of JAK1, JAK2, JAK3, and TYK2. The theoretical evaluation of the generated pharmacophore models focused on key performance metrics, such as model accuracy, enrichment factor (EF), and yield of active compounds (YoA). These metrics were derived from the classification of compounds into true positives (TPs), false positives (FPs), true negatives (TNs), and false negatives (FNs). Each pharmacophore model was systematically optimized to ensure the highest possible identification of active ACs from the training set. Simultaneously, the models were refined to maximize their ability to distinguish IAs and DCs, ensuring both robustness and precision in virtual screening. Figure 6a–d show the overall receiver operating characteristic (ROC) curves for these models, illustrating their predictive performance as well as the area under the curve (AUC). The results for each individual model from this evaluation process are provided in the Supplementary Materials (Tables S11–S14). The ROC curves of the individual models are shown in the Supplementary Materials (Figures S30–S33).

2.4. Identified Pesticides During Virtual Screening Campaign

The pharmacophore models identified 64 pesticides potentially inhibiting one or more JAKs by virtually screening the LUXPEST database [41]. A subsequent comparison with the Human Metabolome Database [42] revealed that 22 substances identified in the virtual screening have been qualitatively detected in the human body. The 2D structures of these substances are presented in Figure 7. Examples of identified pesticides in complex with their respective models, as described in detail in Section 2.2, are illustrated in Figure 8, Figure 9, Figure 10 and Figure 11. The comprehensive list of all 64 identified pesticides obtained from the virtual screening of the LUXPEST [41] database assigned to the corresponding JAK model, is provided in the Supplementary Materials in Tables S15–S18.

3. Discussion

PBVS offers a rapid and cost-efficient approach to early drug discovery, providing significant advantages over traditional high-throughput screening (HTS). By leveraging pharmacophore models, PBVS allows for the efficient prioritization of promising compounds from vast chemical libraries, reducing both time and costs while minimizing environmental impact. This approach filters out inactive or toxic substances before they reach experimental evaluation, streamlining the drug discovery process [43].
High-quality pharmacophore models can swiftly screen large, chemical databases, facilitating the identification of potential active compounds and enhancing the exploration of chemical space. This enables researchers to prioritize compounds for further experimental validation, significantly reducing resource consumption and time compared to conventional methods [44].
However, the accuracy of PBVS is highly dependent on the careful construction of well-validated models and the use of high-quality training datasets, as the reliability of pharmacophore models is intrinsically linked to the data from which they are derived.
Jakibs are widely recognized for their ability to suppress the immune system. Patients taking these inhibitors display increased risks of infections, including herpes, influenza, and fungal infections like pneumocystis. Respiratory and urinary tract infections are also more frequent, along with adverse events, such as joint and musculoskeletal disorders. Reports of malignant neoplasms, including hematopoietic, skin, and respiratory cancers, are also more prevalent. Additionally, this substance class is associated with an increased risk of venous thromboembolism compared to placebo or tumor necrosis factor (TNF) inhibitors [20,45,46,47,48].
In Europe, the risk assessment of pesticides is hindered by significant shortcomings within the regulatory framework. Despite the EU Pesticide Regulation 1107/2009 (http://data.europa.eu/eli/reg/2009/1107/oj, accessed on 14 April 2025) being one of the strictest globally, there is still room for improvement considering chronic toxicity and long-term effects [49]. However, there is much to consider. A 2024 U.S. study examined the link between agricultural pesticide use and cancer incidence by analyzing county-level data on pesticides, cancer rates, and factors like smoking and population demographics. Using latent class analysis, the researchers identified pesticide use profiles and assessed their impact on cancer incidence, while considering factors like land use and social vulnerability. The study highlighted regional trends between pesticide exposure and cancer. Atrazine, an herbicide with a 1,3,5-triazine core structure, was consistently identified as a major contributor to increased cancer risk, particularly for colon cancer. These findings emphasize the varied effects of pesticides on different cancer types across regions [50]. Atrazine was also identified as a virtual hit for JAK2, JAK3, and TYK2; however, it was not present in the HMD. The JAK model collection identified similar pesticides from this structural scaffold, including cyanazine (26), metsulfuron-methyl (23), tribenuron (24), tribenuron-methyl (25), and terbutryn (37). Additionally, the virtual hit and fungicide boscalid (17) is associated with higher risks for leukemia, non-Hodgkin lymphoma, and pancreatic cancer [50].
The Food Safety Commission of Japan assessed the anilinopyrimidine fungicide mepanipyrim (20) based on various studies. Results showed hepatocellular hypertrophy, liver degeneration, and increased kidney weight in rats. A genotoxic mechanism was ruled out, and the exact mechanism of cancer development remains unclear; therefore, based on our findings, further investigations into the inhibition of JAKs are recommended [51].
Diflufenican (29) is a selective herbicide widely used in agriculture to control broadleaf weeds in crops such as corn and soybeans. As a phenyl ether herbicide, it exhibits moderate toxicity at high exposure levels, potentially leading to liver issues in animals. While current data suggests no increased cancer risk or immune-related effects, further studies are recommended due to its identification by pharmacophore models of all four JAK subtypes in this project. Additionally, the degradation product TFA (trifluoroacetic acid) raised concerns because of its persistence in the environment, acting as a “forever chemical” that can accumulate in both ecosystems and human tissues, potentially posing long-term environmental and health risks [52].
Counter to the immune-suppressive hypothesis, there are also studies suggesting that certain pesticides, such as thiophanate-methyl (22), activate immune responses rather than suppressing them. These substances stimulate inflammatory pathways, enhance macrophage proliferation, and promote cytokine production, including interleukins (IL) IL-1β, IL-6, TNF-α, and interferon-gamma. This underscores the dual nature of pesticide impacts, highlighting their capacity to both suppress and activate immune functions depending on specific mechanisms of action and exposure contexts [53].
Penoxsulam (27) is a herbicide from the sulfonamide class that inhibits acetolactate synthase in various weeds, aquatic plants, and grasses [54]. The EPA classifies it as having potential carcinogenicity, based on the observation of mononuclear cell leukemia in rats during carcinogenicity testing. A study conducted by D.M. Patel et al. examined the relationship between agricultural pesticides and the risk of childhood leukemia in Denmark. The herbicides phenmedipham (28) and tribenuron-methyl (25) were identified as potential risk factors. While higher applications of phenmedipham (28) were associated with an increased risk of childhood leukemia, the findings were not statistically significant. Both herbicides are classified as possible human carcinogens, highlighting concerns about their use in residential areas [55].
Interesting anti-inflammatory effects were reported for the herbicide cyanazine (23). It effectively suppressed lipopolysaccharide-induced increases in key pro-inflammatory cytokines, including TNF-α and IL-6, thereby inhibiting gonadal inflammation [56]. As the relevant cytokines are also prominently involved in the JAK signaling pathway, it would be interesting to follow up with in vitro experiments on this compound.
Significant knowledge gaps remain in understanding the off-target effects of pesticides, particularly in their interaction with molecular pathways, such as JAK signaling. While computational approaches, like pharmacophore-based virtual screening, offer valuable insights into potential risks, biological validation of these models is essential to confirm their accuracy. The next step is the biological validation of the virtual hits through a single protein assay, providing evidence for these predictions. Additional steps, such as cell-based assays, may offer more comprehensive insights, improving our understanding of the broader impacts of pesticide exposure. It could also be that pesticides applied in mixtures act synergistically, amplifying their biological effects. Such synergistic effects have already been observed in salmon, where mixtures of pesticides in the water led to severe disruptions in their behavior and survival. Similar effects may also occur in humans, particularly with prolonged or repeated exposure. However, this remains an area requiring further research, as pesticides will be still essential in the future to enhance crop yields and food safety [57].
It takes a long time for the effects of pesticide use to manifest in epidemiological studies, like the ones mentioned above. It would therefore be desirable to anticipate potential chronic interference with human, animal, and crop organisms already in the discovery process. Computational methods, as presented in this study, could aid in identifying potentially problematic molecules.

4. Materials and Methods

4.1. Generation of Databases

A dataset of ACs and IAs was compiled for the individual targets JAK1, JAK2, JAK3, and TYK2, using data from ChEMBL (European Bioinformatics Institute, EMBL-EBI, Hinxton, United Kingdom; https://www.ebi.ac.uk/chembl/, accessed on 14 April 2025) PubChem (National Center for Biotechnology Information, Bethesda, MD, USA; https://pubchem.ncbi.nlm.nih.gov/, accessed on 14 April 2025), and the Protein Data Bank (Research Collaboratory for Structural Bioinformatics, RCSB, Piscataway, NJ, USA; https://www.rcsb.org/, accessed on 14 April 2025) [58,59,60]. Additionally, a decoy set was generated using the online tool Directory of Useful Decoys (DOCK group, University of California San Francisco, San Francisco, CA, USA; https://dude.docking.org/, accessed on 14 April 2025) [61], comprising random structures assumed to be inactive but with similar physicochemical properties to the active compounds, used to evaluate model restrictiveness. Active compounds were limited to those with an IC50 ≤ 1000 nM, while inactive compounds were defined as those with an IC50 > 40.000 nM for JAK1 and >50.000 for JAK2, JAK3, and TYK2. Compounds with IC50 values in this intermediate range were subsequently excluded from the dataset. Lists detailing the manually selected ACs as well as IAs is given in the Supplementary Materials (Tables S1–S8) [19,23,24,25,26,27,29,30,31,32,33,34,36,37,38,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312]. Due to the large number of references [70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312], those that exclusively concern compounds of the training sets are separately continued and mentioned in the bibliography to the Supplementary Materials. The 3D structures for pharmacophore model training and virtual screening were generated from the isomeric SMILES codes, with a maximum of 200 conformers generated for each compound using the iCon BEST [313] algorithm in LigandScout 4.4.5 (Inte:Ligand GmbH, Vienna, Austria) [314].

4.2. Pharmacophore Model Generation

All models were generated and optimized using LigandScout software version 4.4.5 [314]. SB models were generated using protein–ligand complex structures, while LB models were created by aligning multiple bioactive compounds [24]. For SB modeling, X-ray crystal structures of the protein–ligand complexes were used, including JAK1 (PDB: 4FK6 [62], 6SMB [63], 5WO4 [64], 5HX8 [25]), JAK2 (PDB: 6VNB [29], 7TEU [65]), JAK3 (PDB: 3ZEP [66], 4Z16 [35], 5TTV [67], 5LWM [68]), and TYK2 (PDB: 6VNS [37], 3LXN [315], 3NZ0 [316]). The selection of crystal structures was guided by quality criteria, including a resolution below 3 Å and highly defined electron density within the binding pocket. Crystal structures that generated three or fewer features using automatic generation with standard settings [314] were excluded. For LB modeling, the merged feature mode was applied to align the selected molecules in 3D from the active compound data set. During the optimization process, each pharmacophore feature was individually refined to maximize the detection of ACs, while minimizing the identification of IAs and DCs. To optimize the models, each feature was manually optimized and adjusted during subsequent screening stages. Features that did not enhance model selectivity were discarded, while Xvols were added or removed as needed, and feature tolerances were fine-tuned to maximize model performance.

4.3. Theoretical Validation

The assessment metrics calculated in this study encompassed sensitivity (a), specificity (b), accuracy (c), YoA (d), EF (e), and (ROC) curve. The ROC curve is a plot used to evaluate the performance of a classification model. It depicts the relationship between the true positive rate (TPR) and the false positive rate (FPR), with TPR on the y-axis and FPR on the x-axis. AUC is a metric derived from the ROC curve that represents a model’s ability to distinguish between positive and negative classes. AUC values range from 0 to 1, with higher values indicating better classification performance.
Continuous monitoring of these metrics facilitated the refinement process [21]. Pharmacophore models that did not meet performance criteria (EF < 4) were excluded. The overall performance of all JAK models, according to their subtype, is presented in Table 1, while the results of the individual models for each kinase are provided Tables S11–S14.
(a)
Sensitivity = number of ACs identified by the model/number of ACs in the dataset
(b)
Specificity = number of ACs not identified by the model/number of IAs in the dataset
(c)
Accuracy = (number of TP/number of TN)/number of all the compounds in the database
(d)
YoA = number of TP/number of total hits
(e)
EF = YoA/(number of ACs in the database/number of all compounds in the database)

4.4. Virtual Screening

The LUXPEST S69 a Pesticide Screening List for Luxembourg (https://www.norman-network.com/nds/SLE/) Les Garennes sur Loire, France (28 May 2020) [41], containing 386 pesticides, was screened after being converted into a 3D database using LigandScout 4.4.5. Using iCon BEST [313], 400 conformers were generated per pesticide, following the same approach used in the creation of the training sets, as outlined in Section 4.1. An overview of all identified hits is included in the Tables S15–S18.
The identified pesticides were cross-referenced with the Human Metabolome Database to determine whether these compounds have been qualitatively detected in the human body [42].

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules30102183/s1. Figure S1: JAK1_SB2; Figure S2: JAK1_SB3; Figure S3: JAK1_SB4; Figure S4: JAK1_LB2; Figure S5: JAK1_LB3; Figure S6: JAK1_LB4; Figure S7: JAK2_SB2; Figure S8: JAK2_LB2; Figure S9: JAK2_LB3; Figure S10: JAK2_LB4; Figure S11: JAK2_LB5; Figure S12: JAK2_LB6; Figure S13: JAK2_LB7; Figure S14: JAK2_LB8; Figure S15: JAK3_SB2; Figure S16: JAK3_SB3; Figure S17: JAK3_SB4; Figure S18: JAK3_LB2; Figure S19: JAK3_LB3; Figure S20: JAK3_LB4; Figure S21: JAK3_LB5; Figure S22: JAK3_LB6; Figure S23: TYK2_SB2; Figure S24: TYK2_SB3; Figure S25: TYK2_LB2; Figure S26: JAK2_LB3; Figure S27: TYK2_LB4; Figure S28: TYK2_LB5; Figure S29: TYK2_LB6; Figure S30: ROC-curves JAK1; Figure S31: ROC-curves JAK2; Figure S32: ROC-curves JAK3; Figure S33: ROC-curves TYK2. Table S1: JAK1 active compounds; Table S2: JAK1 inactive compounds; Table S3: JAK2 active compounds; Table S4: JAK2 inactive compounds; Table S5: JAK3 active compounds; Table S6: JAK3 inactive compounds; Table S7: TYK2 active compounds; Table S8: TYK2 inactive compounds; Table S9: Pharmacophore features overview; Table S10: Amino acid interactions of structure-based models; Table S11: Theoretical evaluation results JAK1; Table S12: Theoretical evaluation results JAK2; Table S13: Theoretical evaluation results JAK3; Table S14: Theoretical evaluation results TYK2; Table S15: Pesticide Hits JAK1; Table S16: Pesticide Hits JAK2; Table S17: Pesticide Hits JAK3; Table S18: Pesticide Hits TYK2.

Author Contributions

Conceptualization, D.S.; methodology, F.F.; software, commercially and publicly available software was used; validation, D.S., F.F. and V.T.; investigation, F.F.; data curation, F.F.; writing—original draft preparation, F.F.; writing—review and editing, D.S., V.T. and F.F.; visualization, F.F.; supervision, D.S. and V.T.; project administration, D.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. VT was partially funded by the FWF project T942.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available in the Supplementary Materials. If further data are required, they are available from the corresponding author upon request.

Acknowledgments

We thank Inte:Ligand for providing the software free of charge and Moritz Connor Schulte for assisting with automated reference management for compounds.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Macfarlane, E.; Carey, R.; Keegel, T.; El-Zaemay, S.; Fritschi, L. Dermal exposure associated with occupational end use of pesticides and the role of protective measures. Saf. Health Work 2013, 4, 136–141. [Google Scholar] [CrossRef]
  2. Zhang, X.; Wu, M.; Yao, H.; Yang, Y.; Cui, M.; Tu, Z.; Stallones, L.; Xiang, H. Pesticide poisoning and neurobehavioral function among farm workers in Jiangsu, People’s Republic of China. Cortex 2016, 74, 396–404. [Google Scholar] [CrossRef]
  3. Wang, L.; Liu, Z.; Zhang, J.; Wu, Y.; Sun, H. Chlorpyrifos exposure in farmers and urban adults: Metabolic characteristic, exposure estimation, and potential effect of oxidative damage. Environ. Res. 2016, 149, 164–170. [Google Scholar] [CrossRef] [PubMed]
  4. Damalas, C.A.; Koutroubas, S.D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [PubMed]
  5. Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
  6. Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-Onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. Pesticides in Drinking Water—A Review. Int. J. Environ. Res. Public Health 2021, 18, 468. [Google Scholar] [CrossRef]
  7. Jensen, B.H.; Petersen, A.; Petersen, P.B.; Christensen, T.; Fagt, S.; Trolle, E.; Poulsen, M.E.; Andersen, J.H. Cumulative dietary risk assessment of pesticides in food for the Danish population for the period 2012–2017. Food Chem. Toxicol. 2022, 168, 113359. [Google Scholar] [CrossRef]
  8. Fucic, A.; Duca, R.C.; Galea, K.S.; Maric, T.; Garcia, K.; Bloom, M.S.; Andersen, H.R.; Vena, J.E. Reproductive Health Risks Associated with Occupational and Environmental Exposure to Pesticides. Int. J. Environ. Res. Public Health 2021, 18, 6576. [Google Scholar] [CrossRef]
  9. Richardson, J.R.; Fitsanakis, V.; Westerink, R.H.S.; Kanthasamy, A.G. Neurotoxicity of pesticides. Acta Neuropathol. 2019, 138, 343–362. [Google Scholar] [CrossRef]
  10. Alavanja, M.C.; Ross, M.K.; Bonner, M.R. Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA Cancer J. Clin. 2013, 63, 120–142. [Google Scholar] [CrossRef]
  11. Purdue, M.P.; Hoppin, J.A.; Blair, A.; Dosemeci, M.; Alavanja, M.C. Occupational exposure to organochlorine insecticides and cancer incidence in the Agricultural Health Study. Int. J. Cancer 2007, 120, 642–649. [Google Scholar] [CrossRef]
  12. Mahajan, R.; Blair, A.; Lynch, C.F.; Schroeder, P.; Hoppin, J.A.; Sandler, D.P.; Alavanja, M.C. Fonofos exposure and cancer incidence in the agricultural health study. Environ. Health Perspect. 2006, 114, 1838–1842. [Google Scholar] [CrossRef]
  13. Mokarizadeh, A.; Faryabi, M.R.; Rezvanfar, M.A.; Abdollahi, M. A comprehensive review of pesticides and the immune dysregulation: Mechanisms, evidence and consequences. Toxicol. Mech. Methods 2015, 25, 258–278. [Google Scholar] [CrossRef]
  14. Costa, C.; Rapisarda, V.; Catania, S.; Di Nola, C.; Ledda, C.; Fenga, C. Cytokine patterns in greenhouse workers occupationally exposed to α-cypermethrin: An observational study. Environ. Toxicol. Pharmacol. 2013, 36, 796–800. [Google Scholar] [CrossRef] [PubMed]
  15. Takeuchi, T. Cytokines and cytokine receptors as targets of immune-mediated inflammatory diseases—RA as a role model. Inflamm. Regen. 2022, 42, 35. [Google Scholar] [CrossRef]
  16. Gadina, M.; Le, M.T.; Schwartz, D.M.; Silvennoinen, O.; Nakayamada, S.; Yamaoka, K.; O’shea, J.J. Janus kinases to jakinibs: From basic insights to clinical practice. Rheumatology 2019, 58, i4–i16. [Google Scholar] [CrossRef] [PubMed]
  17. Zarrin, A.A.; Bao, K.; Lupardus, P.; Vucic, D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov. 2021, 20, 39–63. [Google Scholar] [CrossRef]
  18. Xue, C.; Yao, Q.; Gu, X.; Shi, Q.; Yuan, X.; Chu, Q.; Bao, Z.; Lu, J.; Li, L. Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Signal Transduct. Target. Ther. 2023, 8, 204. [Google Scholar] [CrossRef] [PubMed]
  19. Clark, J.D.; Flanagan, M.E.; Telliez, J.B. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J. Med. Chem. 2014, 57, 5023–5038. [Google Scholar] [CrossRef]
  20. Hoisnard, L.; Lebrun-Vignes, B.; Maury, S.; Mahevas, M.; El Karoui, K.; Roy, L.; Zarour, A.; Michel, M.; Cohen, J.L.; Amiot, A.; et al. Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database. Sci. Rep. 2022, 12, 7140. [Google Scholar] [CrossRef]
  21. Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals 2022, 15, 646. [Google Scholar] [CrossRef]
  22. Wermuth, C.G.; Ganellin, C.R.; Lindberg, P.; Mitscher, L.A. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl. Chem. 1998, 70, 1129–1143. [Google Scholar] [CrossRef]
  23. Kaserer, T.; Beck, K.R.; Akram, M.; Odermatt, A.; Schuster, D. Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases. Molecules 2015, 20, 22799–22832. [Google Scholar] [CrossRef]
  24. Schuster, D.; Wolber, G. Identification of bioactive natural products by pharmacophore-based virtual screening. Curr. Pharm. Des. 2010, 16, 1666–1681. [Google Scholar] [CrossRef] [PubMed]
  25. Simov, V.; Deshmukh, S.V.; Dinsmore, C.J.; Elwood, F.; Fernandez, R.B.; Garcia, Y.; Gibeau, C.; Gunaydin, H.; Jung, J.; Katz, J.D.; et al. Structure-based design and development of (benz)imidazole pyridones as JAK1-selective kinase inhibitors. Bioorganic Med. Chem. Lett. 2016, 26, 1803–1808. [Google Scholar] [CrossRef]
  26. Nakajima, Y.; Aoyama, N.; Takahashi, F.; Sasaki, H.; Hatanaka, K.; Moritomo, A.; Inami, M.; Ito, M.; Nakamura, K.; Nakamori, F.; et al. Design, synthesis, and evaluation of 4,6-diaminonicotinamide derivatives as novel and potent immunomodulators targeting JAK3. Bioorganic Med. Chem. 2016, 24, 4711–4722. [Google Scholar] [CrossRef] [PubMed]
  27. Spergel, S.H.; Mertzman, M.E.; Kempson, J.; Guo, J.; Stachura, S.; Haque, L.; Lippy, J.S.; Zhang, R.F.; Galella, M.; Pitt, S.; et al. Discovery of a JAK1/3 Inhibitor and Use of a Prodrug To Demonstrate Efficacy in a Model of Rheumatoid Arthritis. ACS Med. Chem. Lett. 2019, 10, 306–311. [Google Scholar] [CrossRef]
  28. Raghuvanshi, R.; Bharate, S.B. Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections. J. Med. Chem. 2022, 65, 893–921. [Google Scholar] [CrossRef]
  29. Davis, R.R.; Li, B.; Yun, S.Y.; Chan, A.; Nareddy, P.; Gunawan, S.; Ayaz, M.; Lawrence, H.R.; Reuther, G.W.; Lawrence, N.J.; et al. Structural Insights into JAK2 Inhibition by Ruxolitinib, Fedratinib, and Derivatives Thereof. J. Med. Chem. 2021, 64, 2228–2241. [Google Scholar] [CrossRef]
  30. Mesaros, E.F.; Dugan, B.J.; Dorsey, B.D.; Milkiewicz, K.L.; Curry, M.A.; Gingrich, D.E. Preparation and Uses of 1,2,4-triazolo [1,5a] Pyridine Derivatives. U.S. Patent 8633173-B2, 5 June 2009. [Google Scholar]
  31. Mathison, C.J.N.; Chianelli, D.; Rucker, P.V.; Nelson, J.; Roland, J.; Huang, Z.; Yang, Y.; Jiang, J.; Xie, Y.F.; Epple, R.; et al. Efficacy and Tolerability of Pyrazolo[1,5-a]pyrimidine RET Kinase Inhibitors for the Treatment of Lung Adenocarcinoma. ACS Med. Chem. Lett. 2020, 11, 558–565. [Google Scholar] [CrossRef]
  32. Yin, Y.; Chen, C.J.; Yu, R.N.; Shu, L.; Zhang, T.T.; Zhang, D.Y. Discovery of novel selective Janus kinase 2 (JAK2) inhibitors bearing a 1H-pyrazolo[3,4-d]pyrimidin-4-amino scaffold. Bioorganic Med. Chem. 2019, 27, 1562–1576. [Google Scholar] [CrossRef] [PubMed]
  33. Sloman, D.L.; Noucti, N.; Altman, M.D.; Chen, D.; Mislak, A.C.; Szewczak, A.; Hayashi, M.; Warren, L.; Dellovade, T.; Wu, Z.; et al. Optimization of microtubule affinity regulating kinase (MARK) inhibitors with improved physical properties. Bioorganic Med. Chem. Lett. 2016, 26, 4362–4366. [Google Scholar] [CrossRef] [PubMed]
  34. Ma, X.; Diao, Y.; Ge, H.; Xu, F.; Zhu, L.; Zhao, Z.; Li, H. Discovery and optimization of 2-aminopyridine derivatives as novel and selective JAK2 inhibitors. Bioorganic Med. Chem. Lett. 2020, 30, 127048. [Google Scholar] [CrossRef]
  35. Tan, L.; Akahane, K.; McNally, R.; Reyskens, K.M.S.E.; Ficarro, S.B.; Liu, S.; Herter-Sprie, G.S.; Koyama, S.; Pattison, M.J.; Labella, K.; et al. Development of Selective Covalent Janus Kinase 3 Inhibitors. J. Med. Chem. 2015, 58, 6589–6606. [Google Scholar] [CrossRef] [PubMed]
  36. Bhide, R.S.; Keon, A.; Weigelt, C.; Sack, J.S.; Schmidt, R.J.; Lin, S.; Xiao, H.-Y.; Spergel, S.H.; Kempson, J.; Pitts, W.J.; et al. Discovery and structure-based design of 4,6-diaminonicotinamides as potent and selective IRAK4 inhibitors. Bioorganic Med. Chem. Lett. 2017, 27, 4908–4913. [Google Scholar] [CrossRef]
  37. Fensome, A.; Ambler, C.M.; Arnold, E.; Banker, M.E.; Clark, J.D.; Dowty, M.E.; Efremov, I.V.; Flick, A.; Gerstenberger, B.S.; Gifford, R.S.; et al. Design and optimization of a series of 4-(3-azabicyclo[3.1.0]hexan-3-yl)pyrimidin-2-amines: Dual inhibitors of TYK2 and JAK1. Bioorganic Med. Chem. 2020, 28, 115481. [Google Scholar] [CrossRef]
  38. Lawrence, H.R.; Mahajan, K.; Luo, Y.; Zhang, D.; Tindall, N.; Huseyin, M.; Gevariya, H.; Kazi, S.; Ozcan, S.; Mahajan, N.P.; et al. Development of novel ACK1/TNK2 inhibitors using a fragment-based approach. J. Med. Chem. 2015, 58, 2746–2763. [Google Scholar] [CrossRef]
  39. Menet, C.J.; Fletcher, S.R.; Van Lommen, G.; Geney, R.; Blanc, J.; Smits, K.; Jouannigot, N.; Deprez, P.; van der Aar, E.M.; Clement-Lacroix, P.; et al. Triazolopyridines as selective JAK1 inhibitors: From hit identification to GLPG0634. J. Med. Chem. 2014, 57, 9323–9342. [Google Scholar] [CrossRef]
  40. Bauer, S.M.; Pandey, A. National Center for Biotechnology Information (2024). PubChem Patent Summary for US-9868729-B2, Inhibitors of Protein Kinases. United States. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-9868729-B2 (accessed on 16 December 2024).
  41. Krier, J.; Singh, R.R.; Kondić, T.; Lai, A.; Diderich, P.; Zhang, J.; Thiessen, P.A.; Bolton, E.E.; Schymanski, E.L. Discovering pesticides and their TPs in Luxembourg waters using open cheminformatics approaches. Environ. Int. 2022, 158, 106885. [Google Scholar] [CrossRef]
  42. Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
  43. Ghosh, S.; Nie, A.; An, J.; Huang, Z. Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol. 2006, 10, 194–202. [Google Scholar] [CrossRef]
  44. Sun, H. Pharmacophore-based virtual screening. Curr. Med. Chem. 2008, 15, 1018–1024. [Google Scholar] [CrossRef]
  45. Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol. 2020, 80, 106210. [Google Scholar] [CrossRef] [PubMed]
  46. Cohen, S.; Radominski, S.C.; Gomez-Reino, J.J.; Wang, L.; Krishnaswami, S.; Wood, S.P.; Soma, K.; Nduaka, C.I.; Kwok, K.; Valdez, H.; et al. Analysis of infections and all-cause mortality in phase II, phase III, and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014, 66, 2924–2937. [Google Scholar] [CrossRef] [PubMed]
  47. Russell, M.D.; Stovin, C.; Alveyn, E.; Adeyemi, O.; Chan, C.K.D.; Patel, V.; Adas, M.A.; Atzeni, F.; Ng, K.K.H.; Rutherford, A.I.; et al. JAK inhibitors and the risk of malignancy: A meta-analysis across disease indications. Ann. Rheum. Dis. 2023, 82, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
  48. Zhang, J.; Li, W.; Gong, M.; Gu, Y.; Zhang, H.; Dong, B.; Guo, Q.; Pang, X.; Xiang, Q.; He, X.; et al. Risk of venous thromboembolism with janus kinase inhibitors in inflammatory immune diseases: A systematic review and meta-analysis. Front. Pharmacol. 2023, 14, 1189389. [Google Scholar] [CrossRef]
  49. Robinson, C.; Portier, C.J.; Čavoški, A.; Mesnage, R.; Roger, A.; Clausing, P.; Whaley, P.; Muilerman, H.; Lyssimachou, A. Achieving a High Level of Protection from Pesticides in Europe: Problems with the Current Risk Assessment Procedure and Solutions. Eur. J. Risk Regul. 2020, 11, 450–480. [Google Scholar] [CrossRef]
  50. Gerken, J.; Vincent, G.T.; Zapata, D.; Barron, I.G.; Zapata, I. Comprehensive assessment of pesticide use patterns and increased cancer risk. Front. Cancer Control Soc. 2024, 2, 1368086. [Google Scholar] [CrossRef]
  51. Yamazoe, Y.; Yamamoto, S.; Yoshida, M.; Kawanishi, T.; Kumagai, S. Mepanipyrim (Pesticides). Food Saf. 2016, 4, 28–29. [Google Scholar] [CrossRef]
  52. Zweigle, J.; Schmidt, A.; Bugsel, B.; Vogel, C.; Simon, F.; Zwiener, C. Perfluoroalkyl acid precursor or weakly fluorinated organic compound? A proof of concept for oxidative fractionation of PFAS and organofluorines. Anal. Bioanal. Chem. 2024, 416, 6799–6808. [Google Scholar] [CrossRef]
  53. Weis, G.C.C.; Assmann, C.E.; Cadoná, F.C.; Bonadiman, B.D.S.R.; de Oliveira Alves, A.; Machado, A.K.; Duarte, M.M.M.F.; da Cruz, I.B.M.; Costabeber, I.H. Immunomodulatory effect of mancozeb, chlorothalonil, and thiophanate methyl pesticides on macrophage cells. Ecotoxicol. Environ. Saf. 2019, 182, 109420. [Google Scholar] [CrossRef]
  54. Jabusch, T.W.; Tjeerdema, R.S. Partitioning of penoxsulam, a new sulfonamide herbicide. J. Agric. Food Chem. 2005, 53, 7179–7183. [Google Scholar] [CrossRef] [PubMed]
  55. Patel, D.M.; Gyldenkærne, S.; Jones, R.R.; Olsen, S.F.; Tikellis, G.; Granström, C.; Dwyer, T.; Stayner, L.T.; Ward, M.H. Residential proximity to agriculture and risk of childhood leukemia and central nervous system tumors in the Danish national birth cohort. Environ. Int. 2020, 143, 105955. [Google Scholar] [CrossRef] [PubMed]
  56. Abarikwu, S.O.; Mgbudom-Okah, C.J.; Ndufeiya-Kumasi, L.C.; Monye, V.E.; Aruoren, O.; Ezim, O.E.; Omeodu, S.I.; Charles, I.A. Influence of triazines and lipopolysaccharide coexposure on inflammatory response and histopathological changes in the testis and liver of BalB/c mice. Heliyon 2024, 10, e24431. [Google Scholar] [CrossRef] [PubMed]
  57. Laetz, C.A.; Baldwin, D.H.; Collier, T.K.; Hebert, V.; Stark, J.D.; Scholz, N.L. The synergistic toxicity of pesticide mixtures: Implications for risk assessment and the conservation of endangered Pacific salmon. Environ. Health Perspect. 2009, 117, 348–353. [Google Scholar] [CrossRef]
  58. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
  59. Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [Google Scholar] [CrossRef]
  60. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; A Shoemaker, B.; A Thiessen, P.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
  61. Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [Google Scholar] [CrossRef]
  62. Labadie, S.; Dragovich, P.S.; Barrett, K.; Blair, W.S.; Bergeron, P.; Chang, C.; Deshmukh, G.; Eigenbrot, C.; Ghilardi, N.; Gibbons, P.; et al. Structure-based discovery of C-2 substituted imidazo-pyrrolopyridine JAK1 inhibitors with improved selectivity over JAK2. Bioorganic Med. Chem. Lett. 2012, 22, 7627–7633. [Google Scholar] [CrossRef]
  63. Su, Q.; Banks, E.; Bebernitz, G.; Bell, K.; Borenstein, C.F.; Chen, H.; Chuaqui, C.E.; Deng, N.; Ferguson, A.D.; Kawatkar, S.P.; et al. Discovery of (2R)-N-[3-[2-[(3-Methoxy-1-methyl-pyrazol-4-yl)amino]pyrimidin-4-yl]-1H-indol-7-yl]-2-(4-methylpiperazin-1-yl)propenamide (AZD4205) as a Potent and Selective Janus Kinase 1 Inhibitor. J. Med. Chem. 2020, 63, 4517–4527. [Google Scholar] [CrossRef] [PubMed]
  64. Siu, T.; Brubaker, J.; Fuller, P.; Torres, L.; Zeng, H.; Close, J.; Mampreian, D.M.; Shi, F.; Liu, D.; Fradera, X.; et al. The Discovery of 3-((4-Chloro-3-methoxyphenyl)amino)-1-((3R,4S)-4-cyanotetrahydro-2H-pyran-3-yl)-1H-pyrazole-4-carboxamide, a Highly Ligand Efficient and Efficacious Janus Kinase 1 Selective Inhibitor with Favorable Pharmacokinetic Properties. J. Med. Chem. 2017, 60, 9676–9690. [Google Scholar] [CrossRef] [PubMed]
  65. Arwood, M.L.; Liu, Y.; Harkins, S.K.; Weinstock, D.M.; Yang, L.; Stevenson, K.E.; Plana, O.D.; Dong, J.; Cirka, H.; Jones, K.L.; et al. New scaffolds for type II JAK2 inhibitors overcome the acquired G993A resistance mutation. Cell Chem. Biol. 2023, 30, 618–631.e12. [Google Scholar] [CrossRef] [PubMed]
  66. Jaime-Figueroa, S.; De Vicente, J.; Hermann, J.; Jahangir, A.; Jin, S.; Kuglstatter, A.; Lynch, S.M.; Menke, J.; Niu, L.; Patel, V.; et al. Discovery of a series of novel 5H-pyrrolo[2,3-b]pyrazine-2-phenyl ethers, as potent JAK3 kinase inhibitors. Bioorganic Med. Chem. Lett. 2013, 23, 2522–2526. [Google Scholar] [CrossRef]
  67. Thorarensen, A.; Dowty, M.E.; Banker, M.E.; Juba, B.; Jussif, J.; Lin, T.; Vincent, F.; Czerwinski, R.M.; Casimiro-Garcia, A.; Unwalla, R.; et al. Design of a Janus Kinase 3 (JAK3) Specific Inhibitor 1-((2S,5R)-5-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en-1-one (PF-06651600) Allowing for the Interrogation of JAK3 Signaling in Humans. J. Med. Chem. 2017, 60, 1971–1993. [Google Scholar] [CrossRef]
  68. Forster, M.; Chaikuad, A.; Bauer, S.M.; Holstein, J.; Robers, M.B.; Corona, C.R.; Gehringer, M.; Pfaffenrot, E.; Ghoreschi, K.; Knapp, S.; et al. Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket. Cell Chem. Biol. 2016, 23, 1335–1340. [Google Scholar] [CrossRef]
  69. Adams, C.; Aldous, D.J.; Amendola, S.; Bamborough, P.; Bright, C.; Crowe, S.; Eastwood, P.; Fenton, G.; Foster, M.; Harrison, T.K.P.; et al. Mapping the kinase domain of janus kinase 3. Bioorg. Med. Chem. Lett. 2003, 13, 3105–3110. [Google Scholar] [CrossRef]
  70. Burns, C.J.; Bourke, D.G.; Andrau, L.; Bu, X.; Charman, S.A.; Donohue, A.C.; Fantino, E.; Farrugia, M.; Feutrill, J.T.; Joffe, M.; et al. Phenylaminopyrimidines as inhibitors of Janus kinases (JAKs). Bioorg. Med. Chem. Lett. 2009, 19, 5887–5892. [Google Scholar] [CrossRef]
  71. Cole, A.G.; Bohnstedt, A.C.; Paradkar, V.; Kingsbury, C.; Quintero, J.G.; Park, H.; Lu, Y.; You, M.; Neagu, I.; Diller, D.J.; et al. 2-Benzimidazolyl-9-(chroman-4-yl)-purinone derivatives as JAK3 inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 6788–6792. [Google Scholar] [CrossRef]
  72. Gerspacher, M.; Furet, P.; Pissot-Soldermann, C.; Gaul, C.; Holzer, P.; Vangrevelinghe, E.; Lang, M.; Erdmann, D.; Radimerski, T.; Regnier, C.H.; et al. 2-Amino-aryl-7-aryl-benzoxazoles as potent, selective and orally available JAK2 inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 1724–1727. [Google Scholar] [CrossRef]
  73. Pissot-Soldermann, C.; Gerspacher, M.; Furet, P.; Gaul, C.; Holzer, P.; McCarthy, C.; Radimerski, T.; Regnier, C.H.; Baffert, F.; Drueckes, P.; et al. Discovery and SAR of potent, orally available 2,8-diaryl-quinoxalines as a new class of JAK2 inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 2609–2613. [Google Scholar] [CrossRef] [PubMed]
  74. Fidanze, S.D.; Erickson, S.A.; Wang, G.T.; Mantei, R.; Clark, R.F.; Sorensen, B.K.; Bamaung, N.Y.; Kovar, P.; Johnson, E.F.; Swinger, K.K.; et al. Imidazo[2,1-b]thiazoles: Multitargeted inhibitors of both the insulin-like growth factor receptor and members of the epidermal growth factor family of receptor tyrosine kinases. Bioorg. Med. Chem. Lett. 2010, 20, 2452–2455. [Google Scholar] [CrossRef]
  75. Dart, M.L.; Machleidt, T.; Jost, E.; Schwinn, M.K.; Robers, M.B.; Shi, C.; Kirkland, T.A.; Killoran, M.P.; Wilkinson, J.M.; Hartnett, J.R.; et al. Homogeneous Assay for Target Engagement Utilizing Bioluminescent Thermal Shift. ACS Med. Chem. Lett. 2018, 9, 546–551. [Google Scholar] [CrossRef] [PubMed]
  76. National Center for Biotechnology Information (2024). PubChem Bioassay Record for AID 1699, S.T.S.R.I.M.S.C.R.D., 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/bioassay/1699 (accessed on 25 February 2025).
  77. Xu, P.; Shen, P.; Yu, B.; Xu, X.; Ge, R.; Cheng, X.; Chen, Q.; Bian, J.; Li, Z.; Wang, J. Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. Eur. J. Med. Chem. 2020, 192, 112155. [Google Scholar] [CrossRef]
  78. Belanger, D.B.; Williams, M.J.; Curran, P.J.; Mandal, A.K.; Meng, Z.; Rainka, M.P.; Yu, T.; Shih, N.Y.; Siddiqui, M.A.; Liu, M.; et al. Discovery of orally bioavailable imidazo[1,2-a]pyrazine-based Aurora kinase inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 6739–6743. [Google Scholar] [CrossRef]
  79. Siu, T.; Kozina, E.S.; Jung, J.; Rosenstein, C.; Mathur, A.; Altman, M.D.; Chan, G.; Xu, L.; Bachman, E.; Mo, J.R.; et al. The discovery of tricyclic pyridone JAK2 inhibitors. Part 1: Hit to lead. Bioorg. Med. Chem. Lett. 2010, 20, 7421–7425. [Google Scholar] [CrossRef] [PubMed]
  80. Wityak, J.; Das, J.; Moquin, R.V.; Shen, Z.; Lin, J.; Chen, P.; Doweyko, A.M.; Pitt, S.; Pang, S.; Shen, D.R.; et al. Discovery and initial SAR of 2-amino-5-carboxamidothiazoles as inhibitors of the Src-family kinase p56(Lck). Bioorg. Med. Chem. Lett. 2003, 13, 4007–4010. [Google Scholar] [CrossRef]
  81. Ma, H.; Filip, S.V.; Stent, M.A.H.; Dolan, J.A.; Dietrich, B. JAK3 Inhibitors for the Treatment of Autoimmune and Inflammatory Disorders. U.S. Patent 8592415-B2, 26 November 2013. [Google Scholar]
  82. Ren, X.; Duan, L.; He, Q.; Zhang, Z.; Zhou, Y.; Wu, D.; Pan, J.; Pei, D.; Ding, K. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med. Chem. Lett. 2010, 1, 454–459. [Google Scholar] [CrossRef]
  83. Flanagan, M.E.; Blumenkopf, T.A.; Brissette, W.H.; Brown, M.F.; Casavant, J.M.; Shang-Poa, C.; Doty, J.L.; Elliott, E.A.; Fisher, M.B.; Hines, M.; et al. Discovery of CP-690,550: A potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J. Med. Chem. 2010, 53, 8468–8484. [Google Scholar] [CrossRef]
  84. Ioannidis, S.; Lamb, M.L.; Wang, T.; Almeida, L.; Block, M.H.; Davies, A.M.; Peng, B.; Su, M.; Zhang, H.J.; Hoffmann, E.; et al. Discovery of 5-chloro-N2-[(1S)-1-(5-fluoropyrimidin-2-yl)ethyl]-N4-(5-methyl-1H-pyrazol-3-yl)pyrimidine-2,4-diamine (AZD1480) as a novel inhibitor of the Jak/Stat pathway. J. Med. Chem. 2011, 54, 262–276. [Google Scholar] [CrossRef]
  85. McDonnell, M.E.; Bian, H.; Wrobel, J.; Smith, G.R.; Liang, S.; Ma, H.; Reitz, A.B. Anilino-monoindolylmaleimides as potent and selective JAK3 inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 1116–1121. [Google Scholar] [CrossRef]
  86. Harikrishnan, L.S.; Kamau, M.G.; Wan, H.; Inghrim, J.A.; Zimmermann, K.; Sang, X.; Mastalerz, H.A.; Johnson, W.L.; Zhang, G.; Lombardo, L.J.; et al. Pyrrolo[1,2-f]triazines as JAK2 inhibitors: Achieving potency and selectivity for JAK2 over JAK3. Bioorg. Med. Chem. Lett. 2011, 21, 1425–1428. [Google Scholar] [CrossRef]
  87. Kim, M.H.; Kim, M.; Yu, H.; Kim, H.; Yoo, K.H.; Sim, T.; Hah, J.M. Structure based design and syntheses of amino-1H-pyrazole amide derivatives as selective Raf kinase inhibitors in melanoma cells. Bioorg. Med. Chem. 2011, 19, 1915–1923. [Google Scholar] [CrossRef]
  88. Medina, J.R.; Blackledge, C.W.; Heerding, D.A.; Campobasso, N.; Ward, P.; Briand, J.; Wright, L.; Axten, J.M. Aminoindazole PDK1 Inhibitors: A Case Study in Fragment-Based Drug Discovery. ACS Med. Chem. Lett. 2010, 1, 439–442. [Google Scholar] [CrossRef] [PubMed]
  89. Wang, T.; Ioannidis, S.; Almeida, L.; Block, M.H.; Davies, A.M.; Lamb, M.L.; Scott, D.A.; Su, M.; Zhang, H.J.; Alimzhanov, M.; et al. In vitro and in vivo evaluation of 6-aminopyrazolyl-pyridine-3-carbonitriles as JAK2 kinase inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 2958–2961. [Google Scholar] [CrossRef]
  90. Thomas, M.; Huang, W.S.; Wen, D.; Zhu, X.; Wang, Y.; Metcalf, C.A.; Liu, S.; Chen, I.; Romero, J.; Zou, D.; et al. Discovery of 5-(arenethynyl) hetero-monocyclic derivatives as potent inhibitors of BCR-ABL including the T315I gatekeeper mutant. Bioorg. Med. Chem. Lett. 2011, 21, 3743–3748. [Google Scholar] [CrossRef] [PubMed]
  91. Shu, L.; Chen, C.; Huan, X.; Huang, H.; Wang, M.; Zhang, J.; Yan, Y.; Liu, J.; Zhang, T.; Zhang, D. Design, synthesis, and pharmacological evaluation of 4- or 6-phenyl-pyrimidine derivatives as novel and selective Janus kinase 3 inhibitors. Eur. J. Med. Chem. 2020, 191, 112148. [Google Scholar] [CrossRef] [PubMed]
  92. Qiu, Q.; Chi, F.; Zhou, D.; Xie, Z.; Liu, Y.; Wu, H.; Yin, Z.; Shi, W.; Qian, H. Exploration of Janus Kinase (JAK) and Histone Deacetylase (HDAC) Bispecific Inhibitors Based on the Moiety of Fedratinib for Treatment of Both Hematologic Malignancies and Solid Cancers. J. Med. Chem. 2023, 66, 5753–5773. [Google Scholar] [CrossRef]
  93. Lim, J.; Taoka, B.; Otte, R.D.; Spencer, K.; Dinsmore, C.J.; Altman, M.D.; Chan, G.; Rosenstein, C.; Sharma, S.; Su, H.P.; et al. Discovery of 1-amino-5H-pyrido[4,3-b]indol-4-carboxamide inhibitors of Janus kinase 2 (JAK2) for the treatment of myeloproliferative disorders. J. Med. Chem. 2011, 54, 7334–7349. [Google Scholar] [CrossRef]
  94. Giraud, F.; Marchand, P.; Carbonnelle, D.; Sartor, M.; Lang, F.; Duflos, M. Synthesis of N-aryl-3-(indol-3-yl)propanamides and their immunosuppressive activities. Bioorg. Med. Chem. Lett. 2010, 20, 5203–5206. [Google Scholar] [CrossRef]
  95. Gao, C.; Cahya, S.; Nicolaou, C.A.; Wang, J.; Watson, I.A.; Cummins, D.J.; Iversen, P.W.; Vieth, M. Selectivity data: Assessment, predictions, concordance, and implications. J. Med. Chem. 2013, 56, 6991–7002. [Google Scholar] [CrossRef] [PubMed]
  96. Liosi, M.E.; Krimmer, S.G.; Newton, A.S.; Dawson, T.K.; Puleo, D.E.; Cutrona, K.J.; Suzuki, Y.; Schlessinger, J.; Jorgensen, W.L. Selective Janus Kinase 2 (JAK2) Pseudokinase Ligands with a Diaminotriazole Core. J. Med. Chem. 2020, 63, 5324–5340. [Google Scholar] [CrossRef] [PubMed]
  97. Poulsen, A.; Blanchard, S.; Soh, C.K.; Lee, C.; Williams, M.; Wang, H.; Dymock, B. Structure-based design of PDK1 inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 305–307. [Google Scholar] [CrossRef] [PubMed]
  98. Zificsak, C.A.; Gingrich, D.E.; Breslin, H.J.; Dunn, D.D.; Milkiewicz, K.L.; Theroff, J.P.; Thieu, T.V.; Underiner, T.L.; Weinberg, L.R.; Aimone, L.D.; et al. Optimization of a novel kinase inhibitor scaffold for the dual inhibition of JAK2 and FAK kinases. Bioorg. Med. Chem. Lett. 2012, 22, 133–137. [Google Scholar] [CrossRef]
  99. Schenkel, L.B.; Huang, X.; Cheng, A.; Deak, H.L.; Doherty, E.; Emkey, R.; Gu, Y.; Gunaydin, H.; Kim, J.L.; Lee, J.; et al. Discovery of potent and highly selective thienopyridine Janus kinase 2 inhibitors. J. Med. Chem. 2011, 54, 8440–8450. [Google Scholar] [CrossRef]
  100. Sonawane, Y.A.; Taylor, M.A.; Napoleon, J.V.; Rana, S.; Contreras, J.I.; Natarajan, A. Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy. J. Med. Chem. 2016, 59, 8667–8684. [Google Scholar] [CrossRef]
  101. William, A.D.; Lee, A.C.; Goh, K.C.; Blanchard, S.; Poulsen, A.; Teo, E.L.; Nagaraj, H.; Lee, C.P.; Wang, H.; Williams, M.; et al. Discovery of kinase spectrum selective macrocycle (16E)-14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene (SB1317/TG02), a potent inhibitor of cyclin dependent kinases (CDKs), Janus kinase 2 (JAK2), and fms-like tyrosine kinase-3 (FLT3) for the treatment of cancer. J. Med. Chem. 2012, 55, 169–196. [Google Scholar] [CrossRef]
  102. Menichincheri, M.; Ardini, E.; Magnaghi, P.; Avanzi, N.; Banfi, P.; Bossi, R.; Buffa, L.; Canevari, G.; Ceriani, L.; Colombo, M.; et al. Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor. J. Med. Chem. 2016, 59, 3392–3408. [Google Scholar] [CrossRef]
  103. Liu, Z.; Wang, P.; Chen, H.; Wold, E.A.; Tian, B.; Brasier, A.R.; Zhou, J. Drug Discovery Targeting Bromodomain-Containing Protein 4. J. Med. Chem. 2017, 60, 4533–4558. [Google Scholar] [CrossRef]
  104. Hoemann, M.; Wilson, N.; Argiriadi, M.; Banach, D.; Burchat, A.; Calderwood, D.; Clapham, B.; Cox, P.; Duignan, D.B.; Konopacki, D.; et al. Synthesis and optimization of furano[3,2-d]pyrimidines as selective spleen tyrosine kinase (Syk) inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 5562–5567. [Google Scholar] [CrossRef]
  105. Oza, V.; Ashwell, S.; Brassil, P.; Breed, J.; Ezhuthachan, J.; Deng, C.; Grondine, M.; Horn, C.; Liu, D.; Lyne, P.; et al. Synthesis and evaluation of triazolones as checkpoint kinase 1 inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 2330–2337. [Google Scholar] [CrossRef] [PubMed]
  106. Yang, E.G.; Mustafa, N.; Tan, E.C.; Poulsen, A.; Ramanujulu, P.M.; Chng, W.J.; Yen, J.J.; Dymock, B.W. Design and Synthesis of Janus Kinase 2 (JAK2) and Histone Deacetlyase (HDAC) Bispecific Inhibitors Based on Pacritinib and Evidence of Dual Pathway Inhibition in Hematological Cell Lines. J. Med. Chem. 2016, 59, 8233–8262. [Google Scholar] [CrossRef]
  107. Dugan, B.J.; Gingrich, D.E.; Mesaros, E.F.; Milkiewicz, K.L.; Curry, M.A.; Zulli, A.L.; Dobrzanski, P.; Serdikoff, C.; Jan, M.; Angeles, T.S.; et al. A selective, orally bioavailable 1,2,4-triazolo[1,5-a]pyridine-based inhibitor of Janus kinase 2 for use in anticancer therapy: Discovery of CEP-33779. J. Med. Chem. 2012, 55, 5243–5254. [Google Scholar] [CrossRef]
  108. Mitton-Fry, M.J.; Berlinski, P.J.; Birchmeier, M.J.; Bowman, J.W.; Gonzales, A.J.; Kamerling, S.G.; Mann, D.W. Pyrrolo[2,3-d]pyrimidine Compounds. U.S. Patent US-9161939-B2, 20 October 2015. [Google Scholar]
  109. Yogo, T.; Nagamiya, H.; Seto, M.; Sasaki, S.; Shih-Chung, H.; Ohba, Y.; Tokunaga, N.; Lee, G.N.; Rhim, C.Y.; Yoon, C.H.; et al. Structure-Based Design and Synthesis of 3-Amino-1,5-dihydro-4H-pyrazolopyridin-4-one Derivatives as Tyrosine Kinase 2 Inhibitors. J. Med. Chem. 2016, 59, 733–749. [Google Scholar] [CrossRef] [PubMed]
  110. Kim, M.K.; Shin, H.; Park, K.S.; Kim, H.; Park, J.; Kim, K.; Nam, J.; Choo, H.; Chong, Y. Benzimidazole Derivatives as Potent JAK1-Selective Inhibitors. J. Med. Chem. 2015, 58, 7596–7602. [Google Scholar] [CrossRef]
  111. Chen, X.; Wilson, L.J.; Malaviya, R.; Argentieri, R.L.; Yang, S.M. Virtual screening to successfully identify novel janus kinase 3 inhibitors: A sequential focused screening approach. J. Med. Chem. 2008, 51, 7015–7019. [Google Scholar] [CrossRef] [PubMed]
  112. Fedorov, O.; Marsden, B.; Pogacic, V.; Rellos, P.; Müller, S.; Bullock, A.N.; Schwaller, J.; Sundström, M.; Knapp, S. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc. Natl. Acad. Sci. USA 2007, 104, 20523–20528. [Google Scholar] [CrossRef]
  113. DiMauro, E.F.; Newcomb, J.; Nunes, J.J.; Bemis, J.E.; Boucher, C.; Buchanan, J.L.; Buckner, W.H.; Cee, V.J.; Chai, L.; Deak, H.L.; et al. Discovery of aminoquinazolines as potent, orally bioavailable inhibitors of Lck: Synthesis, SAR, and in vivo anti-inflammatory activity. J. Med. Chem. 2006, 49, 5671–5686. [Google Scholar] [CrossRef]
  114. Wang, T.; Lamb, M.L.; Block, M.H.; Davies, A.M.; Han, Y.; Hoffmann, E.; Ioannidis, S.; Josey, J.A.; Liu, Z.Y.; Lyne, P.D.; et al. Discovery of Disubstituted Imidazo[4,5-b]pyridines and Purines as Potent TrkA Inhibitors. ACS Med. Chem. Lett. 2012, 3, 705–709. [Google Scholar] [CrossRef]
  115. Liu, M.; Ju, X.; Zou, J.; Shi, J.; Jia, G. Recent researches for dual Aurora target inhibitors in antitumor field. Eur. J. Med. Chem. 2020, 203, 112498. [Google Scholar] [CrossRef]
  116. Lawrence, H.R.; Martin, M.P.; Luo, Y.; Pireddu, R.; Yang, H.; Gevariya, H.; Ozcan, S.; Zhu, J.Y.; Kendig, R.; Rodriguez, M.; et al. Development of o-chlorophenyl substituted pyrimidines as exceptionally potent aurora kinase inhibitors. J. Med. Chem. 2012, 55, 7392–7416. [Google Scholar] [CrossRef]
  117. Hanan, E.J.; van Abbema, A.; Barrett, K.; Blair, W.S.; Blaney, J.; Chang, C.; Eigenbrot, C.; Flynn, S.; Gibbons, P.; Hurley, C.A.; et al. Discovery of potent and selective pyrazolopyrimidine janus kinase 2 inhibitors. J. Med. Chem. 2012, 55, 10090–10107. [Google Scholar] [CrossRef] [PubMed]
  118. William, A.D.; Lee, A.C.; Blanchard, S.; Poulsen, A.; Teo, E.L.; Nagaraj, H.; Tan, E.; Chen, D.; Williams, M.; Sun, E.T.; et al. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lymphoma. J. Med. Chem. 2011, 54, 4638–4658. [Google Scholar] [CrossRef] [PubMed]
  119. Forsyth, T.; Kearney, P.C.; Kim, B.G.; Johnson, H.W.; Aay, N.; Arcalas, A.; Brown, D.S.; Chan, V.; Chen, J.; Du, H.; et al. SAR and in vivo evaluation of 4-aryl-2-aminoalkylpyrimidines as potent and selective Janus kinase 2 (JAK2) inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 7653–7658. [Google Scholar] [CrossRef]
  120. Chen, J.J.; Thakur, K.D.; Clark, M.P.; Laughlin, S.K.; George, K.M.; Bookland, R.G.; Davis, J.R.; Cabrera, E.J.; Easwaran, V.; De, B.; et al. Development of pyrimidine-based inhibitors of Janus tyrosine kinase 3. Bioorg. Med. Chem. Lett. 2006, 16, 5633–5638. [Google Scholar] [CrossRef]
  121. Liang, X.; Huang, Y.; Zang, J.; Gao, Q.; Wang, B.; Xu, W.; Zhang, Y. Design, synthesis and preliminary biological evaluation of 4-aminopyrazole derivatives as novel and potent JAKs inhibitors. Bioorg. Med. Chem. 2016, 24, 2660–2672. [Google Scholar] [CrossRef]
  122. Yu, R.N.; Chen, C.J.; Shu, L.; Yin, Y.; Wang, Z.J.; Zhang, T.T.; Zhang, D.Y. Structure-based design and synthesis of pyrimidine-4,6-diamine derivatives as Janus kinase 3 inhibitors. Bioorg. Med. Chem. 2019, 27, 1646–1657. [Google Scholar] [CrossRef] [PubMed]
  123. Elsayed, M.S.A.; Nielsen, J.J.; Park, S.; Park, J.; Liu, Q.; Kim, C.H.; Pommier, Y.; Agama, K.; Low, P.S.; Cushman, M. Application of Sequential Palladium Catalysis for the Discovery of Janus Kinase Inhibitors in the Benzo[ c]pyrrolo[2,3- h][1,6]naphthyridin-5-one (BPN) Series. J. Med. Chem. 2018, 61, 10440–10462. [Google Scholar] [CrossRef]
  124. Uckun, F.M.; Dibirdik, I.; Qazi, S.; Vassilev, A.; Ma, H.; Mao, C.; Benyumov, A.; Emami, K.H. Anti-breast cancer activity of LFM-A13, a potent inhibitor of Polo-like kinase (PLK). Bioorg. Med. Chem. 2007, 15, 800–814. [Google Scholar] [CrossRef]
  125. Van Epps, S.; Fiamengo, B.; Edmunds, J.; Ericsson, A.; Frank, K.; Friedman, M.; George, D.; George, J.; Goedken, E.; Kotecki, B.; et al. Design and synthesis of tricyclic cores for kinase inhibition. Bioorg. Med. Chem. Lett. 2013, 23, 693–698. [Google Scholar] [CrossRef]
  126. Soth, M.; Hermann, J.C.; Yee, C.; Alam, M.; Barnett, J.W.; Berry, P.; Browner, M.F.; Frank, K.; Frauchiger, S.; Harris, S.; et al. 3-Amido pyrrolopyrazine JAK kinase inhibitors: Development of a JAK3 vs JAK1 selective inhibitor and evaluation in cellular and in vivo models. J. Med. Chem. 2013, 56, 345–356. [Google Scholar] [CrossRef] [PubMed]
  127. Yang, S.M.; Malaviya, R.; Wilson, L.J.; Argentieri, R.; Chen, X.; Yang, C.; Wang, B.; Cavender, D.; Murray, W.V. Simplified staurosporine analogs as potent JAK3 inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 326–331. [Google Scholar] [CrossRef]
  128. Lynch, S.M.; DeVicente, J.; Hermann, J.C.; Jaime-Figueroa, S.; Jin, S.; Kuglstatter, A.; Li, H.; Lovey, A.; Menke, J.; Niu, L.; et al. Strategic use of conformational bias and structure based design to identify potent JAK3 inhibitors with improved selectivity against the JAK family and the kinome. Bioorg. Med. Chem. Lett. 2013, 23, 2793–2800. [Google Scholar] [CrossRef]
  129. Guan, H.; Lamb, M.L.; Peng, B.; Huang, S.; Degrace, N.; Read, J.; Hussain, S.; Wu, J.; Rivard, C.; Alimzhanov, M.; et al. Discovery of novel Jak2-Stat pathway inhibitors with extended residence time on target. Bioorg. Med. Chem. Lett. 2013, 23, 3105–3110. [Google Scholar] [CrossRef] [PubMed]
  130. Marsilje, T.H.; Pei, W.; Chen, B.; Lu, W.; Uno, T.; Jin, Y.; Jiang, T.; Kim, S.; Li, N.; Warmuth, M.; et al. Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J. Med. Chem. 2013, 56, 5675–5690. [Google Scholar] [CrossRef]
  131. Martin, M.W.; Newcomb, J.; Nunes, J.J.; Bemis, J.E.; McGowan, D.C.; White, R.D.; Buchanan, J.L.; DiMauro, E.F.; Boucher, C.; Faust, T.; et al. Discovery of novel 2,3-diarylfuro[2,3-b]pyridin-4-amines as potent and selective inhibitors of Lck: Synthesis, SAR, and pharmacokinetic properties. Bioorg. Med. Chem. Lett. 2007, 17, 2299–2304. [Google Scholar] [CrossRef]
  132. Siu, M.; Pastor, R.; Liu, W.; Barrett, K.; Berry, M.; Blair, W.S.; Chang, C.; Chen, J.Z.; Eigenbrot, C.; Ghilardi, N.; et al. 2-Amino-[1,2,4]triazolo[1,5-a]pyridines as JAK2 inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 5014–5021. [Google Scholar] [CrossRef]
  133. Brasca, M.G.; Mantegani, S.; Amboldi, N.; Bindi, S.; Caronni, D.; Casale, E.; Ceccarelli, W.; Colombo, N.; De Ponti, A.; Donati, D.; et al. Discovery of NMS-E973 as novel, selective and potent inhibitor of heat shock protein 90 (Hsp90). Bioorg. Med. Chem. 2013, 21, 7047–7063. [Google Scholar] [CrossRef] [PubMed]
  134. DiMauro, E.F.; Newcomb, J.; Nunes, J.J.; Bemis, J.E.; Boucher, C.; Buchanan, J.L.; Buckner, W.H.; Cheng, A.; Faust, T.; Hsieh, F.; et al. Discovery of 4-amino-5,6-biaryl-furo[2,3-d]pyrimidines as inhibitors of Lck: Development of an expedient and divergent synthetic route and preliminary SAR. Bioorg. Med. Chem. Lett. 2007, 17, 2305–2309. [Google Scholar] [CrossRef]
  135. Côté, B.; Boulet, L.; Brideau, C.; Claveau, D.; Ethier, D.; Frenette, R.; Gagnon, M.; Giroux, A.; Guay, J.; Guiral, S.; et al. Substituted phenanthrene imidazoles as potent, selective, and orally active mPGES-1 inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 6816–6820. [Google Scholar] [CrossRef]
  136. Seerden, J.P.; Leusink-Ionescu, G.; Woudenberg-Vrenken, T.; Dros, B.; Molema, G.; Kamps, J.A.; Kellogg, R.M. Synthesis and structure-activity relationships of 4-fluorophenyl-imidazole p38α MAPK, CK1δ and JAK2 kinase inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 3412–3418. [Google Scholar] [CrossRef]
  137. Zhong, Y.; Qiu, R.Z.; Sun, S.L.; Zhao, C.; Fan, T.Y.; Chen, M.; Li, N.G.; Shi, Z.H. Small-Molecule Fms-like Tyrosine Kinase 3 Inhibitors: An Attractive and Efficient Method for the Treatment of Acute Myeloid Leukemia. J. Med. Chem. 2020, 63, 12403–12428. [Google Scholar] [CrossRef]
  138. Zhao, H.; Caflisch, A. Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg. Med. Chem. Lett. 2013, 23, 5721–5726. [Google Scholar] [CrossRef] [PubMed]
  139. Su, Q.; Ioannidis, S.; Chuaqui, C.; Almeida, L.; Alimzhanov, M.; Bebernitz, G.; Bell, K.; Block, M.; Howard, T.; Huang, S.; et al. Discovery of 1-methyl-1H-imidazole derivatives as potent Jak2 inhibitors. J. Med. Chem. 2014, 57, 144–158. [Google Scholar] [CrossRef] [PubMed]
  140. Siu, T.; Kumarasinghe, S.E.; Altman, M.D.; Katcher, M.; Northrup, A.; White, C.; Rosenstein, C.; Mathur, A.; Xu, L.; Chan, G.; et al. The discovery of reverse tricyclic pyridone JAK2 inhibitors. Part 2: Lead optimization. Bioorg. Med. Chem. Lett. 2014, 24, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
  141. Huang, Q.; Johnson, T.W.; Bailey, S.; Brooun, A.; Bunker, K.D.; Burke, B.J.; Collins, M.R.; Cook, A.S.; Cui, J.J.; Dack, K.N.; et al. Design of potent and selective inhibitors to overcome clinical anaplastic lymphoma kinase mutations resistant to crizotinib. J. Med. Chem. 2014, 57, 1170–1187. [Google Scholar] [CrossRef]
  142. Shen, P.; Wang, Y.; Jia, X.; Xu, P.; Qin, L.; Feng, X.; Li, Z.; Qiu, Z. Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases. Eur. J. Med. Chem. 2022, 239, 114551. [Google Scholar] [CrossRef]
  143. Wang, S.; Zhang, R.H.; Zhang, H.; Wang, Y.C.; Yang, D.; Zhao, Y.L.; Yan, G.Y.; Xu, G.B.; Guan, H.Y.; Zhou, Y.H.; et al. Design, synthesis, and biological evaluation of 2,4-diamino pyrimidine derivatives as potent FAK inhibitors with anti-cancer and anti-angiogenesis activities. Eur. J. Med. Chem. 2021, 222, 113573. [Google Scholar] [CrossRef]
  144. Haidle, A.M.; Zabierek, A.A.; Childers, K.K.; Rosenstein, C.; Mathur, A.; Altman, M.D.; Chan, G.; Xu, L.; Bachman, E.; Mo, J.R.; et al. Thiophene carboxamide inhibitors of JAK2 as potential treatments for myleoproliferative neoplasms. Bioorg. Med. Chem. Lett. 2014, 24, 1968–1973. [Google Scholar] [CrossRef]
  145. Costales, A.; Mathur, M.; Ramurthy, S.; Lan, J.; Subramanian, S.; Jain, R.; Atallah, G.; Setti, L.; Lindvall, M.; Appleton, B.A.; et al. 2-Amino-7-substituted benzoxazole analogs as potent RSK2 inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 1592–1596. [Google Scholar] [CrossRef]
  146. Park, E.; Lee, S.J.; Moon, H.; Park, J.; Jeon, H.; Hwang, J.S.; Hwang, H.; Hong, K.B.; Han, S.H.; Choi, S.; et al. Discovery and Biological Evaluation of. J. Med. Chem. 2021, 64, 958–979. [Google Scholar] [CrossRef] [PubMed]
  147. Ren, J.; Shi, W.; Zhao, D.; Wang, Q.; Chang, X.; He, X.; Wang, X.; Gao, Y.; Lu, P.; Zhang, X.; et al. Design and synthesis of boron-containing diphenylpyrimidines as potent BTK and JAK3 dual inhibitors. Bioorg. Med. Chem. 2020, 28, 115236. [Google Scholar] [CrossRef]
  148. Brasca, M.G.; Nesi, M.; Avanzi, N.; Ballinari, D.; Bandiera, T.; Bertrand, J.; Bindi, S.; Canevari, G.; Carenzi, D.; Casero, D.; et al. Pyrrole-3-carboxamides as potent and selective JAK2 inhibitors. Bioorg. Med. Chem. 2014, 22, 4998–5012. [Google Scholar] [CrossRef] [PubMed]
  149. Hanan, E.J.; Eigenbrot, C.; Bryan, M.C.; Burdick, D.J.; Chan, B.K.; Chen, Y.; Dotson, J.; Heald, R.A.; Jackson, P.S.; La, H.; et al. Discovery of selective and noncovalent diaminopyrimidine-based inhibitors of epidermal growth factor receptor containing the T790M resistance mutation. J. Med. Chem. 2014, 57, 10176–10191. [Google Scholar] [CrossRef]
  150. Goodwin, N.C.; Cianchetta, G.; Burgoon, H.A.; Healy, J.; Mabon, R.; Strobel, E.D.; Allen, J.; Wang, S.; Hamman, B.D.; Rawlins, D.B. Discovery of a Type III Inhibitor of LIM Kinase 2 That Binds in a DFG-Out Conformation. ACS Med. Chem. Lett. 2015, 6, 53–57. [Google Scholar] [CrossRef]
  151. Duan, J.J.; Lu, Z.; Jiang, B.; Yang, B.V.; Doweyko, L.M.; Nirschl, D.S.; Haque, L.E.; Lin, S.; Brown, G.; Hynes, J.; et al. Discovery of pyrrolo[1,2-b]pyridazine-3-carboxamides as Janus kinase (JAK) inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 5721–5726. [Google Scholar] [CrossRef] [PubMed]
  152. Henderson, J.L.; Kormos, B.L.; Hayward, M.M.; Coffman, K.J.; Jasti, J.; Kurumbail, R.G.; Wager, T.T.; Verhoest, P.R.; Noell, G.S.; Chen, Y.; et al. Discovery and preclinical profiling of 3-[4-(morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. J. Med. Chem. 2015, 58, 419–432. [Google Scholar] [CrossRef]
  153. Brasca, M.G.; Gnocchi, P.; Nesi, M.; Amboldi, N.; Avanzi, N.; Bertrand, J.; Bindi, S.; Canevari, G.; Casero, D.; Ciomei, M.; et al. Novel pyrrole carboxamide inhibitors of JAK2 as potential treatment of myeloproliferative disorders. Bioorg. Med. Chem. 2015, 23, 2387–2407. [Google Scholar] [CrossRef]
  154. Wan, H.; Schroeder, G.M.; Hart, A.C.; Inghrim, J.; Grebinski, J.; Tokarski, J.S.; Lorenzi, M.V.; You, D.; Mcdevitt, T.; Penhallow, B.; et al. Discovery of a Highly Selective JAK2 Inhibitor, BMS-911543, for the Treatment of Myeloproliferative Neoplasms. ACS Med. Chem. Lett. 2015, 6, 850–855. [Google Scholar] [CrossRef]
  155. Zimmermann, K.; Sang, X.; Mastalerz, H.A.; Johnson, W.L.; Zhang, G.; Liu, Q.; Batt, D.; Lombardo, L.J.; Vyas, D.; Trainor, G.L.; et al. 9H-Carbazole-1-carboxamides as potent and selective JAK2 inhibitors. Bioorg. Med. Chem. Lett. 2015, 25, 2809–2812. [Google Scholar] [CrossRef]
  156. Yamagishi, H.; Shirakami, S.; Nakajima, Y.; Tanaka, A.; Takahashi, F.; Hamaguchi, H.; Hatanaka, K.; Moritomo, A.; Inami, M.; Higashi, Y.; et al. Discovery of 3,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridin-2(1H)-one derivatives as novel JAK inhibitors. Bioorg. Med. Chem. 2015, 23, 4846–4859. [Google Scholar] [CrossRef] [PubMed]
  157. Nakajima, Y.; Inoue, T.; Nakai, K.; Mukoyoshi, K.; Hamaguchi, H.; Hatanaka, K.; Sasaki, H.; Tanaka, A.; Takahashi, F.; Kunikawa, S.; et al. Synthesis and evaluation of novel 1H-pyrrolo[2,3-b]pyridine-5-carboxamide derivatives as potent and orally efficacious immunomodulators targeting JAK3. Bioorg. Med. Chem. 2015, 23, 4871–4883. [Google Scholar] [CrossRef] [PubMed]
  158. Jang, W.D.; Kim, J.T.; Son, H.Y.; Park, S.Y.; Cho, Y.S.; Koo, T.S.; Lee, H.; Kang, N.S. Discovery of Tyk2 inhibitors via the virtual site-directed fragment-based drug design. Bioorg. Med. Chem. Lett. 2015, 25, 3947–3952. [Google Scholar] [CrossRef]
  159. Liu, Q.; Batt, D.G.; Lippy, J.S.; Surti, N.; Tebben, A.J.; Muckelbauer, J.K.; Chen, L.; An, Y.; Chang, C.; Pokross, M.; et al. Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton’s tyrosine kinase (BTK) and Janus kinase 2 (JAK2). Bioorg. Med. Chem. Lett. 2015, 25, 4265–4269. [Google Scholar] [CrossRef]
  160. Hart, A.C.; Schroeder, G.M.; Wan, H.; Grebinski, J.; Inghrim, J.; Kempson, J.; Guo, J.; Pitts, W.J.; Tokarski, J.S.; Sack, J.S.; et al. Structure-Based Design of Selective Janus Kinase 2 Imidazo[4,5-d]pyrrolo[2,3-b]pyridine Inhibitors. ACS Med. Chem. Lett. 2015, 6, 845–849. [Google Scholar] [CrossRef]
  161. Gehringer, M.; Laufer, S.A. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J. Med. Chem. 2019, 62, 5673–5724. [Google Scholar] [CrossRef]
  162. ChEMBL Database, EMBL-EBI (2024). ChEMBL Document: Affinity Phenotypic Cellular Literature for EUbOPEN Chemogenomic Library (CHEMBL5444388)-ChEMBL(20 January 2022). Available online: https://www.ebi.ac.uk/chembl/explore/document/CHEMBL5444388 (accessed on 25 February 2025).
  163. Choi, J.S.; Hwang, H.J.; Kim, S.W.; Lee, B.I.; Lee, J.; Song, H.J.; Koh, J.S.; Kim, J.H.; Lee, P.H. Highly potent and selective pyrazolylpyrimidines as Syk kinase inhibitors. Bioorg. Med. Chem. Lett. 2015, 25, 4441–4446. [Google Scholar] [CrossRef]
  164. Curry, M.A.; Dorsey, B.D.; Dugan, B.J.; Gingrich, D.E.; Mesaros, E.F.; Milkiewicz, K.L. Preparation and Uses of 1,2,4-triazolo[1,5a]pyridine Derivatives. U.S. Patent US-8633173-B2, 21 January 2014. [Google Scholar]
  165. Jones, P.; Storer, R.I.; Sabnis, Y.A.; Wakenhut, F.M.; Whitlock, G.A.; England, K.S.; Mukaiyama, T.; Dehnhardt, C.M.; Coe, J.W.; Kortum, S.W.; et al. Design and Synthesis of a Pan-Janus Kinase Inhibitor Clinical Candidate (PF-06263276) Suitable for Inhaled and Topical Delivery for the Treatment of Inflammatory Diseases of the Lungs and Skin. J. Med. Chem. 2017, 60, 767–786. [Google Scholar] [CrossRef]
  166. Casimiro-Garcia, A.; Trujillo, J.I.; Vajdos, F.; Juba, B.; Banker, M.E.; Aulabaugh, A.; Balbo, P.; Bauman, J.; Chrencik, J.; Coe, J.W.; et al. Identification of Cyanamide-Based Janus Kinase 3 (JAK3) Covalent Inhibitors. J. Med. Chem. 2018, 61, 10665–10699. [Google Scholar] [CrossRef] [PubMed]
  167. Bauer, S.M.; Jia, Z.J.; Mehrotra, M.; Song, Y.; Xu, Q.; Huang, W.; Venkataramani, C.; Rose, J.W.; Pandey, A. Inhibitors of Syk and/or JAK Kinase. U.S. Patent US-8501944-B2, 6 August 2013. [Google Scholar]
  168. Purandare, A.V.; Batt, D.G.; Liu, Q.; Johnson, W.L.; Mastalerz, H.; Zhang, G.; Zimmermann, K. Carbazole and Carboline Kinase Inhibitors. U.S. Patent US-8815840-B2, 26 August 2014. [Google Scholar]
  169. Woo, H.C.; Cash, B.; Ahearn, S.P.; Dinsmore, C.; Jung, J.; Pu, Q.; Rivkin, A.; Scott, M.E.; Witter, D.J.; Woo, H.C.; et al. Pyrrolopyrimidines as Janus Kinase Inhibitors. U.S. Patent US-8993756-B2, 31 March 2015. [Google Scholar]
  170. Forster, M.; Gehringer, M.; Laufer, S.A. Recent advances in JAK3 inhibition: Isoform selectivity by covalent cysteine targeting. Bioorg. Med. Chem. Lett. 2017, 27, 4229–4237. [Google Scholar] [CrossRef]
  171. Promo, M.A.; Xie, J.; Acker, B.A.; Hartmann, S.J.; Wolfson, S.G.; Huang, H.-C.; Jacobsen, E.J. Pyrrolo[2,3-d]pyrimidine Compounds as Janus Kinase Inhibitors. U.S. Patent US-8633206-B2, 21 January 2014. [Google Scholar]
  172. Brown, M.F.; Fenwick, A.E.; Flanagan, M.E.; Gonzales, A.; Johnson, T.A.; Kaila, N.; Mitton-Fry, M.J.; Strohbach, J.W.; TenBrink, R.E.; Trzupek, J.D.; et al. Pyrrolo[2,3-D]pyrimidine Derivatives. U.S. Patent US-9035074-B2, 19 May 2015. [Google Scholar]
  173. McAllister, A.; Murone, M.; Sengupta, S.; Shetty, S.J. Bicyclic Compounds and Their Uses as Dual c-SRC/JAK Inhibitors. U.S. Patent US-8440679-B2, 21 May 2013. [Google Scholar]
  174. Davies, A.; Ioannidis, S.; Lamb, M.; Su, M.; Wang, T.; Zhang, H. 9-(Pyrazol-3-yl)-9H-purine-2-amine and 3-(pyrazol-3-yl)-3H-imidazo[4,5-B] Pyridin-5-Amine Derivatives and Their Use for the Treatment of Cancer. U.S. Patent US8486966B2, 16 July 2013. [Google Scholar]
  175. De Vicente Fidalgo, J.; Hermann, J.C.; Lemoine, R.; Li, H.; Lovey, A.J. Inhibitors of JAK for the Treatment of Autoimmune and Inflammatory Diseases. U.S. Patent US-8618103-B2, 31 December 2013. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-8618103-B2 (accessed on 25 February 2025).
  176. Hynes, J.; Wu, H.; Kempson, J.; Duan, J.J.; Lu, Z.; Jiang, B.; Stachura, S.; Tokarski, J.S.; Sack, J.S.; Khan, J.A.; et al. Discovery of potent and efficacious pyrrolopyridazines as dual JAK1/3 inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 3101–3106. [Google Scholar] [CrossRef] [PubMed]
  177. Wrobleski, S.T.; Brown, G.D.; Doweyko, L.M.; Duan, J.; Guo, J. Pyrrolopyridazine JAK3 Inhibitors and Their Use for the Treatment of Inflammatory and Autoimmune Diseases. U.S. Patent US-8921368-B2, 30 December 2014. [Google Scholar]
  178. Allen, S.; Andrews, S.W.; Condroski, K.R.; Haas, J.; Huang, L. Substituted Pyrazolo[1,5-a]pyrimidine Compounds as Trk Kinase Inhibitors. U.S. Patent US-8791123-B2, 29 July 2014. [Google Scholar]
  179. Noji, S.; Shiozaki, M.; Miura, T.; Hara, Y.; Yamanaka, H.; Maeda, K.; Hori, A.; Inoue, M.; Hase, Y. Nitrogen-Containing Spirocyclic Compounds and Pharmaceutical Uses Thereof. U.S. Patent US-8609647-B2, 17 December 2013. [Google Scholar]
  180. Combs, A.P.; Sparks, R.B.; Yue, E.W.T.; Feng, H.; Bower, M.J. Macrocyclic Compounds and Their Use as Kinase Inhibitors. U.S. Patent US8765727B2, 1 July 2014. [Google Scholar]
  181. Brubaker, J.; Close, J.T.; Jung, J.; Martinez, M.; White, C. Acyclic Cyanoethylpyrazoles as Janus Kinase Inhibitors. U.S. Patent US9493441B2, 15 November 2016. [Google Scholar]
  182. Hansen, B.B.; Jepsen, T.H.; Larsen, M.; Sindet, R.; Vifian, T.; Burhardt, M.N.; Larsen, J.; Seitzberg, J.G.; Carnerup, M.A.; Jerre, A.; et al. Fragment-Based Discovery of Pyrazolopyridones as JAK1 Inhibitors with Excellent Subtype Selectivity. J. Med. Chem. 2020, 63, 7008–7032. [Google Scholar] [CrossRef] [PubMed]
  183. Vasbinder, M.M.; Alimzhanov, M.; Augustin, M.; Bebernitz, G.; Bell, K.; Chuaqui, C.; Deegan, T.; Ferguson, A.D.; Goodwin, K.; Huszar, D.; et al. Identification of azabenzimidazoles as potent JAK1 selective inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 60–67. [Google Scholar] [CrossRef]
  184. Stauffer, F.; Cowan-Jacob, S.W.; Scheufler, C.; Furet, P. Identification of a 5-[3-phenyl-(2-cyclic-ether)-methylether]-4-aminopyrrolo[2,3-d]pyrimidine series of IGF-1R inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 2065–2067. [Google Scholar] [CrossRef]
  185. Wang, T.; Liu, X.; Hao, M.; Qiao, J.; Ju, C.; Xue, L.; Zhang, C. Design, synthesis and evaluation of pyrrolo[2,3-d]pyrimidine-phenylamide hybrids as potent Janus kinase 2 inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 2936–2941. [Google Scholar] [CrossRef]
  186. Kim, H.; Kim, M.K.; Choo, H.; Chong, Y. Novel JAK1-selective benzimidazole inhibitors with enhanced membrane permeability. Bioorg. Med. Chem. Lett. 2016, 26, 3213–3215. [Google Scholar] [CrossRef]
  187. Cee, V.J.; Albrecht, B.K.; Geuns-Meyer, S.; Hughes, P.; Bellon, S.; Bready, J.; Caenepeel, S.; Chaffee, S.C.; Coxon, A.; Emery, M.; et al. Alkynylpyrimidine amide derivatives as potent, selective, and orally active inhibitors of Tie-2 kinase. J. Med. Chem. 2007, 50, 627–640. [Google Scholar] [CrossRef]
  188. Martin, M.W.; Newcomb, J.; Nunes, J.J.; McGowan, D.C.; Armistead, D.M.; Boucher, C.; Buchanan, J.L.; Buckner, W.; Chai, L.; Elbaum, D.; et al. Novel 2-aminopyrimidine carbamates as potent and orally active inhibitors of Lck: Synthesis, SAR, and in vivo antiinflammatory activity. J. Med. Chem. 2006, 49, 4981–4991. [Google Scholar] [CrossRef]
  189. Phuangsawai, O.; Beswick, P.; Ratanabunyong, S.; Tabtimmai, L.; Suphakun, P.; Obounchoey, P.; Srisook, P.; Horata, N.; Chuckowree, I.; Hannongbua, S.; et al. Evaluation of the anti-malarial activity and cytotoxicity of 2,4-diamino-pyrimidine-based kinase inhibitors. Eur. J. Med. Chem. 2016, 124, 896–905. [Google Scholar] [CrossRef]
  190. Hou, W.; Ren, Y.; Zhang, Z.; Sun, H.; Ma, Y.; Yan, B. Novel quinazoline derivatives bearing various 6-benzamide moieties as highly selective and potent EGFR inhibitors. Bioorg. Med. Chem. 2018, 26, 1740–1750. [Google Scholar] [CrossRef]
  191. Narayan, S.; Ramisetti, S.; Jaiswal, A.S.; Law, B.K.; Singh-Pillay, A.; Singh, P.; Amin, S.; Sharma, A.K. ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells. Eur. J. Med. Chem. 2019, 161, 456–467. [Google Scholar] [CrossRef]
  192. Vankayalapati, H.; Yerramreddy, V.K.; Gangireddy, P.; Appalaneni, R.P. National Center for Biotechnology Information (2024). PubChem Patent Summary for US-9206188-B2, Substituted Pyrrolo[2,3-b]pyridines as ITK and JAK Inhibitors. United States, 8 December 2015. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-9206188-B2 (accessed on 25 February 2025).
  193. Wang, Y.; Huang, W.; Xin, M.; Chen, P.; Gui, L.; Zhao, X.; Tang, F.; Wang, J.; Liu, F. Identification of 4-(2-furanyl)pyrimidin-2-amines as Janus kinase 2 inhibitors. Bioorg. Med. Chem. 2017, 25, 75–83. [Google Scholar] [CrossRef] [PubMed]
  194. Batt, D.G.; Bertrand, M.B.; Delucca, G.; Galella, M.A.; Ko, S.S. Substituted Tetrahydrocarbazole and Carbazole Carboxamide Compounds. United States Patent US-9334290-B2, 10 May 2016. Assignee: Bristol Myers Squibb Co. Available online: https://patents.google.com/patent/US9334290B2 (accessed on 25 February 2025).
  195. Hayashi, K.; Watanabe, T.; Toyama, K.; Kamon, J.; Minami, M. Substituted Pyrrolo[2,3-h][1,6]naphthyridines and Compositions Thereof as JAK Inhibitors. United States Patent US-9216999-B2, 22 December 2015. Available online: https://patents.google.com/patent/US9216999B2 (accessed on 25 February 2025).
  196. Yang, B.V.; Brown, G.D.; Gupta, A.K.; Pitts, W.J. National Center for Biotechnology Information (2024). PubChem Patent Summary for US-9428511-B2, Imidazopyridazine JAK3 Inhibitors and Their Use for the Treatment of Inflammatory and Autoimmune Diseases. United States. 30 August 2016. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-9428511-B2 (accessed on 25 February 2025).
  197. Czodrowski, P.; Mallinger, A.; Wienke, D.; Esdar, C.; Pöschke, O.; Busch, M.; Rohdich, F.; Eccles, S.A.; Ortiz-Ruiz, M.J.; Schneider, R.; et al. Structure-Based Optimization of Potent, Selective, and Orally Bioavailable CDK8 Inhibitors Discovered by High-Throughput Screening. J. Med. Chem. 2016, 59, 9337–9349. [Google Scholar] [CrossRef]
  198. Clark, M.P.; George, K.M.; Bookland, R.G.; Chen, J.; Laughlin, S.K.; Thakur, K.D.; Lee, W.; Davis, J.R.; Cabrera, E.J.; Brugel, T.A.; et al. Development of new pyrrolopyrimidine-based inhibitors of Janus kinase 3 (JAK3). Bioorg. Med. Chem. Lett. 2007, 17, 1250–1253. [Google Scholar] [CrossRef]
  199. Mitton-Fry, M.J.; Berlinski, P.J.; Birchmeier, M.J.; Bowman, J.W.; Gonzales, A.J. National Center for Biotechnology Information (2024). PubChem Patent Summary for US-9161939-B2, Pyrrolo[2,3-d]pyrimidine compounds. United States. 20 October 2015. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-9161939-B2 (accessed on 25 February 2025).
  200. Smaill, J.B.; Gonzales, A.J.; Spicer, J.A.; Lee, H.; Reed, J.E.; Sexton, K.; Althaus, I.W.; Zhu, T.; Black, S.L.; Blaser, A.; et al. Tyrosine Kinase Inhibitors. 20. Optimization of Substituted Quinazoline and Pyrido[3,4-d]pyrimidine Derivatives as Orally Active, Irreversible Inhibitors of the Epidermal Growth Factor Receptor Family. J. Med. Chem. 2016, 59, 8103–8124. [Google Scholar] [CrossRef] [PubMed]
  201. Huang, T.; Xue, C.-B.; Li, H.-Y.; Li, Q. Piperidin-4-yl Azetidine Derivatives as JAK1 Inhibitors. U.S. Patent US-8765734-B2, 1 July 2014. Available online: https://patents.google.com/patent/US8765734B2 (accessed on 25 February 2025).
  202. Takahashi, K.; Watanabe, T.; Hayashi, K.; Kurihara, K.; Nakamura, T.; Yamamoto, A.; Nishimura, T.; Kamiyama, T.; Hidaka, Y. National Center for Biotechnology Information (2024). PubChem Patent Summary for US-9475813-B2, Tricyclic Pyrrolopyridine Compound, and JAK Inhibitor. United States. 25 October 2016. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-9475813-B2 (accessed on 25 February 2025).
  203. Xi, N.; Li, M.; Hu, H.; Dai, W. National Center for Biotechnology Information (2024). PubChem Patent Summary for US-9403801-B2, Substituted Heteroaryl Compounds and Methods of Use. United States. 2 August 2016. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-9403801-B2 (accessed on 25 February 2025).
  204. Goldstein, D.M.; Brameld, K.A.; Verner, E. National Center for Biotechnology Information (2024). PubChem Patent Summary for US-9187487-B2, Azaindole Derivatives as Tyrosine Kinase Inhibitors. United States. 17 November 2015. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-9187487-B2 (accessed on 25 February 2025).
  205. Ge, Y.; Jin, Y.; Wang, C.; Zhang, J.; Tang, Z.; Peng, J.; Liu, K.; Li, Y.; Zhou, Y.; Ma, X. Discovery of Novel Bruton’s Tyrosine Kinase (BTK) Inhibitors Bearing a N,9-Diphenyl-9H-purin-2-amine Scaffold. ACS Med. Chem. Lett. 2016, 7, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
  206. Li, Y.-L.; Rodgers, J.D. National Center for Biotechnology Information (2024). PubChem Patent Summary for US-9216984-B2, 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]octanenitrile and Heptanenitrile as JAK Inhibitors. United States. 22 December 2015. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-9216984-B2 (accessed on 25 February 2025).
  207. Su, W.-G.; Deng, W.; Li, J.; Ji, J. National Center for Biotechnology Information (2024). PubChem Patent Summary for US-9346810-B2, Pyrrolopyrimidine Compounds and Uses Thereof. United States. 24 May 2016. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-9346810-B2 (accessed on 25 February 2025).
  208. Brubaker, J.; Childers, M.L.; Christopher, M.; Close, J.T.; Katz, J.D. National Center for Biotechnology Information (2024). PubChem Patent Summary for US-9328099-B2, Cyanomethylpyrazole Carboxamides as Janus kinase Inhibitors. United States. 3 May 2016. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-9328099-B2 (accessed on 25 February 2025).
  209. Reddy, E.P.; Reddy, M.V.R. Substituted Pyrido[2,3-d]pyrimidin-7(8H)-ones and Therapeutic Uses Thereof. US8889696B2, 18 November 2014. [Google Scholar]
  210. Lam, B.; Arikawa, Y.; Cramlett, J.; Dong, Q.; de Jong, R.; Feher, V.; Grimshaw, C.E.; Farrell, P.J.; Hoffman, I.D.; Jennings, A.; et al. Discovery of TAK-659 an orally available investigational inhibitor of Spleen Tyrosine Kinase (SYK). Bioorg. Med. Chem. Lett. 2016, 26, 5947–5950. [Google Scholar] [CrossRef]
  211. Blomgren, P.; Chandrasekhar, J.; Di Paolo, J.A.; Fung, W.; Geng, G.; Ip, C.; Jones, R.; Kropf, J.E.; Lansdon, E.B.; Lee, S.; et al. Discovery of Lanraplenib (GS-9876): A Once-Daily Spleen Tyrosine Kinase Inhibitor for Autoimmune Diseases. ACS Med. Chem. Lett. 2020, 11, 506–513. [Google Scholar] [CrossRef]
  212. Abdel-Magid, A.F. Janus-Associated Kinase 1 (JAK1) Inhibitors as Potential Treatment for Immune Disorders. ACS Med. Chem. Lett. 2017, 8, 598–600. [Google Scholar] [CrossRef]
  213. Kempson, J.; Ovalle, D.; Guo, J.; Wrobleski, S.T.; Lin, S.; Spergel, S.H.; Duan, J.J.; Jiang, B.; Lu, Z.; Das, J.; et al. Discovery of highly potent, selective, covalent inhibitors of JAK3. Bioorg. Med. Chem. Lett. 2017, 27, 4622–4625. [Google Scholar] [CrossRef]
  214. Hanan, E.J.; Liang, J.; Wang, X.; Blake, R.A.; Blaquiere, N.; Staben, S.T. Monomeric Targeted Protein Degraders. J. Med. Chem. 2020, 63, 11330–11361. [Google Scholar] [CrossRef] [PubMed]
  215. Brameld, K.A.; Owens, T.D.; Verner, E.; Venetsanakos, E.; Bradshaw, J.M.; Phan, V.T.; Tam, D.; Leung, K.; Shu, J.; LaStant, J.; et al. Discovery of the Irreversible Covalent FGFR Inhibitor 8-(3-(4-Acryloylpiperazin-1-yl)propyl)-6-(2,6-dichloro-3,5-dimethoxyphenyl)-2-(methylamino)pyrido[2,3-d]pyrimidin-7(8H)-one (PRN1371) for the Treatment of Solid Tumors. J. Med. Chem. 2017, 60, 6516–6527. [Google Scholar] [CrossRef]
  216. Data for DCP Probe TP-030-2. Available online: https://www.ebi.ac.uk/chembl/explore/document/CHEMBL4507326 (accessed on 2 February 2023).
  217. Yao, L.; Mustafa, N.; Tan, E.C.; Poulsen, A.; Singh, P.; Duong-Thi, M.D.; Lee, J.X.T.; Ramanujulu, P.M.; Chng, W.J.; Yen, J.J.Y.; et al. Design and Synthesis of Ligand Efficient Dual Inhibitors of Janus Kinase (JAK) and Histone Deacetylase (HDAC) Based on Ruxolitinib and Vorinostat. J. Med. Chem. 2017, 60, 8336–8357. [Google Scholar] [CrossRef]
  218. Fischer, T.; Krüger, T.; Najjar, A.; Totzke, F.; Schächtele, C.; Sippl, W.; Ritter, C.; Hilgeroth, A. Discovery of novel substituted benzo-anellated 4-benzylamino pyrrolopyrimidines as dual EGFR and VEGFR2 inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 2708–2712. [Google Scholar] [CrossRef]
  219. Vazquez, M.L.; Kaila, N.; Strohbach, J.W.; Trzupek, J.D.; Brown, M.F.; Flanagan, M.E.; Mitton-Fry, M.J.; Johnson, T.A.; TenBrink, R.E.; Arnold, E.P.; et al. Identification of N-{cis-3-[Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]cyclobutyl}propane-1-sulfonamide (PF-04965842): A Selective JAK1 Clinical Candidate for the Treatment of Autoimmune Diseases. J. Med. Chem. 2018, 61, 1130–1152. [Google Scholar] [CrossRef] [PubMed]
  220. Brubaker, J.; Close, J.; Siu, T.; Smith, G.F.; Torres, L.E. Pyrazole Carboxamides as Janus Kinase Inhibitors. U.S. Patent US9394282B2, 19 July 2016. [Google Scholar]
  221. Juillerat-Jeanneret, L.; Aubert, J.D.; Mikulic, J.; Golshayan, D. Fibrogenic Disorders in Human Diseases: From Inflammation to Organ Dysfunction. J. Med. Chem. 2018, 61, 9811–9840. [Google Scholar] [CrossRef] [PubMed]
  222. Huang, Y.; Dong, G.; Li, H.; Liu, N.; Zhang, W.; Sheng, C. Discovery of Janus Kinase 2 (JAK2) and Histone Deacetylase (HDAC) Dual Inhibitors as a Novel Strategy for the Combinational Treatment of Leukemia and Invasive Fungal Infections. J. Med. Chem. 2018, 61, 6056–6074. [Google Scholar] [CrossRef]
  223. Grimster, N.P.; Anderson, E.; Alimzhanov, M.; Bebernitz, G.; Bell, K.; Chuaqui, C.; Deegan, T.; Ferguson, A.D.; Gero, T.; Harsch, A.; et al. Discovery and Optimization of a Novel Series of Highly Selective JAK1 Kinase Inhibitors. J. Med. Chem. 2018, 61, 5235–5244. [Google Scholar] [CrossRef]
  224. Chough, C.; Joung, M.; Lee, S.; Lee, J.; Kim, J.H.; Kim, B.M. Development of selective inhibitors for the treatment of rheumatoid arthritis: (R)-3-(3-(Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)pyrrolidin-1-yl)-3-oxopropanenitrile as a JAK1-selective inhibitor. Bioorg. Med. Chem. 2018, 26, 1495–1510. [Google Scholar] [CrossRef]
  225. Yu, T.; Zhang, Y.; Kerekes, A.D.; Tagat, J.R.; Doll, R.J.; Xiao, Y.; Esposite, S.; Hruza, A.; Belanger, D.B.; Voss, M.; et al. Discovery of a highly potent orally bioavailable imidazo-[1, 2-a]pyrazine Aurora inhibitor. Bioorg. Med. Chem. Lett. 2018, 28, 1397–1403. [Google Scholar] [CrossRef]
  226. El-Gamal, M.I.; Al-Ameen, S.K.; Al-Koumi, D.M.; Hamad, M.G.; Jalal, N.A.; Oh, C.H. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors. J. Med. Chem. 2018, 61, 5450–5466. [Google Scholar] [CrossRef] [PubMed]
  227. Wang, Y.; Huang, W.; Xin, M.; Chen, P.; Gui, L.; Zhao, X.; Zhu, X.; Luo, H.; Cong, X.; Wang, J.; et al. Discovery of potent anti-inflammatory 4-(4,5,6,7-tetrahydrofuro[3,2-c]pyridin-2-yl) pyrimidin-2-amines for use as Janus kinase inhibitors. Bioorg. Med. Chem. 2019, 27, 2592–2597. [Google Scholar] [CrossRef] [PubMed]
  228. Zheng, J.; Wu, J.; Ding, X.; Shen, H.C.; Zou, G. Small molecule approaches to treat autoimmune and inflammatory diseases (Part I): Kinase inhibitors. Bioorg. Med. Chem. Lett. 2021, 38, 127862. [Google Scholar] [CrossRef]
  229. Yao, L.; Ramanujulu, P.M.; Poulsen, A.; Ohlson, S.; Dymock, B.W. Merging of ruxolitinib and vorinostat leads to highly potent inhibitors of JAK2 and histone deacetylase 6 (HDAC6). Bioorg. Med. Chem. Lett. 2018, 28, 2636–2640. [Google Scholar] [CrossRef]
  230. Liu, Q.; Batt, D.G.; Chaudhry, C.; Lippy, J.S.; Pattoli, M.A.; Surti, N.; Xu, S.; Carter, P.H.; Burke, J.R.; Tino, J.A. Conversion of carbazole carboxamide based reversible inhibitors of Bruton’s tyrosine kinase (BTK) into potent, selective irreversible inhibitors in the carbazole, tetrahydrocarbazole, and a new 2,3-dimethylindole series. Bioorg. Med. Chem. Lett. 2018, 28, 3080–3084. [Google Scholar] [CrossRef] [PubMed]
  231. Pippione, A.C.; Sainas, S.; Federico, A.; Lupino, E.; Piccinini, M.; Kubbutat, M.; Contreras, J.M.; Morice, C.; Barge, A.; Ducime, A.; et al. N-Acetyl-3-aminopyrazoles block the non-canonical NF-kB cascade by selectively inhibiting NIK. Medchemcomm 2018, 9, 963–968. [Google Scholar] [CrossRef]
  232. Yin, L.; Li, H.; Liu, W.; Yao, Z.; Cheng, Z.; Zhang, H.; Zou, H. A highly potent CDK4/6 inhibitor was rationally designed to overcome blood brain barrier in gliobastoma therapy. Eur. J. Med. Chem. 2018, 144, 1–28. [Google Scholar] [CrossRef]
  233. Chough, C.; Lee, S.; Joung, M.; Lee, J.; Kim, J.H.; Kim, B.M. Design, synthesis and evaluation of (R)-3-(7-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-5-azaspiro[2.4]heptan-5-yl)-3-oxopropanenitrile as a JAK1-selective inhibitor. Medchemcomm 2018, 9, 477–489. [Google Scholar] [CrossRef]
  234. Chu-Farseeva, Y.Y.; Mustafa, N.; Poulsen, A.; Tan, E.C.; Yen, J.J.Y.; Chng, W.J.; Dymock, B.W. Design and synthesis of potent dual inhibitors of JAK2 and HDAC based on fusing the pharmacophores of XL019 and vorinostat. Eur. J. Med. Chem. 2018, 158, 593–619. [Google Scholar] [CrossRef]
  235. Zhang, K.; Ye, K.; Tang, H.; Qi, Z.; Wang, T.; Mao, J.; Zhang, X.; Jiang, S. Development and Therapeutic Implications of Tyrosine Kinase 2 Inhibitors. J. Med. Chem. 2023, 66, 4378–4416. [Google Scholar] [CrossRef]
  236. Henry, S.P.; Jorgensen, W.L. Progress on the Pharmacological Targeting of Janus Pseudokinases. J. Med. Chem. 2023, 66, 10959–10990. [Google Scholar] [CrossRef] [PubMed]
  237. Ge, Y.; Wang, C.; Song, S.; Huang, J.; Liu, Z.; Li, Y.; Meng, Q.; Zhang, J.; Yao, J.; Liu, K.; et al. Identification of highly potent BTK and JAK3 dual inhibitors with improved activity for the treatment of B-cell lymphoma. Eur. J. Med. Chem. 2018, 143, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
  238. Moslin, R.; Gardner, D.; Santella, J.; Zhang, Y.; Duncia, J.V.; Liu, C.; Lin, J.; Tokarski, J.S.; Strnad, J.; Pedicord, D.; et al. Identification of imidazo[1,2-. Medchemcomm 2017, 8, 700–712. [Google Scholar] [CrossRef]
  239. Noji, S.; Hara, Y.; Miura, T.; Yamanaka, H.; Maeda, K.; Hori, A.; Yamamoto, H.; Obika, S.; Inoue, M.; Hase, Y.; et al. Discovery of a Janus Kinase Inhibitor Bearing a Highly Three-Dimensional Spiro Scaffold: JTE-052 (Delgocitinib) as a New Dermatological Agent to Treat Inflammatory Skin Disorders. J. Med. Chem. 2020, 63, 7163–7185. [Google Scholar] [CrossRef]
  240. Li, Y.; Ye, T.; Xu, L.; Dong, Y.; Luo, Y.; Wang, C.; Han, Y.; Chen, K.; Qin, M.; Liu, Y.; et al. Discovery of 4-piperazinyl-2-aminopyrimidine derivatives as dual inhibitors of JAK2 and FLT3. Eur. J. Med. Chem. 2019, 181, 111590. [Google Scholar] [CrossRef]
  241. EUbOPEN. Selectivity Literature for EUbOPEN Chemogenomic Library. Available online: https://www.ebi.ac.uk/chembl/explore/document/CHEMBL5465560 (accessed on 2 July 2023).
  242. Miao, Q.; Ma, K.; Chen, D.; Wu, X.; Jiang, S. Targeting tropomyosin receptor kinase for cancer therapy. Eur. J. Med. Chem. 2019, 175, 129–148. [Google Scholar] [CrossRef] [PubMed]
  243. Moslin, R.; Zhang, Y.; Wrobleski, S.T.; Lin, S.; Mertzman, M.; Spergel, S.; Tokarski, J.S.; Strnad, J.; Gillooly, K.; McIntyre, K.W.; et al. Identification of N-Methyl Nicotinamide and N-Methyl Pyridazine-3-Carboxamide Pseudokinase Domain Ligands as Highly Selective Allosteric Inhibitors of Tyrosine Kinase 2 (TYK2). J. Med. Chem. 2019, 62, 8953–8972. [Google Scholar] [CrossRef]
  244. Bryan, M.C.; Rajapaksa, N.S. Kinase Inhibitors for the Treatment of Immunological Disorders: Recent Advances. J. Med. Chem. 2018, 61, 9030–9058. [Google Scholar] [CrossRef]
  245. Zhang, C.; Qi, W.; Li, Y.; Tang, M.; Yang, T.; Liu, K.; Chen, Y.; Deng, D.; Xiang, M.; Chen, L. Discovery of 3-(4-(2-((1H-Indol-5-yl)amino)-5-fluoropyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile Derivatives as Selective TYK2 Inhibitors for the Treatment of Inflammatory Bowel Disease. J. Med. Chem. 2021, 64, 1966–1988. [Google Scholar] [CrossRef]
  246. Shi, C.; Wang, Q.; Liao, X.; Ge, H.; Huo, G.; Zhang, L.; Chen, N.; Zhai, X.; Hong, Y.; Wang, L.; et al. Discovery of 6-(2-(dimethylamino)ethyl)-N-(5-fluoro-4-(4-fluoro-1-isopropyl-2-methyl-1H-benzo[d]imidazole-6-yl)pyrimidin-2-yl)-5,6,7,8-tetrahydro-1,6-naphthyridin-2-amine as a highly potent cyclin-dependent kinase 4/6 inhibitor for treatment of cancer. Eur. J. Med. Chem. 2019, 178, 352–364. [Google Scholar] [CrossRef]
  247. Liang, X.; Zang, J.; Li, X.; Tang, S.; Huang, M.; Geng, M.; Chou, C.J.; Li, C.; Cao, Y.; Xu, W.; et al. Discovery of Novel Janus Kinase (JAK) and Histone Deacetylase (HDAC) Dual Inhibitors for the Treatment of Hematological Malignancies. J. Med. Chem. 2019, 62, 3898–3923. [Google Scholar] [CrossRef]
  248. Liang, X.; Zang, J.; Zhu, M.; Gao, Q.; Wang, B.; Xu, W.; Zhang, Y. Design, Synthesis, and Antitumor Evaluation of 4-Amino-(1H)-pyrazole Derivatives as JAKs Inhibitors. ACS Med. Chem. Lett. 2016, 7, 950–955. [Google Scholar] [CrossRef]
  249. Bach, J.; Eastwood, P.; González, J.; Gómez, E.; Alonso, J.A.; Fonquerna, S.; Lozoya, E.; Orellana, A.; Maldonado, M.; Calaf, E.; et al. Identification of 2-Imidazopyridine and 2-Aminopyridone Purinones as Potent Pan-Janus Kinase (JAK) Inhibitors for the Inhaled Treatment of Respiratory Diseases. J. Med. Chem. 2019, 62, 9045–9060. [Google Scholar] [CrossRef] [PubMed]
  250. Tang, G.; Liu, L.; Wang, X.; Pan, Z. Discovery of 7H-pyrrolo[2,3-d]pyrimidine derivatives as selective covalent irreversible inhibitors of interleukin-2-inducible T-cell kinase (Itk). Eur. J. Med. Chem. 2019, 173, 167–183. [Google Scholar] [CrossRef]
  251. CoE, J.W.; Dehnhardt, C.M.; Jones, P.; Korturn, S.W.; Sabnis, Y.A.; Wakenhut, F.M.; Whitlock, G.A. JAK Inhibitors for the Treatment of Inflammatory Diseases. U.S. Patent US8895544B2, 25 November 2014. [Google Scholar]
  252. Garton, N.S.; Barker, M.D.; Davis, R.P.; Douault, C.; Hooper-Greenhill, E.; Jones, E.; Lewis, H.D.; Liddle, J.; Lugo, D.; McCleary, S.; et al. Optimisation of a novel series of potent and orally bioavailable azanaphthyridine SYK inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 4606–4612. [Google Scholar] [CrossRef] [PubMed]
  253. Leonard, K.A.; Madge, L.A.; Krawczuk, P.J.; Wang, A.; Kreutter, K.D.; Bacani, G.M.; Chai, W.; Smith, R.C.; Tichenor, M.S.; Harris, M.C.; et al. Discovery of a Gut-Restricted JAK Inhibitor for the Treatment of Inflammatory Bowel Disease. J. Med. Chem. 2020, 63, 2915–2929. [Google Scholar] [CrossRef] [PubMed]
  254. Shi, L.; Zhong, Z.; Li, X.; Zhou, Y.; Pan, Z. Discovery of an Orally Available Janus Kinase 3 Selective Covalent Inhibitor. J. Med. Chem. 2019, 62, 1054–1066. [Google Scholar] [CrossRef]
  255. National Center for Biotechnology Information. PubChem Substance Record for SID 395763535, S., Source: PATENTSCOPE (WIPO). 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/substance/395763535 (accessed on 18 December 2024).
  256. Yuan, X.; Wu, H.; Bu, H.; Zhou, J.; Zhang, H. Targeting the immunity protein kinases for immuno-oncology. Eur. J. Med. Chem. 2019, 163, 413–427. [Google Scholar] [CrossRef]
  257. Ritzén, A.; Sørensen, M.D.; Dack, K.N.; Greve, D.R.; Jerre, A.; Carnerup, M.A.; Rytved, K.A.; Bagger-Bahnsen, J. Fragment-Based Discovery of 6-Arylindazole JAK Inhibitors. ACS Med. Chem. Lett. 2016, 7, 641–646. [Google Scholar] [CrossRef]
  258. Fensome, A.; Ambler, C.M.; Arnold, E.; Banker, M.E.; Brown, M.F.; Chrencik, J.; Clark, J.D.; Dowty, M.E.; Efremov, I.V.; Flick, A.; et al. Dual Inhibition of TYK2 and JAK1 for the Treatment of Autoimmune Diseases: Discovery of (( S)-2,2-Difluorocyclopropyl)((1 R,5 S)-3-(2-((1-methyl-1 H-pyrazol-4-yl)amino)pyrimidin-4-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)methanone (PF-06700841). J. Med. Chem. 2018, 61, 8597–8612. [Google Scholar] [CrossRef]
  259. Chen, P.; Norris, D.; Das, J.; Spergel, S.H.; Wityak, J.; Leith, L.; Zhao, R.; Chen, B.C.; Pitt, S.; Pang, S.; et al. Discovery of novel 2-(aminoheteroaryl)-thiazole-5-carboxamides as potent and orally active Src-family kinase p56(Lck) inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 6061–6066. [Google Scholar] [CrossRef]
  260. Yang, T.; Hu, M.; Qi, W.; Yang, Z.; Tang, M.; He, J.; Chen, Y.; Bai, P.; Yuan, X.; Zhang, C.; et al. Discovery of Potent and Orally Effective Dual Janus Kinase 2/FLT3 Inhibitors for the Treatment of Acute Myelogenous Leukemia and Myeloproliferative Neoplasms. J. Med. Chem. 2019, 62, 10305–10320. [Google Scholar] [CrossRef]
  261. National Center for Biotechnology Information. PubChem Bioassay Record for AID 1791642, N.S.F.J., Source: ChEMBL. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/bioassay/1791642 (accessed on 25 December 2024).
  262. Lee, S.M.; Yoon, K.B.; Lee, H.J.; Kim, J.; Chung, Y.K.; Cho, W.J.; Mukai, C.; Choi, S.; Kang, K.W.; Han, S.Y.; et al. The discovery of 2,5-isomers of triazole-pyrrolopyrimidine as selective Janus kinase 2 (JAK2) inhibitors versus JAK1 and JAK3. Bioorg. Med. Chem. 2016, 24, 5036–5046. [Google Scholar] [CrossRef] [PubMed]
  263. Luo, Z.; Wang, L.; Fu, Z.; Shuai, B.; Luo, M.; Hu, G.; Chen, J.; Sun, J.; Wang, J.; Li, J.; et al. Discovery and optimization of selective RET inhibitors via scaffold hopping. Bioorg. Med. Chem. Lett. 2021, 47, 128149. [Google Scholar] [CrossRef] [PubMed]
  264. Egyed, A.; Bajusz, D.; Keserű, G.M. The impact of binding site waters on the activity/selectivity trade-off of Janus kinase 2 (JAK2) inhibitors. Bioorg. Med. Chem. 2019, 27, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
  265. Chen, Y.; Li, H.; Yen, R.; Heckrodt, T.J.; McMurtrie, D.; Singh, R.; Taylor, V.; Masuda, E.S.; Park, G.; Payan, D.G. Optimization of Pyrimidine Compounds as Potent JAK1 Inhibitors and the Discovery of R507 as a Clinical Candidate. ACS Med. Chem. Lett. 2022, 13, 1805–1811. [Google Scholar] [CrossRef]
  266. Liu, L.; Norman, M.H.; Lee, M.; Xi, N.; Siegmund, A.; Boezio, A.A.; Booker, S.; Choquette, D.; D’Angelo, N.D.; Germain, J.; et al. Structure-based design of novel class II c-Met inhibitors: 2. SAR and kinase selectivity profiles of the pyrazolone series. J. Med. Chem. 2012, 55, 1868–1897. [Google Scholar] [CrossRef]
  267. Schlapbach, A.; Feifel, R.; Hawtin, S.; Heng, R.; Koch, G.; Moebitz, H.; Revesz, L.; Scheufler, C.; Velcicky, J.; Waelchli, R.; et al. Pyrrolo-pyrimidones: A novel class of MK2 inhibitors with potent cellular activity. Bioorg. Med. Chem. Lett. 2008, 18, 6142–6146. [Google Scholar] [CrossRef]
  268. Bauer, D.; Whittington, D.A.; Coxon, A.; Bready, J.; Harriman, S.P.; Patel, V.F.; Polverino, A.; Harmange, J.C. Evaluation of indazole-based compounds as a new class of potent KDR/VEGFR-2 inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 4844–4848. [Google Scholar] [CrossRef]
  269. Zhou, H.; McGowan, M.A.; Lipford, K.; Christopher, M.; Fradera, X.; Witter, D.; Lesburg, C.A.; Li, C.; Methot, J.L.; Lampe, J.; et al. Discovery and optimization of heteroaryl piperazines as potent and selective PI3Kδ inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 126715. [Google Scholar] [CrossRef]
  270. Shah, R.R.; Redmond, J.M.; Mihut, A.; Menon, M.; Evans, J.P.; Murphy, J.A.; Bartholomew, M.A.; Coe, D.M. Hi-JAK-ing the ubiquitin system: The design and physicochemical optimisation of JAK PROTACs. Bioorg. Med. Chem. 2020, 28, 115326. [Google Scholar] [CrossRef] [PubMed]
  271. Zhu, Y.; Zheng, X.; Wang, C.; Sun, X.; Sun, H.; Ma, T.; Li, Y.; Liu, K.; Chen, L.; Ma, X. Synthesis and biological activity of thieno[3,2-d]pyrimidines as potent JAK3 inhibitors for the treatment of idiopathic pulmonary fibrosis. Bioorg. Med. Chem. 2020, 28, 115254. [Google Scholar] [CrossRef]
  272. Sasaki, Y.; Tokuhara, H.; Ohba, Y.; Okabe, A.; Nakayama, M.; Nakagawa, H.; Skene, R.; Hoffman, I.; Zou, H.; Yoshida, M. Efficient synthesis of tert-butyl 3-cyano-3-cyclopropyl-2-oxopyrrolidine-4-carboxylates: Highly functionalized 2-pyrrolidinone enabling access to novel macrocyclic Tyk2 inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 126963. [Google Scholar] [CrossRef]
  273. Lu, K.; Wu, W.; Zhang, C.; Liu, Z.; Xiao, B.; Yuan, Z.; Li, A.; Chen, D.; Zhai, X.; Jiang, Y. Discovery of triazolo [1,5-a] pyridine derivatives as novel JAK1/2 inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 127225. [Google Scholar] [CrossRef]
  274. Zhu, Y.; Ma, Y.; Zu, W.; Song, J.; Wang, H.; Zhong, Y.; Li, H.; Zhang, Y.; Gao, Q.; Kong, B.; et al. Identification of. J. Med. Chem. 2020, 63, 6748–6773. [Google Scholar] [CrossRef] [PubMed]
  275. Wang, X.; Xue, G.; Pan, Z. Design, synthesis and structure-activity relationship of indolylindazoles as potent and selective covalent inhibitors of interleukin-2 inducible T-cell kinase (ITK). Eur. J. Med. Chem. 2020, 187, 111918. [Google Scholar] [CrossRef]
  276. Gerstenberger, B.S.; Ambler, C.; Arnold, E.P.; Banker, M.E.; Brown, M.F.; Clark, J.D.; Dermenci, A.; Dowty, M.E.; Fensome, A.; Fish, S.; et al. Discovery of Tyrosine Kinase 2 (TYK2) Inhibitor (PF-06826647) for the Treatment of Autoimmune Diseases. J. Med. Chem. 2020, 63, 13561–13577. [Google Scholar] [CrossRef] [PubMed]
  277. Zak, M.; Hanan, E.J.; Lupardus, P.; Brown, D.G.; Robinson, C.; Siu, M.; Lyssikatos, J.P.; Romero, F.A.; Zhao, G.; Kellar, T.; et al. Discovery of a class of highly potent Janus Kinase 1/2 (JAK1/2) inhibitors demonstrating effective cell-based blockade of IL-13 signaling. Bioorg. Med. Chem. Lett. 2019, 29, 1522–1531. [Google Scholar] [CrossRef]
  278. Baillache, D.J.; Unciti-Broceta, A. Recent developments in anticancer kinase inhibitors based on the pyrazolo[3,4-d]pyrimidine scaffold. RSC Med. Chem. 2020, 11, 1112–1135. [Google Scholar] [CrossRef]
  279. Thoma, G.; Blanz, J.; Bühlmayer, P.; Drückes, P.; Kittelmann, M.; Smith, A.B.; van Eis, M.; Vangrevelinghe, E.; Zerwes, H.G.; Che, J.J.; et al. Syk inhibitors with high potency in presence of blood. Bioorg. Med. Chem. Lett. 2014, 24, 2278–2282. [Google Scholar] [CrossRef]
  280. Luo, L.; Jia, J.J.; Zhong, Q.; Zhong, X.; Zheng, S.; Wang, G.; He, L. Synthesis and anticancer activity evaluation of naphthalene-substituted triazole spirodienones. Eur. J. Med. Chem. 2021, 213, 113039. [Google Scholar] [CrossRef] [PubMed]
  281. Yang, T.; Hu, M.; Chen, Y.; Xiang, M.; Tang, M.; Qi, W.; Shi, M.; He, J.; Yuan, X.; Zhang, C.; et al. N-(Pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-amine Derivatives as Selective Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms. J. Med. Chem. 2020, 63, 14921–14936. [Google Scholar] [CrossRef] [PubMed]
  282. Matheson, C.J.; Coxon, C.R.; Bayliss, R.; Boxall, K.; Carbain, B.; Fry, A.M.; Hardcastle, I.R.; Harnor, S.J.; Mas-Droux, C.; Newell, D.R.; et al. 2-Arylamino-6-ethynylpurines are cysteine-targeting irreversible inhibitors of Nek2 kinase. RSC Med. Chem. 2020, 11, 707–731. [Google Scholar] [CrossRef]
  283. Liu, C.; Lin, J.; Langevine, C.; Smith, D.; Li, J.; Tokarski, J.S.; Khan, J.; Ruzanov, M.; Strnad, J.; Zupa-Fernandez, A.; et al. Discovery of BMS-986202: A Clinical Tyk2 Inhibitor that Binds to Tyk2 JH2. J. Med. Chem. 2021, 64, 677–694. [Google Scholar] [CrossRef]
  284. Zheng, Y.G.; Wang, J.A.; Meng, L.; Pei, X.; Zhang, L.; An, L.; Li, C.L.; Miao, Y.L. Design, synthesis, biological activity evaluation of 3-(4-phenyl-1H-imidazol-2-yl)-1H-pyrazole derivatives as potent JAK 2/3 and aurora A/B kinases multi-targeted inhibitors. Eur. J. Med. Chem. 2021, 209, 112934. [Google Scholar] [CrossRef]
  285. Sanachai, K.; Aiebchun, T.; Mahalapbutr, P.; Seetaha, S.; Tabtimmai, L.; Maitarad, P.; Xenikakis, I.; Geronikaki, A.; Choowongkomon, K.; Rungrotmongkol, T. Discovery of novel JAK2 and EGFR inhibitors from a series of thiazole-based chalcone derivatives. RSC Med. Chem. 2021, 12, 430–438. [Google Scholar] [CrossRef] [PubMed]
  286. Wu, L.; Zhang, C.; He, C.; Qian, D.; Lu, L.; Sun, Y.; Xu, M.; Zhuo, J.; Liu, P.C.C.; Klabe, R.; et al. Discovery of Pemigatinib: A Potent and Selective Fibroblast Growth Factor Receptor (FGFR) Inhibitor. J. Med. Chem. 2021, 64, 10666–10679. [Google Scholar] [CrossRef]
  287. Xu, P.; Shen, P.; Wang, H.; Qin, L.; Ren, J.; Sun, Q.; Ge, R.; Bian, J.; Zhong, Y.; Li, Z.; et al. Discovery of imidazopyrrolopyridines derivatives as novel and selective inhibitors of JAK2. Eur. J. Med. Chem. 2021, 218, 113394. [Google Scholar] [CrossRef]
  288. Rao, D.; Li, H.; Ren, X.; Sun, Y.; Wen, C.; Zheng, M.; Huang, H.; Tang, W.; Xu, S. Discovery of a potent, selective, and covalent ZAP-70 kinase inhibitor. Eur. J. Med. Chem. 2021, 219, 113393. [Google Scholar] [CrossRef]
  289. Howard, S.; Berdini, V.; Boulstridge, J.A.; Carr, M.G.; Cross, D.M.; Curry, J.; Devine, L.A.; Early, T.R.; Fazal, L.; Gill, A.L.; et al. Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J. Med. Chem. 2009, 52, 379–388. [Google Scholar] [CrossRef]
  290. Pollard, J.R.; Mortimore, M. Discovery and development of aurora kinase inhibitors as anticancer agents. J. Med. Chem. 2009, 52, 2629–2651. [Google Scholar] [CrossRef]
  291. Yang, T.; Cui, X.; Tang, M.; Qi, W.; Zhu, Z.; Shi, M.; Yang, L.; Pei, H.; Zhang, W.; Xie, L.; et al. Identification of a Novel 2,8-Diazaspiro[4.5]decan-1-one Derivative as a Potent and Selective Dual TYK2/JAK1 Inhibitor for the Treatment of Inflammatory Bowel Disease. J. Med. Chem. 2022, 65, 3151–3172. [Google Scholar] [CrossRef]
  292. Liang, X.; Tang, S.; Liu, X.; Liu, Y.; Xu, Q.; Wang, X.; Saidahmatov, A.; Li, C.; Wang, J.; Zhou, Y.; et al. Discovery of Novel Pyrrolo[2,3-. J. Med. Chem. 2022, 65, 1243–1264. [Google Scholar] [CrossRef] [PubMed]
  293. Wellaway, C.R.; Baldwin, I.R.; Bamborough, P.; Barker, D.; Bartholomew, M.A.; Chung, C.W.; Dümpelfeld, B.; Evans, J.P.; Fazakerley, N.J.; Homes, P.; et al. Investigation of Janus Kinase (JAK) Inhibitors for Lung Delivery and the Importance of Aldehyde Oxidase Metabolism. J. Med. Chem. 2022, 65, 633–664. [Google Scholar] [CrossRef] [PubMed]
  294. Wu, S.; Liao, M.; Li, M.; Sun, M.; Xi, N.; Zeng, Y. Structure-based discovery of potent inhibitors of Axl: Design, synthesis, and biological evaluation. RSC Med. Chem. 2022, 13, 1246–1264. [Google Scholar] [CrossRef] [PubMed]
  295. Mao, W.; Wu, H.; Guo, Q.; Zheng, X.; Wei, C.; Liao, Y.; Shen, L.; Mi, J.; Li, J.; Chen, S.; et al. Synthesis and evaluation of hydrazinyl-containing pyrrolo[2,3-d]pyrimidine series as potent, selective and oral JAK1 inhibitors for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett. 2022, 74, 128905. [Google Scholar] [CrossRef]
  296. Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur. J. Med. Chem. 2017, 142, 328–375. [Google Scholar] [CrossRef]
  297. Asati, V.; Anant, A.; Patel, P.; Kaur, K.; Gupta, G.D. Pyrazolopyrimidines as anticancer agents: A review on structural and target-based approaches. Eur. J. Med. Chem. 2021, 225, 113781. [Google Scholar] [CrossRef]
  298. Soltan, O.M.; Shoman, M.E.; Abdel-Aziz, S.A.; Narumi, A.; Konno, H.; Abdel-Aziz, M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur. J. Med. Chem. 2021, 225, 113768. [Google Scholar] [CrossRef]
  299. Yamagishi, H.; Inoue, T.; Nakajima, Y.; Maeda, J.; Tominaga, H.; Usuda, H.; Hondo, T.; Moritomo, A.; Nakamori, F.; Ito, M.; et al. Discovery of tricyclic dipyrrolopyridine derivatives as novel JAK inhibitors. Bioorg. Med. Chem. 2017, 25, 5311–5326. [Google Scholar] [CrossRef]
  300. Kiss, R.; Polgár, T.; Kirabo, A.; Sayyah, J.; Figueroa, N.C.; List, A.F.; Sokol, L.; Zuckerman, K.S.; Gali, M.; Bisht, K.S.; et al. Identification of a novel inhibitor of JAK2 tyrosine kinase by structure-based virtual screening. Bioorg. Med. Chem. Lett. 2009, 19, 3598–3601. [Google Scholar] [CrossRef] [PubMed]
  301. Wilson, L.J.; Malaviya, R.; Yang, C.; Argentieri, R.; Wang, B.; Chen, X.; Murray, W.V.; Cavender, D. Synthetic staurosporines via a ring closing metathesis strategy as potent JAK3 inhibitors and modulators of allergic responses. Bioorg. Med. Chem. Lett. 2009, 19, 3333–3338. [Google Scholar] [CrossRef]
  302. Ioannidis, S.; Lamb, M.L.; Davies, A.M.; Almeida, L.; Su, M.; Bebernitz, G.; Ye, M.; Bell, K.; Alimzhanov, M.; Zinda, M. Discovery of pyrazol-3-ylamino pyrazines as novel JAK2 inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 6524–6528. [Google Scholar] [CrossRef] [PubMed]
  303. Ledeboer, M.W.; Pierce, A.C.; Duffy, J.P.; Gao, H.; Messersmith, D.; Salituro, F.G.; Nanthakumar, S.; Come, J.; Zuccola, H.J.; Swenson, L.; et al. 2-Aminopyrazolo[1,5-a]pyrimidines as potent and selective inhibitors of JAK2. Bioorg. Med. Chem. Lett. 2009, 19, 6529–6533. [Google Scholar] [CrossRef] [PubMed]
  304. Wang, T.; Ledeboer, M.W.; Duffy, J.P.; Salituro, F.G.; Pierce, A.C.; Zuccola, H.J.; Block, E.; Shlyakter, D.; Hogan, J.K.; Bennani, Y.L. A novel chemotype of kinase inhibitors: Discovery of 3,4-ring fused 7-azaindoles and deazapurines as potent JAK2 inhibitors. Bioorg. Med. Chem. Lett. 2010, 20, 153–156. [Google Scholar] [CrossRef]
  305. Wei, H.; Myers, M.R.; Hanney, B.; Spada, A.P.; Bilder, G.; Galzcinski, H.; Amin, D.; Needle, S.; Page, K.; Jayyosi, Z.; et al. Potent Quinoxaline-Based Inhibitors of PDGF Receptor Tyrosine Kinase Activity. Part 2: The Synthesis and Biological Activities of RPR127963, an Orally Bioavailable Inhibitor. Bioorg. Med. Chem. Lett. 2003, 13, 3097–3100. [Google Scholar] [CrossRef]
  306. Serafim, R.A.M.; Sorrell, F.J.; Berger, B.T.; Collins, R.J.; Vasconcelos, S.N.S.; Massirer, K.B.; Knapp, S.; Bennett, J.; Fedorov, O.; Patel, H.; et al. Discovery of a Potent Dual SLK/STK10 Inhibitor Based on a Maleimide Scaffold. J. Med. Chem. 2021, 64, 13259–13278. [Google Scholar] [CrossRef]
  307. Ruel, R.; Thibeault, C.; L’Heureux, A.; Martel, A.; Cai, Z.W.; Wei, D.; Qian, L.; Barrish, J.C.; Mathur, A.; D’Arienzo, C.; et al. Discovery and preclinical studies of 5-isopropyl-6-(5-methyl-1,3,4-oxadiazol-2-yl)-N-(2-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl)pyrrolo[2,1-f][1,2,4]triazin-4-amine (BMS-645737), an in vivo active potent VEGFR-2 inhibitor. Bioorg. Med. Chem. Lett. 2008, 18, 2985–2989. [Google Scholar] [CrossRef]
  308. Das, J.; Moquin, R.V.; Pitt, S.; Zhang, R.; Shen, D.R.; McIntyre, K.W.; Gillooly, K.; Doweyko, A.M.; Sack, J.S.; Zhang, H.; et al. Pyrazolo-pyrimidines: A novel heterocyclic scaffold for potent and selective p38 alpha inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 2652–2657. [Google Scholar] [CrossRef]
  309. Bhide, R.S.; Cai, Z.W.; Zhang, Y.Z.; Qian, L.; Wei, D.; Barbosa, S.; Lombardo, L.J.; Borzilleri, R.M.; Zheng, X.; Wu, L.I.; et al. Discovery and preclinical studies of (R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5- methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan- 2-ol (BMS-540215), an in vivo active potent VEGFR-2 inhibitor. J. Med. Chem. 2006, 49, 2143–2146. [Google Scholar] [CrossRef]
  310. Borzilleri, R.M.; Bhide, R.S.; Barrish, J.C.; D’Arienzo, C.J.; Derbin, G.M.; Fargnoli, J.; Hunt, J.T.; Jeyaseelan, R.; Kamath, A.; Kukral, D.W.; et al. Discovery and evaluation of N-cyclopropyl- 2,4-difluoro-5-((2-(pyridin-2-ylamino)thiazol-5-ylmethyl)amino)benzamide (BMS-605541), a selective and orally efficacious inhibitor of vascular endothelial growth factor receptor-2. J. Med. Chem. 2006, 49, 3766–3769. [Google Scholar] [CrossRef] [PubMed]
  311. Liu, C.; Wrobleski, S.T.; Lin, J.; Ahmed, G.; Metzger, A.; Wityak, J.; Gillooly, K.M.; Shuster, D.J.; McIntyre, K.W.; Pitt, S.; et al. 5-Cyanopyrimidine derivatives as a novel class of potent, selective, and orally active inhibitors of p38alpha MAP kinase. J. Med. Chem. 2005, 48, 6261–6270. [Google Scholar] [CrossRef] [PubMed]
  312. Sugimoto, Y.; Sawant, D.B.; Fisk, H.A.; Mao, L.; Li, C.; Chettiar, S.; Li, P.K.; Darby, M.V.; Brueggemeier, R.W. Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer. Bioorg. Med. Chem. 2017, 25, 2156–2166. [Google Scholar] [CrossRef] [PubMed]
  313. Poli, G.; Seidel, T.; Langer, T. Conformational Sampling of Small Molecules With iCon: Performance Assessment in Comparison With OMEGA. Front. Chem. 2018, 6, 229. [Google Scholar] [CrossRef]
  314. Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef]
  315. Chrencik, J.E.; Patny, A.; Leung, I.K.; Korniski, B.; Emmons, T.L.; Hall, T.; Weinberg, R.A.; Gormley, J.A.; Williams, J.M.; Day, J.E.; et al. Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. J. Mol. Biol. 2010, 400, 413–433. [Google Scholar] [CrossRef]
  316. Tsui, V.; Gibbons, P.; Ultsch, M.; Mortara, K.; Chang, C.; Blair, W.; Pulk, R.; Stanley, M.; Starovasnik, M.; Williams, D.; et al. A new regulatory switch in a JAK protein kinase. Proteins 2011, 79, 393–401. [Google Scholar] [CrossRef]
Figure 6. ROC curves of the overall models, including the AUC. Panel (a) shows JAK1, panel (b) shows JAK2, panel (c) shows JAK3, and panel (d) shows TYK2.
Figure 6. ROC curves of the overall models, including the AUC. Panel (a) shows JAK1, panel (b) shows JAK2, panel (c) shows JAK3, and panel (d) shows TYK2.
Molecules 30 02183 g006
Figure 7. Identified pesticides from the virtual screening that are listed as qualitatively detected in the Human Metabolome Database. The hit list included fungicides (Section (A)), such as boscalid (17), bupirimate (18), isavuconazole (19), mepanipyrim (20), ravuconazole, (21), thiophanate-methyl (22). (Section (B)) comprises herbicides, including metsulfuron-methyl (23), tribenuron (24), tribenuron-methyl (25), cyanazine (26), penoxsulam (27), phenmedipham (28), diflufenican (29), florasulam (30), flufenoxuron (31), and isoxaben (32). (Section (C)) represents metabolites, such as 3,5,6-trichloro-2-pyridinol (33), deisopropylatrazine (34), and desethylterbutylazine (35). (Section (D)) includes insecticides, such as fenazaquin (36), pymetrozine (37), and terbutryn (38).
Figure 7. Identified pesticides from the virtual screening that are listed as qualitatively detected in the Human Metabolome Database. The hit list included fungicides (Section (A)), such as boscalid (17), bupirimate (18), isavuconazole (19), mepanipyrim (20), ravuconazole, (21), thiophanate-methyl (22). (Section (B)) comprises herbicides, including metsulfuron-methyl (23), tribenuron (24), tribenuron-methyl (25), cyanazine (26), penoxsulam (27), phenmedipham (28), diflufenican (29), florasulam (30), flufenoxuron (31), and isoxaben (32). (Section (C)) represents metabolites, such as 3,5,6-trichloro-2-pyridinol (33), deisopropylatrazine (34), and desethylterbutylazine (35). (Section (D)) includes insecticides, such as fenazaquin (36), pymetrozine (37), and terbutryn (38).
Molecules 30 02183 g007
Figure 8. Exemplary virtual hits for JAK1. (a) Identified insecticide 36 (pymetrozine) in complex with model JAK1_SB1. (b) Identified herbicide 30 (florasulam) in model JAK1_LB1. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Figure 8. Exemplary virtual hits for JAK1. (a) Identified insecticide 36 (pymetrozine) in complex with model JAK1_SB1. (b) Identified herbicide 30 (florasulam) in model JAK1_LB1. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Molecules 30 02183 g008
Figure 9. Exemplary virtual hits for JAK2. (a) Identified insecticide 27 (cynacine) in complex with model JAK2_SB1. (b) The fungicide 17 (boscalid) mapping model JAK2_LB1. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Figure 9. Exemplary virtual hits for JAK2. (a) Identified insecticide 27 (cynacine) in complex with model JAK2_SB1. (b) The fungicide 17 (boscalid) mapping model JAK2_LB1. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Molecules 30 02183 g009
Figure 10. Exemplary virtual hits for JAK3. (a) The identified herbicide 26 (cyanazine) in complex with model JAK3_SB1. (b) The fungicide 20 (mepanipyrim) in model JAK3_LB1. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Figure 10. Exemplary virtual hits for JAK3. (a) The identified herbicide 26 (cyanazine) in complex with model JAK3_SB1. (b) The fungicide 20 (mepanipyrim) in model JAK3_LB1. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Molecules 30 02183 g010
Figure 11. Exemplary virtual hits for TYK2. (a) The identified fungicide 18 (bupirimate) fitting into model TYK2_SB1. (b) The herbicide 28 (diflufenican) mapping to model TYK2_LB1. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Figure 11. Exemplary virtual hits for TYK2. (a) The identified fungicide 18 (bupirimate) fitting into model TYK2_SB1. (b) The herbicide 28 (diflufenican) mapping to model TYK2_LB1. Chemical features are color-coded: HBDs—green, HBAs red, HCs—yellow, AIs—blue.
Molecules 30 02183 g011
Table 1. Theoretical evaluation results of the overall generated pharmacophore models of JAK1, JAK2, JAK3, and TYK2 focused on model EF, YoA, along with TPs, FPs, TNs, and FNs.
Table 1. Theoretical evaluation results of the overall generated pharmacophore models of JAK1, JAK2, JAK3, and TYK2 focused on model EF, YoA, along with TPs, FPs, TNs, and FNs.
Overall EvaluationJAK1
TOTAL
(8 Models)
JAK2
TOTAL
(10 Models)
JAK3
TOTAL
(10 Models)
TYK2
TOTAL
(9 Models)
active hits/TPs9516711668
inactive hits015240
decoy hits7975292136
FPs7990294176
TNs3232279942472935
number of ACs in
database
10518512975
number of IAs in
database
48494261
number of DCs in
database
3263284044993050
Model Accuracy0.970.960.930.94
YoA0.550.650.280.28
EF17.7610.8010.2411.84
sensitivity0.900.900.860.91
specificity1.000.991.001.00
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Fischer, F.; Temml, V.; Schuster, D. Pharmacophore Modeling of Janus Kinase Inhibitors: Tools for Drug Discovery and Exposition Prediction. Molecules 2025, 30, 2183. https://doi.org/10.3390/molecules30102183

AMA Style

Fischer F, Temml V, Schuster D. Pharmacophore Modeling of Janus Kinase Inhibitors: Tools for Drug Discovery and Exposition Prediction. Molecules. 2025; 30(10):2183. https://doi.org/10.3390/molecules30102183

Chicago/Turabian Style

Fischer, Florian, Veronika Temml, and Daniela Schuster. 2025. "Pharmacophore Modeling of Janus Kinase Inhibitors: Tools for Drug Discovery and Exposition Prediction" Molecules 30, no. 10: 2183. https://doi.org/10.3390/molecules30102183

APA Style

Fischer, F., Temml, V., & Schuster, D. (2025). Pharmacophore Modeling of Janus Kinase Inhibitors: Tools for Drug Discovery and Exposition Prediction. Molecules, 30(10), 2183. https://doi.org/10.3390/molecules30102183

Article Metrics

Back to TopTop