Coordination Chemistry of Mixed-Donor Pyridine-Containing Macrocyclic Ligands: From Optical to Redox Chemosensors for Heavy Metal Ions
Abstract
1. Introduction
2. Results
2.1. Coordination Chemistry of L1 and L2
2.2. Synthesis of L3 and Its Electrochemical Behaviour in the Presence of Cu2+, Zn2+, Cd2+, Hg2+, and Pb2+
3. Materials and Methods
3.1. Reagents and Apparatus
3.2. Procedure for Cyclic Voltammetry Experiments
3.3. X-Ray Crystallography
3.4. DFT Calculations
3.5. Synthesis of 5-Ferrocenylmethyl-2,8-dithia-5-aza-2,6-pyridinophane (L3)
3.6. Synthesis of [Pb(L1)(ClO4)2]·½CH3CN
3.7. Synthesis of [Cu(L2)](ClO4)2·CH3CN
3.8. Synthesis of [Cd(L2)NO3]NO3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, T.; Lai, Q.; Fan, W.; Zhang, Y.; Liu, Z. Advances in Portable Heavy Metal Ion Sensors. Sensors 2023, 23, 4125. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, S.; Wang, Y.; Qian, K. Nanomaterials-based sensors and strategies for heavy metal ion detection. Green. Anal. Chem. 2022, 2, 100020. [Google Scholar] [CrossRef]
- Bhargavi Gumpu, M.; Sethuraman, S.; Maheswari Krishnan, U.; Bosco Balaguru Rayappan, J. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Shen, Y.; Nie, C.; Wei, Y.; Zheng, Z.; Xu, Z.-L.; Xiang, P. FRET-based innovative assays for precise detection of the residual heavy metals in food and agriculture-related matrices. Coord. Chem. Rev. 2022, 469, 214676. [Google Scholar] [CrossRef]
- Kamal, S.; Khalid, M.; Shahnawaz Khan, M.; Shahid, M. Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord. Chem. Rev. 2023, 474, 214859. [Google Scholar] [CrossRef]
- Vernet, J.-P. Heavy Metals in the Environment; Elsevier: New York, NY, USA, 1991; ISBN 0444890645. [Google Scholar]
- Sigel, A.; Sigel, H.; Sigel, R.K.O. Neurodegenarative Disease and Metal Ions; Wiley: New York, NY, USA, 2006; Volume 1, ISBN 978-0-470-02810-0. [Google Scholar]
- Nordberg, G.F.; Fowler, B.A.; Nordberg, M.; Friberg, L. Handbook on the Toxicology of Metals, 3rd ed.; Elsevier: New York, NY, USA, 2007; ISBN 978-0-12-369413-3. [Google Scholar]
- Charlet, L.; Chapron, Y.; Kirsch, R.; Stone, A.T.; Baveye, P.C. Neurodegenerative diseases and exposure to the environmental metals Mn, Pb, and Hg. Coord. Chem. Rev. 2012, 256, 2147–2163. [Google Scholar] [CrossRef]
- Meret, W.; Moulis, J.-M. The bioinorganic chemistry of cadmium in the context of its toxicity. Met Ions Life Sci. 2013, 11, 1–29. [Google Scholar]
- Fitzgerald, W.F.; Lamborg, C.H.; Hammerschmidt, C.R. Marine Biogeochemical Cycling of Mercury. Chem. Rev. 2007, 107, 641–662. [Google Scholar] [CrossRef] [PubMed]
- Levin, R.; Zilli Vieira, C.L.; Rosembaum, M.H.; Bischoff, K.; Mordarski, D.C.; Brown, M.J. The urban lead(Pb) burden in humans, animals and the natural environment. Environ. Res. 2021, 193, 110377. [Google Scholar] [CrossRef] [PubMed]
- de Silva, A.P.; Gunaratne, H.Q.G.; Gunlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 1997, 97, 1515–1566. [Google Scholar] [CrossRef]
- Beer, P.D.; Gale, P.A.; Chen, G.Z. Mechanism of Electrochemical Recognition of Cations, Anions and Neutral Guest Species by Redox-Active Receptor Molecules. Coord. Chem. Rev. 1999, 185, 3–36. [Google Scholar] [CrossRef]
- Rurack, K. Flipping the light switch “ON”—The design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2001, 57, 2161–2195. [Google Scholar] [CrossRef]
- Prodi, L. Luminescent chemosensors: From molecules to nanoparticles. New J. Chem. 2005, 29, 20–31. [Google Scholar] [CrossRef]
- Amendola, A.; Fabbrizzi, L.; Foti, F.; Licchelli, M.; Mangano, C.; Pallavicini, P.; Poggi, A.; Sacchi, D.; Taglietti, A. Light-emitting molecular devices based on transition metals. Coord. Chem. Rev. 2006, 250, 273–299. [Google Scholar] [CrossRef]
- Lodeiro, C.; Capelo, J.L.; Mejuto, J.C.; Oliveira, E.; Santos, H.M.; Pedras, B.; Nuñez, C. Light and colour as analytical tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors. Chem. Soc. Rev. 2010, 39, 2948–2976. [Google Scholar] [CrossRef] [PubMed]
- Carter, K.P.; Young, A.M.; Palmer, A.E. Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem. Rev. 2014, 114, 4564–4601. [Google Scholar] [CrossRef]
- Saleem, M.; Lee, K.H. Optical sensor: A promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv. 2015, 5, 72150–72287. [Google Scholar] [CrossRef]
- Qian, X.; Xu, Z. Fluorescence imaging of metal ions implicated in diseases. Chem. Soc. Rev. 2015, 44, 4487–4493. [Google Scholar] [CrossRef]
- Sahoo, S.K. Fluorescent chemosensors containing redox-active ferrocene: A review. Dalton Trans. 2021, 50, 11681–11700. [Google Scholar] [CrossRef]
- Wang, M.; Meng, G. Fluorophores-modified nanomaterials for trace detection of polychlorobiphenyls and heavy metal ions. Sens. Actuators B 2017, 243, 1137–1147. [Google Scholar] [CrossRef]
- Wang, Z.; Palacios, M.A.; Anzenbacher, P., Jr. Fluorescence sensor array for metal ion detection based on various coordination chemistries: General performance and potential application. Anal. Chem. 2008, 80, 7451–7459. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, X.; Wu, Q.; Yi, J.; Zhang, G. Differentiation and determination of metal ions using fluorescent sensor array based on carbon nanodots. Sens. Actuators B 2017, 246, 680–685. [Google Scholar] [CrossRef]
- Xu, W.; Ren, C.; Teoh, C.L.; Peng, J.; Gadre, S.H.; Rhee, C.-L.; Lee, C.-L.; Chang, Y.-T. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions. Anal. Chem. 2014, 86, 8763–8769. [Google Scholar] [CrossRef]
- Askim, J.R.; Mahmoudi, M.; Suslick, K.S. Optical Sensor arrays for chemical sensing: The optoelectronic nose. Chem. Soc. Rev. 2013, 42, 8649–8682. [Google Scholar] [CrossRef]
- Lindoy, L.F. The Chemistry of Macrocyclic Ligand Complexes; Cambridge University Press: Cambridge, UK, 1989; ISBN 052125261X. [Google Scholar]
- Zolotov, Y.A. Macrocyclic Compounds in Analytical Chemistry; Wiley & Sons: New York, NY, USA, 1997; ISBN 0-471-17262-6. [Google Scholar]
- Gloe, K. Macrocyclic Chemistry, Current Trends and Future Perspectives; Springer: New York, NY, USA, 2005; ISBN 1-4020-3364-8. [Google Scholar]
- Fitzpatrick, D.W.; Ulrich, H.J. Macrocyclic Chemistry: New Research Developments (Chemistry Research and Applications); Nova Science Pub. Inc.: New York, NY, USA, 2010; ISBN 1608768961. [Google Scholar]
- Danks, P.J.; Champness, N.R.; Schroder, M. Chemistry of mixed nitrogen- and sulfur-donor tridentate macrocycles. Coord. Chem. Rev. 1998, 174, 417–468. [Google Scholar] [CrossRef]
- Bronson, R.T.; Bradshaw, J.S.; Savage, P.B.; Fuangswasdi, S.; Lee, S.C.; Krakowiak, K.E.; Izatt, R.M. Bis-8-hydroxyquinoline-Armed Diazatrithia-15-crown-5 and Diazatrithia-16-crown-5 Ligands: Possible Fluorophoric Metal Ion Sensors. J. Org. Chem. 2001, 66, 4752–4758. [Google Scholar] [CrossRef]
- Xue, G.; Bradshaw, J.S.; Son, H.; Bronson, R.T.; Savage, P.B.; Krakowiak, K.E.; Izatt, R.M.; Prodi, L.; Montalti, M.; Zaccheroni, N. A convenient synthesis and preliminary photophysical study of novel fluoroionophores: Macrocyclic polyamines containing two dansylamidoethyl side arms. Tetrahedron 2001, 57, 87–91. [Google Scholar] [CrossRef]
- van de Water, L.G.A.; ten Honte, F.; Driessen, W.L.; Reedijk, J.; Sherrington, D.C. Selective extraction of metal ions by azathiacrown ether-modified polar polymers. Inorg. Chim. Acta 2000, 303, 77–85. [Google Scholar] [CrossRef]
- Glenny, M.W.; van de Water, L.G.A.; Driessen, W.L.; Reedijk, J.; Blake, A.J.; Wilson, C.; Schröder, M. Conformational and stereochemical flexibility in cadmium(II) complexes of aza-thioether macrocycles. Dalton Trans. 2004, 1953–1959. [Google Scholar] [CrossRef]
- Tamayo, A.; Lodeiro, C.; Escriche, L.; Casabó, J.; Covelo, B.; González, P. New Fluorescent PET Systems Based on N2S2 Pyridine-Anthracene-Containing Macrocyclic Ligands. Spectrophotometric, Spectrofluorimetric, and Metal Ion Binding Studies. Inorg. Chem. 2005, 44, 8105–8115. [Google Scholar] [CrossRef] [PubMed]
- Lindoy, L.F.; Meehan, G.V.; Vasilescu, I.M.; Kim, H.J.; Lee, J.-E.; Lee, S.S. Transition and post-transition metal ion chemistry of dibenzo-substituted mixed-donor macrocycles incorporating five donor atoms. Coord. Chem. Rev. 2010, 254, 1713–1725. [Google Scholar] [CrossRef]
- Blake, A.J.; Bencini, A.; Caltagirone, C.; De Filippo, G.; Dolci, L.S.; Garau, A.; Isaia, F.; Lippolis, V.; Mariani, P.; Prodi, L.; et al. A new pyridine-based 12-membered macrocycle functionalised with different fluorescent subunits: Coordination chemistry towards CuII, ZnII, CdII, HgII, and PbII. Dalton Trans. 2004, 2771–2779. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Bencini, A.; Blake, A.J.; Caltagirone, C.; De Filippo, G.; Devillanova, F.A.; Garau, A.; Gelbrich, T.; Hursthouse, M.B.; et al. Tuning the Selectivity/Specificity of Fluorescent Metal Ion Sensors Based on N2S2 Pyridine-Containing Macrocyclic Ligands by Changing the Fluorogenic Subunit: Spectrofluorimetric and Metal Ion Binding Studies. Inorg. Chem. 2007, 46, 4548–4559. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Sadeghi, M.; Alizadeh, K.; Bencini, A.; Valtancoli, B.; Garau, A.; Lippolis, V. Novel fluorimetric bulk optode membrane based on 5,8-bis(5′-chloro-8′-hydroxy-7′-quinolinyl)methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane for selective detection of lead(II) ions. Talanta 2010, 80, 2023–2033. [Google Scholar] [CrossRef]
- Shamsipur, M.; Sadeghi, M.; Garau, A.; Lippolis, V. An efficient and selective flourescent chemical sensor based on 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane as a new fluoroionophore for determination of iron(III) ions. A novel probe for iron speciation. Anal. Chim. Acta 2013, 761, 169–177. [Google Scholar] [CrossRef]
- Shamsipur, M.; Zahedi, M.M.; De Filippo, G.; Lippolis, V. Development of a novel flow injection liquid-liquid microextraction method for on-line separation, preconcentration and fluorimeteric determination of zinc(II) using 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane as a sensitive and selective fluorescent chemosensor. Talanta 2011, 85, 687–693. [Google Scholar]
- Bazzicalupi, C.; Caltagirone, C.; Cao, Z.; Chen, Q.; Di Natale, C.; Garau, A.; Lippolis, V.; Lvova, L.; Liu, H.; Lundström, I.; et al. Multimodal use of new coumarin-based fluorescent chemosensors: Towards highly selective optical sensors for Hg2+ probing. Chem. A Eur. J. 2013, 19, 14639–14653. [Google Scholar] [CrossRef] [PubMed]
- Macedi, E.; Garau, A.; Lvova, L.; Ambrosi, G.; Aragoni, M.C.; Arca, M.; Caltagirone, C.; Coles, S.J.; Formica, M.; Fusi, V.; et al. N2S2 Pyridinophane-Based Fluorescent Chemosensors for Selective Optical Detection of Cd2+ in Soils. New J. Chem. 2020, 44, 20834–20852. [Google Scholar]
- Lvova, L.; Pudi, R.; Galloni, P.; Lippolis, V.; Di Natale, C.; Lundstrom, I.; Paolesse, R. Multi-transduction sensing films for Electronic Tongue applications. Sens. Actuators B. Chem. 2015, 207, 1076–1086. [Google Scholar] [CrossRef]
- Arca, M.; Caltagirone, C.; De Filippo, G.; Formica, M.; Fusi, V.; Giorgi, L.; Lippolis, V.; Prodi, L.; Rampazzo, E.; Scorciapino, M.A.; et al. A fluorescent ratiometric nanosized system for the determination of PdII in water. Chem. Commun. 2014, 50, 15259–15262. [Google Scholar] [CrossRef]
- Medina, J.C.; Goodnow, T.T.; Rojas, M.T.; Atwood, J.L.; Lynn, B.C.; Kaifer, A.E.; Gokel, G.W. Ferrocenyl Iron as a Donor Group for Complexes Silver ion Ferrocenyldimetyl[2.2]cryptand: A redox-Switched Receptor Effective in Water. J. Am. Chem. Soc. 1992, 114, 10583–10595. [Google Scholar] [CrossRef]
- Pal, A.; Bhatta, R.B.; Thakur, A. Recent advances in the development of ferrocene based electroactive small molecules for cation recognition: A comprehensive review of the years 2010–2020. Coord. Chem. Rev. 2021, 431, 213685. [Google Scholar] [CrossRef]
- Hein, R.; Beer, P.D.; Davis, J.J. Electrochemical Anions Sensing: Supramolecular Approaches. Chem. Rev. 2020, 120, 1888–1935. [Google Scholar] [CrossRef]
- Torriero, A.A.J.; Mruthunjaya, A.K.V. Ferrocene-Based Electrochemical Sensors for cations. Inorganics 2023, 11, 472. [Google Scholar] [CrossRef]
- Zeng, Z.; Belousoff, M.J.; Spiccia, L.; Bond, A.M.; Torriero, A.A.J. Macrocycles Bearing Ferrocenyl Pendants and their Electrochemical Properties upon Binding to Divalent Transition Metal Cations. ChemPlusChem 2018, 83, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Garau, A.; Picci, G.; Arca, M.; Blake, A.J.; Caltagirone, C.; De Filippo, G.; Demartin, F.; Isaia, F.; Lippolis, V.; Pintus, A.; et al. Can Serendepity Still Hold Any Surprises in the Coordination Chemistry of Mixed-Donor macrocyclic Ligands? The Case Study of Pyridine-Containing 12-Membered macrocycles and Platinum Group Metal ions PdII, PtII, and RhIII. Molecules 2021, 26, 1286. [Google Scholar] [CrossRef]
- Tei, L.; Blake, A.J.; Bencini, A.; Valtancoli, B.; Wilson, C.; Schröder, M. Synthesis, solution studies and structural characterisation of complexes of a mixed oxa–aza macrocycle bearing nitrile pendant arms. Inorg. Chim. Acta 2002, 337, 59–69. [Google Scholar] [CrossRef]
- Buist, D.; Williams, N.J.; Reibenspies, J.H.; Hancock, R.D. Control of Metal Ion Size-Based Selectivity through Chelate Ring Geometry. Inorg. Chem. 2010, 49, 5033–5039. [Google Scholar] [CrossRef]
- Park, S.; Lee, A.-G.; Jung, J.H.; Ikeda, M.; Habata, Y.; Lee, S.S. Macrocycles incorporating isomeric arms: Synthesis and crystal structures of ligands and their mono-, di- and polynuclear supramolecular complexes. CrystEngComm 2012, 14, 6515–6523. [Google Scholar] [CrossRef]
- Di Vaira, M.; Guerra, M.; Mani, F.; Stoppioni, P. Unusual binding of exogenous anions in some lead(II) complexes with a functionalized macrocycle. J. Chem. Soc. Dalton Trans. 1996, 1173–1179. [Google Scholar] [CrossRef]
- Harrowfield, J.M.; Skelton, B.W.; White, A.H. Lewis-base Adducts of Lead(II) Complexes. Part 6. X-Ray Structural Characterisation of Adducts of Lead(II) Bis(perchlorate) with Dimethyl Sulfoxide. J. Chem. Soc. Dalton Trans. 1993, 2011–2016. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, USA, 1960. [Google Scholar]
- Engelhardt, L.M.; Harrowfield, J.M.; Miyamae, H.; Patrick, J.M.; Skelton, B.W.; Soudi, A.A.; White, A.H. Lewis-Base Adducts of Lead(II) Compounds. XIV. Synthetic and Structural Studies of Some 2:1 Adducts of 2,2′-Bipyridine With Lead(II) Oxoanion Salts. Aust. J. Chem. 1996, 49, 1111–1119. [Google Scholar] [CrossRef]
- Harrowfield, J.M.; Miyamae, H.; Shand, T.M.; Skelton, B.W.; Soudi, A.A.; White, A. Lewis-Base Adducts of Lead(II) Compounds. IX. Synthetic and Structural Studies of Some 1:1 Adducts of ‘cyclam’ and Its Hexamethylated Derivative ’tet-b’ With Lead(II) Oxoanion Salts. Aust. J. Chem. 1996, 49, 1051–1066. [Google Scholar] [CrossRef]
- Najar, A.M.; Tidmarsh, I.S.; Ward, M.D. Lead(II) complexes of bis- and tris-bidentate compartmental ligands based on pyridyl-pyrazole and pyridyl-triazole fragments: Coordination networks and a discrete dimeric box. CrystEngComm 2010, 12, 3642–3650. [Google Scholar] [CrossRef]
- Motoda, K.-I.; Sakiyama, H.; Matsumoto, N.; Okawa, H.; Kida, S. Template Synthesis and Structure of a Dinuclear Lead(II) Complex of Novel Macrocycle Derived from 2,6-Diformyl-4-methylphenol and 1,9-Diamino-3,7-diazanonane. Bull. Chem. Soc. Jpn. 1992, 65, 1176–1178. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Bencini, A.; Biagini, S.; Blake, A.J.; Caltagirone, C.; Demartin, F.; De Filippo, G.; Devillanova, F.A.; Garau, A.; et al. Interaction of Mixed-Donor Macrocycles Containing the 1,10-Phenanthroline Subunit with Selected Transition and Post-Transition Metal Ions: Metal Ion Recognition in Competitive Liquid−Liquid Solvent Extraction of CuII, ZnII, PbII, CdII, AgI, and HgII. Inorg. Chem. 2008, 47, 8391–8404. [Google Scholar] [CrossRef]
- Harrowfield, J.M.; Miyamae, H.; Skelton, B.W.; Soudi, A.A.; White, A. Lewis-Base Adducts of Lead(II) Compounds. X. Synthetic and Structural Studies of Some 1:1 Adducts of ‘tet-b’ With Lead(II) (Pseudo-)Halides. Aust. J. Chem. 1996, 49, 1067–1079. [Google Scholar] [CrossRef]
- Solovyev, I.V.; Kondinski, A.; Monakhov, K.Y.; Koshevoy, I.O.; Grachova, E.V. Synthesis, photophysical properties and cation-binding studies of bipyridine-functionalized gold(I) complexes. Inorg. Chem. Front. 2018, 5, 160–171. [Google Scholar] [CrossRef]
- Hutchinson, D.J.; James, M.P.; Hanton, L.R.; Moratti, S.C. Metal-Induced Isomerization of a Molecules Strand Containing Contraddictory Dynamic Coordination Sites. Inorg. Chem. 2014, 53, 2122–2132. [Google Scholar] [CrossRef] [PubMed]
- Kadarkaraisamy, M.; Caple, G.; Gorden, A.R.; Squire, M.A.; Sykes, A.G. Large Amplitude, Proton- and Cation-Activated Latch-Type Mechanical Switches: O-Protonated Amides Stabilized by Intramolecular Low-Barrier Hydrogen Bonds within Macrocycles. Inorg. Chem. 2008, 47, 11644–11655. [Google Scholar] [CrossRef] [PubMed]
- Caltagirone, C.; Bencini, A.; Demartin, F.; Devillanova, F.A.; Garau, A.; Isaia, F.; Lippolis, V.; Mariani, P.; Papke, U.; Tei, L.; et al. Redox chemosensors: Coordination chemistry towards CuII, ZnII, CdII.; HgII, and PbII of 1-aza-4,10-dithia-7-oxacyclododecane ([12]aneNS2O) and its N-ferrocenylmethyl derivative. Dalton Trans. 2003, 901–909. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Wiberg, K.B. Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 1968, 24, 1083–1096. [Google Scholar] [CrossRef]
- Beer, P.D.; Gale, P.A.; Chen, G.Z. Electrochemical molecular recognition: Pathways between complexation and signaling. J. Chem. Soc. Dalton Trans. 1999, 1897–1909. [Google Scholar] [CrossRef]
- Beer, P.D.; Gale, P.A.; Chen, Z. Electrochemical Recognition of Charged and Neutral Guest Species by Redox-active Receptor Molecules. Adv. Phys. Org. Chem. 1999, 31, 1–90. [Google Scholar]
- Shannon, R.D.; Prewitt, C.T. Revised values of effective ionic radii. Acta Crys. 1970, 26, 1046–1048. [Google Scholar] [CrossRef]
- Lloris, J.M.; Martínez-Máñez, R.; Soto, J.; Pardo, T. An electrochemical study in acetonitrile of macrocyclic or open-chain ferrocene-containing oxa-aza or polyaza receptors in the presence of protons, metal cation and anions. J. Organom. Chem. 2001, 637–639, 151–158. [Google Scholar] [CrossRef]
- Lednicer, D.; Hauser, C.R. N,N-Dimethylaminomethylferrocene methiodide. Org. Synth. 1960, 40, 31. [Google Scholar]
- Strohalm, M.; Kavan, D.; Novak, P.; Volný, M.; Havliček, V. mMass 3: Cross-platform Software Environment for Precise Analysis of Mass Spectrometric Data. Anal. Chem. 2010, 82, 4648–4651. [Google Scholar] [CrossRef]
- SAINT; Bruker AXS Inc.: Madison, WI, USA, 2000.
- SADABS; Bruker AXS Inc.: Madison, WI, USA, 2000.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL—Crystal structure refinement with SHELXL. Acta Cryst. 2018, 74, 112–122. [Google Scholar]
- Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. 2009, 65, 148–155. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView; Version 6.0. 16; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
Cation | E½complex/mV | ΔE½/mV b | RCE (Kred/Kox) c |
---|---|---|---|
H+ | 640 | 190 | --- |
Cu2+ | 540 | 90 | 33 |
Zn2+ | 590 | 140 | 235 |
Cd2+ | 540 | 90 | 33 |
Hg2+ | 590 | 140 | 235 |
Pb2+ | 680 | 230 | 7.9 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garau, A.; Blake, A.J.; Aragoni, M.C.; Arca, M.; Caltagirone, C.; Demartin, F.; Lippolis, V.; Picci, G.; Podda, E. Coordination Chemistry of Mixed-Donor Pyridine-Containing Macrocyclic Ligands: From Optical to Redox Chemosensors for Heavy Metal Ions. Molecules 2025, 30, 130. https://doi.org/10.3390/molecules30010130
Garau A, Blake AJ, Aragoni MC, Arca M, Caltagirone C, Demartin F, Lippolis V, Picci G, Podda E. Coordination Chemistry of Mixed-Donor Pyridine-Containing Macrocyclic Ligands: From Optical to Redox Chemosensors for Heavy Metal Ions. Molecules. 2025; 30(1):130. https://doi.org/10.3390/molecules30010130
Chicago/Turabian StyleGarau, Alessandra, Alexander J. Blake, Maria Carla Aragoni, Massimiliano Arca, Claudia Caltagirone, Francesco Demartin, Vito Lippolis, Giacomo Picci, and Enrico Podda. 2025. "Coordination Chemistry of Mixed-Donor Pyridine-Containing Macrocyclic Ligands: From Optical to Redox Chemosensors for Heavy Metal Ions" Molecules 30, no. 1: 130. https://doi.org/10.3390/molecules30010130
APA StyleGarau, A., Blake, A. J., Aragoni, M. C., Arca, M., Caltagirone, C., Demartin, F., Lippolis, V., Picci, G., & Podda, E. (2025). Coordination Chemistry of Mixed-Donor Pyridine-Containing Macrocyclic Ligands: From Optical to Redox Chemosensors for Heavy Metal Ions. Molecules, 30(1), 130. https://doi.org/10.3390/molecules30010130