Advances in Surface-Enhanced Raman Spectroscopy for Therapeutic Drug Monitoring
Abstract
1. Introduction
2. SERS Substrates for TDM
2.1. Colloidal Plasmonic Nanoparticles
2.2. Composite Suspension
2.3. Solid Substrates
3. Emerging Strategies for SERS in TDM
3.1. Digital Colloid-Enhanced Raman Spectroscopy
3.2. Enrichment–Detection Systems
3.3. Microfluidics SERS
3.4. Tandem Instrument Technologies
3.5. Machine Learning SERS
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Liu, C.; Weber, S.; Peng, R.; Wu, L.; Zhang, W.; Luppa, P.B.; Popp, J.; Cialla-May, D. Toward SERS-based therapeutic drug monitoring in clinical settings: Recent developments and trends. Trends Anal. Chem. 2023, 164, 117094. [Google Scholar] [CrossRef]
- Evans, W.E.; Schentag, J.J. Applied Pharmacokinetics & Pharmacodynamics: Principles of Therapeutic Drug Monitoring. Ann. Pharmacother. 2005, 39, 2145–2146. [Google Scholar] [CrossRef]
- Maxfield, K.; Zineh, I. Precision dosing: A clinical and public health imperative. JAMA 2021, 325, 1505–1506. [Google Scholar] [CrossRef]
- Manubolu, K.; Gubbala, Y.D.; Methukumelli, T. Therapeutic drug monitoring. In A Short Guide to Clinical Pharmacokinetics; Manubolu, K., Peeriga, R., Chandrasekhar, K.B., Eds.; Springer: Singapore, 2024. [Google Scholar]
- Sime, F.B.; Roberts, M.S.; Roberts, J.A. Optimization of dosing regimens and dosing in special populations. Clin. Microbiol. Infect. 2015, 21, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Martinho, J.; Simão, A.Y.; Barroso, M.; Gallardo, E.; Rosado, T. Determination of antiepileptics in biological samples—A review. Molecules 2024, 29, 4679. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, Y.; Zhang, Y.; Wang, W.; Sun, D.; Li, P.; Feng, X.; Tan, Y. Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring. J. Pharm. Anal. 2024, 14, 100899. [Google Scholar] [CrossRef] [PubMed]
- Tey, H.Y.; See, H.H. A review of recent advances in microsampling techniques of biological fluids for therapeutic drug monitoring. J. Chromatogr. A 2021, 1635, 461731. [Google Scholar] [CrossRef]
- Carona, A.; Bicker, J.; Silva, R.; Silva, A.; Santana, I.; Sales, F.; Falcao, A.; Fortuna, A. HPLC method for the determination of antiepileptic drugs in human saliva and its application in therapeutic drug monitoring. J. Pharm. Biomed. Anal. 2021, 197, 113961. [Google Scholar] [CrossRef]
- Habler, K.; Kalla, A.S.; Rychlik, M.; Vogeser, M.; Teupser, D. Therapeutic drug monitoring in breast cancer therapy-LC-MS/MS method for quantification of the CDK4/6 inhibitors abemaciclib, palbociclib, ribociclib, and major metabolites abemaciclib M20 and M2 in human serum. J. Pharm. Biomed. Anal. 2023, 225, 115211. [Google Scholar] [CrossRef]
- Fang, S.; Wu, S.; Chen, Z.; He, C.; Lin, L.; Ye, J. Recent progress and applications of Raman spectrum denoising algorithms in chemical and biological analyses: A review. Trends Anal. Chem. 2024, 172, 117578. [Google Scholar] [CrossRef]
- Vulchi, R.; Morgunov, V.; Junjuri, R.; Bocklitz, T. Artifacts and Anomalies in Raman Spectroscopy: A Review on Origins and Correction Procedures. Molecules 2024, 29, 4748. [Google Scholar] [CrossRef]
- Jaworska, A.; Fornasaro, S.; Sergo, V.; Bonifacio, A. Potential of surface enhanced raman spectroscopy (SERS) in therapeutic drug monitoring (TDM). A critical review. Biosensors 2016, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Pan, S.; Wang, W.; Yue, X.; Xi, X.; Yan, S.; Wu, D.; Wang, X.; Liu, G.; Ren, B. Surface-enhanced Raman spectroscopy: Current understanding, challenges, and opportunities. ACS Nano 2024, 18, 14000–14019. [Google Scholar] [CrossRef] [PubMed]
- Cialla-May, D.; Bonifacio, A.; Bocklitz, T.; Markin, A.; Markina, N.; Fornasaro, S.; Dwivedi, A.; Dib, T.; Farnesi, E.; Liu, C.; et al. Biomedical SERS—The current state and future trends. Chem. Soc. Rev. 2024, 53, 8957–8979. [Google Scholar] [CrossRef]
- Lee, S.; Dang, H.; Moon, J.; Kim, K.; Joung, Y.; Park, S.; Yu, Q.; Chen, J.; Lu, M.; Chen, L.; et al. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem. Soc. Rev. 2024, 53, 5394–5427. [Google Scholar] [CrossRef]
- Fornasaro, S.; Cialla-May, D.; Sergo, V.; Bonifacio, A. The role of surface enhanced Raman scattering for therapeutic drug monitoring of antimicrobial agents. Chemosensors 2022, 10, 128. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Chen, J.; Yang, L.; Qiu, Y.; Du, Q.; Wang, C.; Teng, M.; Wang, T.; Dong, Y. A novel strategy for therapeutic drug monitoring: Application of biosensors to quantify antimicrobials in biological matrices. J. Antimicrob. Chemother. 2023, 78, 2612–2629. [Google Scholar] [CrossRef]
- Frosch, T.; Knebl, A.; Frosch, T. Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy. Nanophotonics 2020, 9, 19–37. [Google Scholar] [CrossRef]
- Ding, S.; You, E.; Tian, Z.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; You, E.M.; Panneerselvam, R.; Ding, S.; Tian, Z. Advances of surface-enhanced Raman and IR spectroscopies: From nano/microstructures to macro-optical design. Light Sci. Appl. 2021, 10, 161. [Google Scholar] [CrossRef] [PubMed]
- Pannico, M.; Musto, P. SERS spectroscopy for the therapeutic drug monitoring of the anticancer drug 6-mercaptopurine: Molecular and kinetic studies. Appl. Surf. Sci. 2021, 539, 148225. [Google Scholar] [CrossRef]
- Pannico, M.; Musto, P. pH activated colloidal nanospheres: A viable sensing platform for the therapeutic drug monitoring of the anticancer drug 6-mercaptopurine. Appl. Surf. Sci. 2021, 570, 151232. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, J.; Xu, L.; Wang, W.; Du, J.; Qu, M.; Han, X.; Yang, L.; Zhao, B. Ultrasensitive SERS detection of antitumor drug methotrexate based on modified Ag substrate. Spectrochim. Acta A 2020, 240, 118589. [Google Scholar] [CrossRef]
- Xu, Y.; Konrad, M.P.; Lee, W.W.Y.; Ye, Z.; Bell, S.E.J. A method for promoting assembly of metallic and nonmetallic nanoparticles into interfacial monolayer films. Nano Lett. 2016, 16, 5255–5260. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.E.J.; Charron, G.; Cortes, E.; Kneipp, J.; Chapelle, M.L.; Langer, J.; Procházka, M.; Tran, V.; Schlücker, S. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angew. Chem. Int. Ed. 2020, 59, 5454–5462. [Google Scholar] [CrossRef] [PubMed]
- Vu, X.H.; Dien, N.D.; Pham, T.T.H.; Truong, N.V.; Ca, N.X.; Thu, V.V. Tunable LSPR of silver/gold bimetallic nanoframes and their SERS activity for methyl red detection. RSC Adv. 2021, 11, 14596–14606. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Liu, R.; Han, M.; Jiang, C.; Wang, J.; Du, S.; Liu, B.; Zhang, Z. Label-free surface-enhanced Raman scattering imaging to monitor the metabolism of antitumor drug 6-mercaptopurine in living cells. Anal. Chem. 2014, 86, 11503–11507. [Google Scholar] [CrossRef]
- Wang, L.; Patskovsky, S.; Gauthier-Soumis, B.; Meunier, M. Porous Au-Ag nanoparticles from galvanic replacement applied as single-particle SERS probe for quantitative monitoring. Small 2022, 18, 2105209. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, Z.; Zhang, L.; Miao, J.; Chen, Y.; Zhao, R.; Liu, M.; Chen, L.; Wang, X. Size-controllable colloidal Ag nano-aggregates with long-time SERS detection window for on-line high-throughput detection. Talanta 2023, 257, 124358. [Google Scholar] [CrossRef]
- Gheisari, F.; Shafiee, M.; Abbasi, M.; Jangjou, A.; Izadpanah, P.; Vaez, A.; Amani, A.M. Janus nanoparticles: An efficient intelligent modern nanostructure for eradicating cancer. Drug Metab. Rev. 2021, 53, 592–603. [Google Scholar] [CrossRef]
- Lai, H.; Li, G.; Xu, F.; Zhang, Z. Metal-organic frameworks: Opportunities and challenges for surface-enhanced Raman scattering-a review. J. Mater. Chem. C 2020, 8, 2952–2963. [Google Scholar] [CrossRef]
- Ma, L.; Liu, M.; Zhou, X.; Li, C.; Wang, T. Metal–organic framework-based SERS sensing platforms for life and health detection. Mater. Chem. Front. 2023, 7, 4880–4899. [Google Scholar] [CrossRef]
- Zhan, Y.; Cao, J.; Wang, Y.; Li, X.; Li, Y.; Zeng, H.; Huang, W.; Cheng, H.; Gao, S.; Li, L.; et al. Au/Ag@ZIF-8 nanocomposite as solid phase extraction adsorbent and SERS substrate for tacrolimus label-free therapeutic drug monitoring in human serum. Talanta 2025, 281, 126813. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Xu, F.; Wang, L. A review of the preparation and application of magnetic nanoparticles for surface-enhanced Raman scattering. J. Mater. Sci. 2018, 53, 8677–8698. [Google Scholar] [CrossRef]
- Zheng, D.D.; Zhang, X.; Zhang, Y.X.; Fan, W.W.; Zhao, X.X.; Gan, T.; Lu, Y.L.; Li, P.; Xu, W.P. In situ construction of Fe3O4@PDA@Au multi hotspot SERS probe for trace detection of benzodiazepines in serum. Spectrochim. Acta A 2023, 300, 1222897. [Google Scholar] [CrossRef]
- Feng, J.; Zhou, P.; Qin, C.; Chen, R.; Chen, Q.; Li, L.; Chen, J.; Cheng, H.; Huang, W.; Cao, J. Magnetic solid-phase extraction-based surface-enhanced Raman spectroscopy for label-free therapeutic drug monitoring of carbamazepine and clozapine in human serum. Spectrochim. Acta A 2024, 310, 123924. [Google Scholar] [CrossRef]
- Lai, H.; Xu, F.; Zhang, Y.; Wang, L. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications. J. Mater. Chem. B 2018, 6, 4008–4028. [Google Scholar] [CrossRef]
- Xue, D.N.; Dai, X.; Zhao, J.L.; Zhang, J.Y.; Liu, H.; Liu, K.; Xu, T. Therapeutic drug monitoring mediated by the cooperative chemical and electromagnetic effects of Ti3C2TX modified with Ag nanocubes. Biosens. Bioelectron. 2024, 245, 115844. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Li, G.; Zhang, Z. Enrichment-sensing all-in-one strategy integrated in the La(OH)3-Au@AgNPs substrate for rapid surface-enhanced Raman spectroscopy analysis of purine components. Anal. Chem. 2023, 95, 18149–18157. [Google Scholar] [CrossRef]
- Jin, L.; Cai, X.; Ren, F.; Yang, J. An aptamer-based SERS method for rapid screening and identification of pathogens assisted by machine learning technique with robustness evaluation. Sens. Actuators B Chem. 2024, 405, 135356. [Google Scholar] [CrossRef]
- Zhang, Y.; Gallego, I.; Plou, J.; Pedraz, J.L.; Liz-Marzán, L.M.; Ciriza, J.; García, I. SERS monitoring of local pH in encapsulated therapeutic cells. Nanoscale 2021, 13, 14354–14362. [Google Scholar] [CrossRef]
- Dai, Z.; He, J.; Zhou, F.; Lai, T.; Jiang, G.; Wang, K.; Li, C.; Yang, Y. Aptamer-Modified porous anodized aluminum substrate for rapid and ultrasensitive detection of tetracycline via surface enhanced Raman spectroscopy couple with electric field enrichment. ACS Appl. Nano Mater. 2023, 6, 21303–21311. [Google Scholar] [CrossRef]
- Huang, X.; Sheng, B.; Tian, H.; Chen, Q.; Yang, Y.; Bui, B.; Pi, J.; Cai, H.; Chen, S.; Zhang, J.; et al. Real-time SERS monitoring anticancer drug release along with SERS/MR imaging for pH- sensitive chemo-phototherapy. Acta Pharm. Sin. B 2023, 13, 1303–1317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, S.; Wang, J.; Shi, Z.; Du, L. Reproducible flexible SERS substrates inspired by bionic micro-nano hierarchical structures of rose petals. Adv. Mater. Interfaces 2022, 9, 2102468. [Google Scholar] [CrossRef]
- Wen, S.P.; Su, Y.; Zhu, J.J. Plasmonic Au nanostar Raman probes coupling with highly ordered TiO2/Au nanotube arrays as the reliable SERS sensing platform for chronic myeloid leukemia drug evaluation. Biosens. Bioelectron. 2018, 117, 260–266. [Google Scholar] [CrossRef]
- Plou, J.; Molina-Martínez, B.; García-Astrain, C.; Langer, J.; García, I.; Ercilla, A.; Perumal, G.; Carracedo, A.; Liz-Marzán, L.M. Nanocomposite scaffolds for monitoring of drug diffusion in three dimensional cell environments by surface-enhanced Raman spectroscopy. Nano Lett. 2021, 21, 8785–8793. [Google Scholar] [CrossRef]
- Panikar, S.S.; Banu, N.; Escobar, E.; García, G.; Cervantes-Martínez, J.; Villegas, T.; Salas, P.; Rosa, E. Stealth modified bottom up SERS substrates for label-free therapeutic drug monitoring of doxorubicin in blood serum. Talanta 2020, 218, 121138. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Li, G.; Xiao, X. Ag/Poly(N-isopropylacrylamide)-laponite hydrogel surface-enhanced Raman membrane substrate for rapid separation, concentration and detection of hydrophilic compounds in complex sample all-in-one. Anal. Chem. 2023, 95, 6399–6409. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, H.X.; Feng, J. Determination of aminophylline in human serum using hydrogel microspheres for coupled surface-enhanced Raman spectroscopy (SERS) and solid-phase extraction. Appl. Spectrosc. 2024, 78, 551–560. [Google Scholar] [CrossRef]
- Lee, W.W.Y.; McCoy, C.P.; Donnelly, R.F.; Bell, S.E.J. Swellable polymer films containing Au nanoparticles for point-of-care therapeutic drug monitoring using surface-enhanced Raman spectroscopy. Anal. Chim. Acta 2016, 912, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Göksel, Y.; Zor, K.; Rindzevicius, T.; Als-Nielsen, B.E.T.; Schmiegelow, K.; Boisen, A. Quantification of methotrexate in human serum using surface enhanced Raman scattering—Toward therapeutic drug monitoring. ACS Sens. 2021, 6, 2664–2673. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.Y.; Wang, J.; Zhang, X.J. Wearable plasmonic sweat biosensor for acetaminophen drug monitoring. ACS Sens. 2023, 8, 1766–1773. [Google Scholar] [CrossRef]
- Bi, X.; He, Z.; Luo, Z.; Huang, W.; Diao, X.; Ye, J. Digital colloid-enhanced Raman spectroscopy for the pharmacokinetic detection of bioorthogonal drugs. Chem. Sci. 2024, 15, 13998–14008. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Yu, X.; Wu, Z.; Lu, F.; Yuan, Y. Antipsychotic drug poisoning monitoring of clozapine in urine by using coffee ring effect based surface-enhanced Raman spectroscopy. Anal. Chim. Acta 2018, 1014, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, S.; Deng, Z.; Liu, B.; Gao, B. Corn-inspired high-density plasmonic metal-organic frameworks microneedles for enhanced SERS detection of acetaminophen. Talanta 2024, 278, 126463. [Google Scholar] [CrossRef]
- Soufi, G.; Badillo-Ramírez, I.; Serioli, L.; Raja, R.A.; Schmiegelow, K.; Zor, K.; Boisen, A. Solid-phase extraction coupled to automated centrifugal microfluidics SERS: Improving quantification of therapeutic drugs in human serum. Biosens. Bioelectron. 2024, 266, 116725. [Google Scholar] [CrossRef]
- Subaihi, A.; Trivedi, D.K.; Hollywood, K.A.; Bluett, J.; Xu, Y.; Muhamadali, H.; Ellis, D.I.; Goodacre, R. Quantitative online liquid chromatography—Surface-enhanced Raman scattering (LC-SERS) of methotrexate and its major metabolites. Anal. Chem. 2017, 89, 6702–6709. [Google Scholar] [CrossRef]
- Nguyen, A.H.; Deutsch, J.M.; Xiao, L.; Schultz, Z.D. Online liquid chromatography-sheath-flow surface enhanced Raman detection of phosphorylated carbohydrates. Anal. Chem. 2018, 90, 11062–11069. [Google Scholar] [CrossRef]
- Erkok, S.D.; Gallois, R.; Leegwater, L.; Gonzalez, P.C.; Asten, A.; McCord, B. Combining surface-enhanced Raman spectroscopy (SERS) and paper spray mass spectrometry (PS-MS) for illicit drug detection. Talanta 2024, 278, 126414. [Google Scholar] [CrossRef]
- Lin, Y.; Tai, R.; Wei, S.; Luo, S. Electrochemical SERS on 2D mapping for metabolites detection. Langmuir 2020, 36, 5990–5996. [Google Scholar] [CrossRef]
- Göksel, Y.; Dumont, E.; Slipets, R.; Rajendran, S.T.; Sarikaya, S.; Thamdrup, L.H.E.; Schmiegelow, K.; Rindzevicius, T.; Zor, K.; Boisen, A. Methotrexate detection in serum at clinically relevant levels with electrochemically assisted SERS on a benchtop, custom built Raman spectrometer. ACS Sens. 2022, 7, 2358–2369. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, G.; Ma, C.; Gu, J.; Zhu, C.; Li, L.; Gao, H. Magnetic Fe3O4@COF@Ag SERS substrate combined with machine learning algorithms for detection of three quinolone antibiotics: Ciprofloxacin, norfloxacin and levofloxacin. Talanta 2023, 263, 124725. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Czajkowsky, D.M.; Shao, Z.; Ye, J. Digital colloid-enhanced Raman spectroscopy by single-molecule counting. Nature 2024, 628, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, J.; Lv, X.B.; Liu, L.; Liang, L.; Hu, W.; Luo, C.L.; Wang, F.B.; Yuan, Q. Redefining molecular amphipathicity in reversing the “coffee-ring effect”: Implications for single base mutation detection. Langmuir 2018, 34, 6777–6783. [Google Scholar] [CrossRef]
- Mei, R.; Wang, Y.; Zhao, X.; Shi, S.; Wang, X.; Zhou, N.; Shen, D.; Kang, Q.; Chen, L. Skin interstitial fluid-based SERS tags labeled microneedles for tracking of peritonitis progression and treatment effect. ACS Sens. 2023, 8, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Mei, R.; Lv, B.; Zhao, X.; Bi, L.; Xu, H.; Chen, L. Hydrogel-coated SERS microneedles for drug monitoring in dermal interstitial fluid. ACS Sens. 2024, 9, 2567–2574. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, R.; Sadat, H.; Höhn, E.; Das, A.; Noothalapati, H.; Belder, D. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination? Lab Chip 2022, 22, 665–682. [Google Scholar] [CrossRef] [PubMed]
- Zappalà, G.; Soufi, G.; Dumont, E.; Molander, N.; Slipets, R.; Thamdrup, L.H.E.; Andersson, P.O.; Rindzevicius, T.; Boisen, A. SERS-integrated centrifugal microfluidic platform for the detection and quantification of Chemical Warfare Agents in single-component solution and mixtures. Sens. Actuators B Chem. 2025, 422, 136698. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cheng, H.W.; Chang, K.W.; Shiue, J.; Wang, J.K.; Wang, Y.L.; Huang, N.T. A particle-based microfluidic molecular separation integrating surface-enhanced Raman scattering sensing for purine derivatives analysis. Microfluid. Nanofluid. 2019, 23, 48. [Google Scholar] [CrossRef]
- Burr, D.S.; Fatigante, W.L.; Lartey, J.A.; Jang, W.; Stelmack, A.R.; McClurg, N.W.; Standard, J.M.; Wieland, J.R.; Kim, J.; Mulligan, C.C.; et al. Integrating SERS and PSI-MS with dual purpose plasmonic paper substrates for on-site illicit drug confirmation. Anal. Chem. 2020, 92, 6676–6683. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, A.K.; Sharma, A.; Yadav, V.; Singh, R.; Ahuja, T.; Barman, S.; Siddhanta, S. Raman spectroscopy and its plasmon-enhanced counterparts: A toolbox to probe protein dynamics and aggregation. WIREs Nanomed. Nanobiotechnol. 2024, 16, e1917. [Google Scholar] [CrossRef] [PubMed]
- Chio, W.K.; Liu, J.; Jones, T.; Perumal, J.; Dinish, U.S.; Parkin, I.P.; Olivoc, M.; Lee, T. SERS multiplexing of methylxanthine drug isomers via host-guest size matching and machine learning. J. Mater. Chem. C 2021, 9, 12624–12632. [Google Scholar] [CrossRef]
- Diao, X.; Li, X.; Hou, S.; Li, H.; Qi, G.; Jin, Y. Machine learning-based label-free SERS profiling of exosomes for accurate fuzzy diagnosis of cancer and dynamic monitoring of drug therapeutic processes. Anal. Chem. 2023, 95, 7552–7559. [Google Scholar] [CrossRef] [PubMed]
- Sheth, V.; Tripathi, U.; Sharma, A. A comparative analysis of machine learning algorithms for classification purpose. Procedia Comput. Sci. 2022, 215, 422–431. [Google Scholar] [CrossRef]
- Nam, W.; Chen, H.; Ren, X.; Agah, M.; Kim, I.; Zhou, W. Nanolaminate plasmonic substrates for high-throughput living cell SERS measurements and artificial neural network classification of cellular drug responses. ACS Appl. Nano Mater. 2022, 5, 10358–10368. [Google Scholar] [CrossRef]
Drug Molecules | Sample | Substrate | Linear Range (mol/L) | LOD (mol/L) | Recovery (%) | Ref. |
---|---|---|---|---|---|---|
6-Mercaptopurine | AuNPs | (5–20) × 10−6 | 1.0 × 10−6 | [22] | ||
6-Mercaptopurine | AuNPs | (1–15) × 10−6 | 0.1 × 10−6 | [23] | ||
Methotrexate | Ag colloid | 1 × 10−16–1 × 10−6 | 1 × 10−16 | 96.4–104.3 | [24] | |
Tacrolimus | serum | Au/Ag@ZIF-8 | 10−5–10−11 | 6.4 ng/L | 92–105 | [34] |
Benzodiazepines | serum | Fe3O4@PDA@Au | 50 ng/mL | [36] | ||
Carbamazepine, clozapine | serum | Fe3O4@SiO2@MIL-101(Fe) | 0.1–100 mg/L | 0.072, 0.12 mg/L | 94.0–105.0 | [37] |
Ritonavir, ibrutinib | serum | Ti3C2Tx/Ag NCs | 10−1–10−6 g/L, 10−1–10−5 g/L | 5.62 × 10−7, 1.1 × 10−6 g/L | >90.0 | [39] |
Mercaptopurine | tablets | La(OH)3-Au@AgNPs | 0.05–5.0 mg/L | 6.0 μg/L | 90.9–100.0 | [40] |
Tetracycline | aptamer-modified AAO | 1 pg/L–1 μg/L | 1 pg/L | [43] | ||
Caspase-3 | apoptotic cells | TiO2/Au NTAs | 1.0 ng/L–10 μg/L | 0.25 ng/L | 91.0–109.0 | [46] |
Doxorubicin | serum | Au@SiNPs | 1 × 10−9 –1 × 10−6 | 2.0 × 10−8 | [48] | |
Urotropine, 2,5-dimethylpyrazine, pyrazinamide, pyrazine | human plasma | Ag/PNIP-LAP | 0.070–5.00 mg/L | 1.11–53.1 μg/L | 84.3–106.0, 81.8–99.7, 84.4–116.8 | [49] |
Aminophylline | serum | Ag@PNIPAM | 1–1.1 × 102 mg/L | 0.61 mg/L | 3.0–101.8 | [50] |
Phenytoin | PBS | Au poly-SERS films | 10–20 mg/L | 1.8 mg/L | [51] | |
Methotrexate | serum | AgNPs chip | (5–150) × 10−6 | 2.1 × 10−6 | [52] | |
Acetaminophen | sweat | Au nanosphere cone array | (0.5–100) × 10−6 | 0.13 ×10−6 | [53] | |
Erlotinib | rat serum | citrate–Ag colloids | 10−8–10−5 g/L | 10−7 g/L | [54] | |
Clozapine | urine | TLC-coupled CRE-SERS | 0.5–50 mg/L | 0.1 mg/L | 86.9–119.6 | [55] |
Acetaminophen | interstitial fluid | HDPM@MNs | (1–100) × 10−6 | 0.45 × 10−6 | [56] | |
Methotrexate, lamotrigine | serum | Ag NPs | (2.90, 10.7) × 10−6 | [57] | ||
Methotrexate, 7-hydroxy methotrexate, 2,4-diamino-N(10)-methylpteroic acid | human urine | silver colloid | (2.36, 1.84, 3.26) × 10−6 | [58] | ||
Phosphorylated carbohydrates | silver | (0.25–20) × 10−6 | [59] | |||
Fentanyl | Au/Ag nanostars | 2.5–0.1 mg/L | 34 mg/L | [60] | ||
6-Thioguanine nucleotides, 6-Methylmercaptopurine | AuNPs | (0.02–2) × 10−6 (1–20) × 10−6 | (10, 100) × 10−9 | [61] | ||
Methotrexate | serum | Au-Capped NP | (1.81–5) × 10−6 | 0.55 × 10−6 | [62] | |
Ciprofloxacin, Norfloxacin, Levofloxacin | Fe3O4@COF@Ag | 1 × 10−8–1 × 10−4 1 × 10−7.5–1 × 10−4 | 5.61 × 10−9 1.44 × 10−8 1.56 × 10−8 | 95.9–103.1 96.3–109.2 91.4–108.1 | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, H.; Wang, X.; Qi, M.; Huang, H.; Yu, B. Advances in Surface-Enhanced Raman Spectroscopy for Therapeutic Drug Monitoring. Molecules 2025, 30, 15. https://doi.org/10.3390/molecules30010015
Lai H, Wang X, Qi M, Huang H, Yu B. Advances in Surface-Enhanced Raman Spectroscopy for Therapeutic Drug Monitoring. Molecules. 2025; 30(1):15. https://doi.org/10.3390/molecules30010015
Chicago/Turabian StyleLai, Huasheng, Xinlan Wang, Menghan Qi, Hao Huang, and Bingqiong Yu. 2025. "Advances in Surface-Enhanced Raman Spectroscopy for Therapeutic Drug Monitoring" Molecules 30, no. 1: 15. https://doi.org/10.3390/molecules30010015
APA StyleLai, H., Wang, X., Qi, M., Huang, H., & Yu, B. (2025). Advances in Surface-Enhanced Raman Spectroscopy for Therapeutic Drug Monitoring. Molecules, 30(1), 15. https://doi.org/10.3390/molecules30010015