Constructing Neuron-like Structured NiS2/MOF Composites with Enhanced Regulation of Electron Transport and Active Sites for Oxygen Evolution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication Strategy
2.2. Preparation and Characterization of MOF/HT
2.2.1. Characterization of MOF/HT
2.2.2. OER Performance of MOF/HT
2.3. Preparation and Characterization of MOF/HT-S
2.3.1. Characterization of MOF/HT-S
2.3.2. OER Performance of MOF/HT-S
3. Experimental Section
3.1. Preparation of HT
3.2. Preparation of MOF/HT, MOF/H, and MOF/T
3.3. Preparation of Sulfide Derivatives of MOF/HT, MOF/H, and MOF/T
3.4. Characterization
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trancik, J.E. Renewable Energy: Back the Renewables Boom. Nature 2014, 507, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Santra, S.; Das, D.; Das, N.S.; Nanda, K.K. An Efficient on Board Metal-Free Nanocatalyst for Controlled Room Temperature Hydrogen Production. Chem. Sci. 2017, 8, 2994–3001. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A. A Realizable Renewable Energy Future. Science 1999, 285, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction. Nat. Mater. 2011, 10, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Sakimoto, K.K.; Hong, D.; Yang, P. Artificial Photosynthesis for Sustainable Fuel and Chemical Production. Angew. Chem. Int. Ed. 2015, 54, 3259–3266. [Google Scholar] [CrossRef] [PubMed]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef]
- Ci, S.; Mao, S.; Hou, Y.; Cui, S.; Kim, H.; Ren, R.; Wen, Z.; Chen, J. Rational Design of Mesoporous Nife-Alloy-Based Hybrids for Oxygen Conversion Electrocatalysis. J. Mater. Chem. A 2015, 3, 7986–7993. [Google Scholar] [CrossRef]
- Barman, B.K.; Das, D.; Nanda, K.K. Facile Synthesis of Ultrafine Ru Nanocrystal Supported N-Doped Graphene as an Exceptional Hydrogen Evolution Electrocatalyst in Both Alkaline and Acidic Media. Sustain. Energy Fuels 2017, 1, 1028–1033. [Google Scholar] [CrossRef]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Xu, X.; Gu, X.; Huang, C.; Wei, W.; Shao, Z.; Ni, B.J.; Chen, H. Reconstructed anti-corrosive and active surface on hierarchically porous carbonized wood for efficient overall seawater electrolysis. Sci. Bull. 2024, 69, 2337–2341. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, V.; Jones, T.E.; Wrabetz, S.; Massué, C.; Velasco Vélez, J.J.; Arrigo, R.; Scherzer, M.; Piccinin, S.; Hävecker, M.; Knop-Gericke, A.; et al. Reactive Oxygen Species in Iridium-Based Oer Catalysts. Chem. Sci. 2016, 7, 6791–6795. [Google Scholar] [CrossRef]
- Pei, J.; Mao, J.; Liang, X.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. IrCu Nanoframes: One-Pot Synthesis and Efficient Electrocatalysts for Oxygen Evolution Reaction. Chem. Commun. 2016, 52, 3793–3796. [Google Scholar] [CrossRef] [PubMed]
- Downes, C.A.; Marinescu, S.C. Electrocatalytic Metal–Organic Frameworks for Energy Applications. ChemSusChem 2017, 10, 4374–4392. [Google Scholar] [CrossRef]
- Xu, X.; Sun, H.; Jiang, S.P.; Shao, Z. Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 2021, 1, 460–481. [Google Scholar] [CrossRef]
- Lin, X.; Li, X.; Shi, L.; Ye, F.; Liu, F.; Liu, D. In Situ Electrochemical Restructuring B-Doped Metal–Organic Frameworks as Efficient OER Electrocatalysts for Stable Anion Exchange Membrane Water Electrolysis. Small 2024, 20, 2308517. [Google Scholar] [CrossRef]
- Hong, Q.; Wang, Y.; Wang, R.; Chen, Z.; Yang, H.; Yu, K.; Liu, Y.; Huang, H.; Kang, Z.; Menezes, P.W. In Situ Coupling of Carbon Dots with Co-ZIF Nanoarrays Enabling Highly Efficient Oxygen Evolution Electrocatalysis. Small 2023, 19, 2206723. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Zhao, X.; Su, H.; Tang, F.; Che, W.; Zhang, H.; Liu, Q. Lattice-Strained Metal-Organic-Framework Arrays for Bifunctional Oxygen Electrocatalysis. Nat. Energy 2019, 4, 115–122. [Google Scholar] [CrossRef]
- Cheon, W.S.; Bu, J.; Jung, S.; Yang, J.Y.; Choi, S.; Kim, J.; Baek, J.H.; Park, S.; Lee, M.K.; Jun, S.E. Enhanced oxygen evolution reaction of 2-dimensional metal-organic frameworks with tunable nitrogen functionalities by ion beam sputtering. Chem. Eng. J. 2024, 489, 151004. [Google Scholar] [CrossRef]
- Li, Q.; Guo, J.; Zhu, H.; Yan, F. Space-Confined Synthesis of ZIF-67 Nanoparticles in Hollow Carbon Nanospheres for CO2 Adsorption. Small 2019, 15, e1804874. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Ni, T.; Zhang, Z.; Zhou, J.; Zhang, S.; Chu, L.; Dai, S.; Wang, H.; Huang, M. Reinforcing built-in electric field via weakening metal–oxygen covalency within MOFs-based heterointerface for robust oxygen evolution reaction. Chem. Eng. J. 2024, 495, 153464. [Google Scholar] [CrossRef]
- Wang, Q.; Astruc, D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120, 1438–1511. [Google Scholar] [CrossRef]
- Lu, X.F.; Xia, B.Y.; Zang, S.Q.; Lou, X.W.D. Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2020, 59, 4634–4650. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Sun, W.; Lv, L.P.; Kong, S.; Wang, Y. Microwave-Assisted Morphology Evolution of Fe-Based Metal–Organic Frameworks and Their Derived Fe2O3 Nanostructures for Li-Ion Storage. ACS Nano 2017, 11, 4198–4205. [Google Scholar]
- Guo, Y.L.; Zhou, Y.; Nan, Y.; Li, B.; Song, X. Ni-Based Nanoparticle-Embedded N Doped Carbon Nanohorns Derived from Double Core-Shell CNH@PDA@NiMOFs for Oxygen Electrocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 12743–12754. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.L.; Zhou, Y.; Song, X. The Synergistic Effect of NiCo Nanoparticles and Metal Organic Framework: Enhancing the Oxygen Evolution Reaction of Carbon Nanohorn-Based Catalysts. J. Alloys Compd. 2021, 885, 160889. [Google Scholar]
- Yu, J.; Zhang, T.; Xing, C.; Li, X.; Li, X.; Wu, B.; Li, Y. Enhanced Oxygen Evolution Catalytic Activity of NiS2 by Coupling with Ferrous Phosphite and Phosphide. Sustain. Energy Fuels 2021, 5, 1801–1808. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Ge, L.; Chen, Y.; Mao, X.; Guan, D.; Li, M.; Zhong, Y.; Hu, Z.; Peterson, V.K.; et al. High-Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small 2021, 17, 2101573. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Q.; Shao, R.; Ding, J.; Liu, J.; Xu, W.; Wang, Y. Green synthesis of MOF/CNT gels via in-situ physical mixing strategy toward quasi-solid-state Li-ion hybrid capacitor. J. Energy Storage 2024, 86, 111156. [Google Scholar] [CrossRef]
- Li, Y.W.; Zhang, W.J.; Li, J.; Ma, H.Y.; Du, H.M.; Li, D.C.; Wang, S.N.; Zhao, J.S.; Dou, J.M.; Xu, L. Fe-MOF-Derived Efficient ORR/OER Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries. ACS Appl. Mater. Interfaces 2020, 12, 44710–44719. [Google Scholar] [CrossRef]
- Xie, A.; Du, J.; Tao, F.; Tao, Y.; Xiong, Z.; Luo, S.; Li, X.; Yao, C. Three-dimensional graphene surface-mounted nickel-based metal organic framework for oxygen evolution reaction. Electrochim. Acta 2019, 305, 338–348. [Google Scholar] [CrossRef]
- Li, Q.; Wang, D.; Han, C.; Ma, X.; Lu, Q.; Xing, Z.; Yang, X. Construction of amorphous interface in an interwoven NiS/NiS2 structure for enhanced overall water splitting. J. Mater. Chem. A 2018, 6, 8233–8237. [Google Scholar] [CrossRef]
- Wen, F.; Pang, L.; Zhang, T.; Huang, X.; Xu, Y.; Li, Y. Fe doped NiS2 derived from metal-organic framework embedded into g-C3N4 for efficiently oxygen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 33525–33536. [Google Scholar] [CrossRef]
Sample | η10 | Substrate | Electrolyte | Ref. |
---|---|---|---|---|
MOF/HT | 289 | CFP | 1.0 M KOH | This research |
NiMOF/HT-S | 180 | CFP | 1.0 M KOH | This research |
Ni MOF(BDC) | 480 | Glassy carbon | 0.1 M KOH | [31] |
3D Gr/Ni-MOF | 370 | Glassy carbon | 0.1 M KOH | [31] |
NiS/NiS2 | 416 | Glassy carbon | 1.0 M KOH | [32] |
MOF-derived Fe–NiS2@g-C3N4 composite | 280 | Glassy carbon | 1.0 M KOH | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhou, D.; Huang, Y.; Song, X.; He, W. Constructing Neuron-like Structured NiS2/MOF Composites with Enhanced Regulation of Electron Transport and Active Sites for Oxygen Evolution. Molecules 2025, 30, 80. https://doi.org/10.3390/molecules30010080
Guo Y, Zhou D, Huang Y, Song X, He W. Constructing Neuron-like Structured NiS2/MOF Composites with Enhanced Regulation of Electron Transport and Active Sites for Oxygen Evolution. Molecules. 2025; 30(1):80. https://doi.org/10.3390/molecules30010080
Chicago/Turabian StyleGuo, Yanli, Di Zhou, Yanyan Huang, Xiaolong Song, and Wei He. 2025. "Constructing Neuron-like Structured NiS2/MOF Composites with Enhanced Regulation of Electron Transport and Active Sites for Oxygen Evolution" Molecules 30, no. 1: 80. https://doi.org/10.3390/molecules30010080
APA StyleGuo, Y., Zhou, D., Huang, Y., Song, X., & He, W. (2025). Constructing Neuron-like Structured NiS2/MOF Composites with Enhanced Regulation of Electron Transport and Active Sites for Oxygen Evolution. Molecules, 30(1), 80. https://doi.org/10.3390/molecules30010080