Exploring the Photocatalytic Efficiency of Gold Nanoparticles Deposited on Ni-Al-Zr-Layered Double Hydroxides for Selective Glucose Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Synthesis and Characterization
2.2. Catalyst Efficiency
2.2.1. Model Reaction
2.2.2. Factorial Experiments
2.3. Photocatalytic Behavior and Possible Mechanism
3. Materials and Methods
3.1. General
3.2. Synthesis of the Ni-Al-Zr LDH
3.3. Preparation of the Au/Ni-Al-Zr LDH
3.4. Catalytic Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 2012, 41, 1538–1558. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, C.; Pong, F.; Sen, A. Chemical conversion pathways for carbohydrates. Green Chem. 2015, 17, 40–71. [Google Scholar] [CrossRef]
- Isbell, H.S. Oxidation of the alpha and beta forms of the sugars. J. Am. Chem. Soc. 1932, 54, 1692–1693. [Google Scholar] [CrossRef]
- Hollenberg, D.H.; Klein, R.S.; Fox, J.J. Pyridinium chlorochromate for the oxidation of carbohydrates. Carbohydr. Res. 1978, 67, 491–494. [Google Scholar] [CrossRef]
- Balzani, V.; Credi, A.; Venturi, M. Photochemical Conversion of Solar Energy. ChemSusChem 2008, 1, 26–58. [Google Scholar] [CrossRef]
- Ciamician, G. The Photochemistry of The Future. Science 1912, 36, 385–394. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Magdziarz, A.; Bielejewska, A. High-value chemicals obtained from selective photo-oxidation of glucose in the presence of nanostructured titanium photocatalysts. Bioresour. Technol. 2011, 102, 11254–11257. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Magdziarz, A. Room temperature versatile conversion of biomass-derived compounds by means of supported TiO2 photocatalysts. J. Mol. Catal. A Chem. 2013, 366, 156–162. [Google Scholar] [CrossRef]
- Da Vià, L.; Recchi, C.; Gonzalez-Yanez, E.O.; Davies, T.E.; Lopez-Sanchez, J.A. Visible light selective photocatalytic conversion of glucose by TiO2. Appl. Catal. B Environ. 2017, 202, 281–288. [Google Scholar] [CrossRef]
- Bellardita, M.; García-López, E.I.; Marcì, G.; Megna, B.; Pomilla, F.R.; Palmisano, L. Photocatalytic conversion of glucose in aqueous suspensions of heteropolyacid–TiO2 composites. RSC Adv. 2015, 5, 59037–59047. [Google Scholar] [CrossRef]
- Chong, R.; Li, J.; Ma, Y.; Zhang, B.; Han, H.; Li, C. Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts. J. Catal. 2014, 314, 101–108. [Google Scholar] [CrossRef]
- Jin, B.; Yao, G.; Wang, X.; Ding, K.; Jin, F. Photocatalytic oxidation of glucose into formate on nano TiO2 catalyst. ACS Sustain. Chem. Eng. 2017, 5, 6377–6381. [Google Scholar] [CrossRef]
- Srikhaow, A.; Chuaicham, C.; Trakulmututa, J.; Shu, K.; Sasaki, K. Mg-modified graphitic carbon nitride/converter slag composites as an efficient photocatalyst for sugar conversion. Sustain. Energy Fuels 2024, 8, 3065–3076. [Google Scholar] [CrossRef]
- Zhao, H.; Li, C.-F.; Yong, X.; Kumar, P.; Palma, B.; Hu, Z.-Y.; Van Tendeloo, G.; Siahrostami, S.; Larter, S.; Zheng, D. Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1−xCdxS homojunction. Iscience 2021, 24, 102109. [Google Scholar] [CrossRef]
- Zhou, B.; Song, J.; Wu, T.; Liu, H.; Xie, C.; Yang, G.; Han, B. Simultaneous and selective transformation of glucose to arabinose and nitrosobenzene to azoxybenzene driven by visible-light. Green Chem. 2016, 18, 3852–3857. [Google Scholar] [CrossRef]
- Biella, S.; Prati, L.; Rossi, M. Selective oxidation of D-glucose on gold catalyst. J. Catal. 2002, 206, 242–247. [Google Scholar] [CrossRef]
- Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Selective oxidation using gold. Chem. Soc. Rev. 2008, 37, 2077–2095. [Google Scholar] [CrossRef]
- Della Pina, C.; Falletta, E.; Rossi, M. Update on selective oxidation using gold. Chem. Soc. Rev. 2012, 41, 350–369. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, D.; Sun, Y.; Zhou, Z.; Du, Y.; Du, Y.; Li, Y.; Liu, M.; Zhang, Y.; Shen, J.; et al. Structural sensitivity of heterogeneouscatalysts for sustainable chemical synthesis of gluconic acid from glucose. Chin. J. Catal. 2020, 41, 1320–1336. [Google Scholar] [CrossRef]
- Atta, N.F.; Ahmed, R.A.; Amin, H.M.; Galal, A. Monodispersed gold nanoparticles decorated carbon nanotubes as an enhanced sensing platform for nanomolar detection of tramadol. Electroanalysis 2012, 24, 2135–2146. [Google Scholar] [CrossRef]
- Amin, H.M.; El-Kady, M.F.; Atta, N.F.; Galal, A. Gold nanoparticles decorated graphene as a high performance sensor for determination of trace hydrazine levels in water. Electroanalysis 2018, 30, 1757–1766. [Google Scholar] [CrossRef]
- Shah, A.; Akhtar, S.; Mahmood, F.; Urooj, S.; Siddique, A.B.; Irfan, M.I.; Abbas, A. Fagonia arabica extract-stabilized gold nanoparticles as a highly selective colorimetric nanoprobe for Cd2+ detection and as a potential photocatalytic and antibacterial agent. Surf. Interfaces 2024, 51, 104556. [Google Scholar] [CrossRef]
- Wang, C.; Astruc, D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev. 2014, 43, 7188–7216. [Google Scholar] [CrossRef] [PubMed]
- Omri, M.; Sauvage, F.; Becuwe, M.; Pourceau, G.; Wadouachi, A.; Busby, Y. Gold catalysis and photoactivation: A fast and selective procedure for the oxidation of free sugars. ACS Catal. 2018, 8, 1635–1639. [Google Scholar] [CrossRef]
- Omri, M.; Sauvage, F.; Golonu, S.; Wadouachi, A.; Pourceau, G. Photocatalyzed transformation of free carbohydrates. Catalysts 2018, 8, 672. [Google Scholar] [CrossRef]
- Gellé, A.; Jin, T.; de la Garza, L.; Besteiro, L.V.; Moores, A. Applications of plasmon-enhanced nanocatalysis to organic transformations et al. Chem. Rev. 2020, 120, 986–1042. [Google Scholar] [CrossRef]
- Golonu, S.; Pourceau, G.; Quehon, L.; Wadouachi, A.; Sauvage, F. Insight on the contribution of plasmons to gold-catalyzed solar driven selective oxidation of glucose under oxygen. Solar RRL 2020, 4, 2000084. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P.H.C.; Krishnan, V. Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small 2022, 18, 2101638. [Google Scholar] [CrossRef]
- Kwok, W.L.; Crivoi, D.-G.; Chen, C.; Buffet, J.-C.; O’Hare, D. Silica@layered double hydroxide core–shell hybrid materials. Dalton Trans. 2018, 47, 143–149. [Google Scholar] [CrossRef]
- Mantovani, K.M.; Westrup, K.C.M.; da Silva Junior, R.M.; Jaerger, S.; Wypych, F.; Nakagaki, S. Oxidation catalyst obtained by the immobilization of layered double hydroxide/Mn (III) porphyrin on monodispersed silica spheres. Dalton Trans. 2018, 47, 3068–3073. [Google Scholar] [CrossRef]
- Fan, K.; Xu, P.; Li, Z.; Shao, M.; Duan, X. Layered double hydroxides: Next promising materials for energy storage and conversion. Next Mater. 2023, 1, 100040. [Google Scholar] [CrossRef]
- Xu, S.-M.; Pan, T.; Dou, Y.-B.; Yan, H.; Zang, S.-T.; Ning, F.-Y.; Shi, W.-Y.; Wei, M. Theoretical and experimental study on MIIMIII-layered double hydroxides as efficient photocatalysts toward oxygen evolution from water. J. Phys. Chem. C 2015, 119, 18823–18834. [Google Scholar] [CrossRef]
- Iguchi, S.; Kikkawa, S.; Teramura, K.; Hosokawa, S.; Tanaka, T. Investigation of the electrochemical and photoelectrochemical properties of Ni–Al LDH photocatalysts. Phys. Chem. Chem. Phys. 2016, 18, 13811–13819. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Waterhouse, G.I.; Chen, G.; Xiong, X.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 2019, 48, 1972–2010. [Google Scholar] [CrossRef]
- Ding, G.; Liu, Z.; Wang, Q.; Li, Y.; Liu, W.; Liu, Y. Ag-modified α-Fe2O3 spherical particles interspersed on hierarchical flower-like NiAl-LDH microspheres with Z-scheme for significantly enhanced CO2 photoreduction into CO. J. Colloid Interf. Sci. 2023, 629, 193–205. [Google Scholar] [CrossRef]
- Ding, G.; Li, C.; Ni, Y.; Chen, L.; Shuai, L.; Liao, G. Layered double hydroxides and their composites as high-performance photocatalysts for CO2 reduction. EES Catal. 2023, 1, 369–391. [Google Scholar] [CrossRef]
- Ding, G.; Wang, Z.; Zhang, J.; Wang, P.; Chen, L.; Liao, G. Layered double hydroxides-based Z-scheme heterojunction for photocatalysis. EcoEnergy 2024, 2, 22–44. [Google Scholar] [CrossRef]
- Gilea, D.; Ciocarlan, R.G.; Seftel, E.M.; Cool, P.; Carja, G. Engineering Heterostructures of Layered Double Hydroxides and Metal Nanoparticles for Plasmon-Enhanced Catalysis. Catalysts 2022, 12, 1210. [Google Scholar] [CrossRef]
- Tomar, R.; Sharma, J.; Nishimura, S.; Ebitani, K. Aqueous oxidation of sugars into sugar acids using hydrotalcite-supported gold nanoparticle catalyst under atmospheric molecular oxygen. Chem. Lett. 2016, 45, 843–845. [Google Scholar] [CrossRef]
- Zhuge, Y.; Fan, G.; Lin, Y.; Yang, L.; Li, F. A hybrid composite of hydroxyapatite and Ca–Al layered double hydroxide supported Au nanoparticles for highly efficient base-free aerobic oxidation of glucose. Dalton Trans. 2019, 48, 9161–9172. [Google Scholar] [CrossRef]
- Arias, S.; Sousa, L.V.; Barbosa, C.B.; Silva, A.O.S.; Fréty, R.; Pacheco, J.G.A. Preparation of NiAlZr-terephthalate LDHs with high Al and Zr content and their mixed oxides for cyclohexane dehydrogenation. Appl. Clay Sci. 2018, 166, 137–145. [Google Scholar] [CrossRef]
- Dib, N.; Bachir, R.; Berrichi, A.; Blanco, G.; Bedrane, S.; Calvino, J.J. Zr-doped MgAl-LDH@Au nano-catalysts for selective and efficient oxidation of biomass-derived furfural. J. Environ. Chem. Eng. 2024, 12, 113357. [Google Scholar]
- Berrichi, A.; Bachir, R.; Benabdallah, M.; Choukchou-Braham, N. Supported nano gold catalyzed three-component coupling reactions of amines, dichloromethane and terminal alkynes (AHA). Tetrahedron Lett. 2015, 56, 1302–1306. [Google Scholar] [CrossRef]
- Zhang, L.-Y.; Han, Y.-L.; Liu, M.; Deng, S.-L. Ni–Al layered double hydroxide-coupled layered mesoporous titanium dioxide (Ni–Al LDH/LM-TiO2) composites with integrated adsorption-photocatalysis performance. RSC Adv. 2023, 13, 16797–16814. [Google Scholar] [CrossRef]
- Khan, A.W.; Lali, N.S.; Sabei, F.Y.; Irfan, M.I.; Naeem-Ul-Hassan, M.; Sher, M.; Safhi, A.Y.; Alsalhi, A.; Albariqi, A.H.; Kamli, F.; et al. Sunlight-assisted green synthesis of gold nanocubes using horsetail leaf extract: A highly selective colorimetric sensor for Pb2+, photocatalytic and antimicrobial agent. J. Environ. Chem. Eng. 2024, 12, 112576. [Google Scholar] [CrossRef]
- Gomes Silva, C.; Bouizi, Y.; Fornés, V.; Garcia, H. Layered Double Hydroxides as Highly Efficient Photocatalysts for Visible Light Oxygen Generation from Water. J. Am. Chem. Soc. 2009, 131, 13833–13839. [Google Scholar] [CrossRef]
- Comotti, M.; Della Pina, C.; Falletta, E.; Rossi, M. Aerobic oxidation of glucose with gold catalyst: Hydrogen peroxide as intermediate and reagent. Adv. Synth. Catal. 2006, 348, 313–316. [Google Scholar] [CrossRef]
- Castillo, N.C.; Ding, L.; Heel, A.; Graule, T.; Pulgarin, C.J. On the photocatalytic degradation of phenol and dichloroacetate by BiVO4: The need of a sacrificial electron acceptor. J. Photochem. Photobiol. A 2010, 216, 221–227. [Google Scholar]
- Tseng, D.-H.; Juang, L.-C.; Huang, H.-H. Effect of Oxygen and Hydrogen Peroxide on the Photocatalytic Degradation of Monochlorobenzene in TiO2 Aqueous Suspension. Int. J. Photoenergy 2012, 2012, 328526. [Google Scholar] [CrossRef]
Factors | Level | ||
---|---|---|---|
Low (−) | Center (0) | High (+) | |
A—Catalyst mass (mg) | 2.5 | 13.75 | 25 |
B—H2O2 volume (µL) | 200 | 400 | 600 |
C—NaOH mass (mg) | 10 | 32 | 55 |
D—Time (min) | 30 | 60 | 90 |
mcat (mg) | V(H2O2) (µL) | mNaOH (mg) | Time (min) | Conv. (%) | |
---|---|---|---|---|---|
Pred. | 29.7 | 519.13 | 64.92 | 89.89 | 100 |
Exp. | 30 | 520 | 65 | 90 | 87 |
Catalyst | Illumination | Conditions | Glucose Conversion | Selectivity | Ref. |
---|---|---|---|---|---|
4.7Mg–CN/CS | 500 W Xe short arc lamp with a cut-off filter of λ > 380 nm | 50 °C/2 h | 97% | 71% lactic acid | [13] |
Zn0.6Cd0.4S | 300 W Xenon lamp | 25 °C | ~90% | ~87% lactic acid | [14] |
0.2%Pt/TiO2 | 300 W Xenon lamp | 15 °C/4 h | 35.9% | 78.6% arabinose and 21.0% erythrose | [11] |
0.2%Rh/TiO2 | 300 W Xenon lamp | 15 °C/4 h | 47.0% | 74.7% arabinose and 20.6% erythrose | [11] |
0.2%Ni/TiO2 | 300 W Xenon lamp | 15 °C/4 h | 27.7% | 85.9% arabinose and 7.5% erythrose | [11] |
TiO2 | 300 W Xenon lamp | 15 °C/4 h | 42% | 7% gluconic acid and 93% C2–C5 compounds | [11] |
Au/CeO2 | Simulated sunlight (A.M. 1.5 G) | 25 °C/10 min | >99% | >95% sodium gluconate | [24] |
0.5% Au/Ni-Al-Zr LDH | Simulated sunlight (A.M. 1.5 G) | 25 °C/1.5 h | 87% | >95% sodium gluconate | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dib, N.; Sauvage, F.; Quéhon, L.; Khaldi, K.; Bedrane, S.; Calvino, J.J.; Bachir, R.; Blanco, G.; Pourceau, G. Exploring the Photocatalytic Efficiency of Gold Nanoparticles Deposited on Ni-Al-Zr-Layered Double Hydroxides for Selective Glucose Oxidation. Molecules 2025, 30, 13. https://doi.org/10.3390/molecules30010013
Dib N, Sauvage F, Quéhon L, Khaldi K, Bedrane S, Calvino JJ, Bachir R, Blanco G, Pourceau G. Exploring the Photocatalytic Efficiency of Gold Nanoparticles Deposited on Ni-Al-Zr-Layered Double Hydroxides for Selective Glucose Oxidation. Molecules. 2025; 30(1):13. https://doi.org/10.3390/molecules30010013
Chicago/Turabian StyleDib, Nihel, Frédéric Sauvage, Lucie Quéhon, Khadidja Khaldi, Sumeya Bedrane, José Juan Calvino, Redouane Bachir, Ginesa Blanco, and Gwladys Pourceau. 2025. "Exploring the Photocatalytic Efficiency of Gold Nanoparticles Deposited on Ni-Al-Zr-Layered Double Hydroxides for Selective Glucose Oxidation" Molecules 30, no. 1: 13. https://doi.org/10.3390/molecules30010013
APA StyleDib, N., Sauvage, F., Quéhon, L., Khaldi, K., Bedrane, S., Calvino, J. J., Bachir, R., Blanco, G., & Pourceau, G. (2025). Exploring the Photocatalytic Efficiency of Gold Nanoparticles Deposited on Ni-Al-Zr-Layered Double Hydroxides for Selective Glucose Oxidation. Molecules, 30(1), 13. https://doi.org/10.3390/molecules30010013