A Triazine Membrane for Sustainable Acquisition of Au(III) from Wastewater
Abstract
:1. Introduction
2. Results
2.1. Optimization and Characterization of PEI-TCT/PVDF Membrane
2.1.1. Optimization of PEI-TCT/PVDF Membrane
2.1.2. Characterization of PEI-TCT/PVDF Membrane
2.2. Adsorption Studies of Au(Ⅲ) on PEI-TCT/PVDF Membranes
2.2.1. Effect of pH on Membrane Performance
2.2.2. Effect of Membrane Thickness on Dynamic Recovery of Au(III)
2.2.3. Effect of Initial Solution Concentration on Dynamic Recovery of Au(III)
2.3. Selectivity and Regeneration Experiments of PEI-TCT/PVDF Membrane on Au(III)
2.4. Adsorption Mechanism of PEI-TCT/PVDF Membrane on Au(III)
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Instruments and Equipment
3.3. Preparation of PEI-TCT/PVDF Membranes
3.4. Experimental Method
3.5. DFT Calculation
3.6. Preparation of the Solution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, N.V.; Lee, J.-C.; Kim, S.-K.; Jha, M.K.; Chung, K.-S.; Jeong, J. Adsorption of gold(III) from waste rinse water of semiconductor manufacturing industries using Amberlite XAD-7HP resin. Gold Bull. 2010, 43, 200–208. [Google Scholar] [CrossRef]
- Ventura-Espinosa, D.; Sabater, S.; Mata, J.A. Enhancement of gold catalytic activity and stability by immobilization on the surface of graphene. J. Catal. 2017, 352, 498–504. [Google Scholar] [CrossRef]
- Vial, S.; Reis, R.L.; Oliveira, J.M. Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Curr. Opin. Solid State Mater. Sci. 2017, 21, 92–112. [Google Scholar] [CrossRef]
- Behnamfard, A.; Salarirad, M.M.; Veglio, F. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Manag. 2013, 33, 2354–2363. [Google Scholar] [CrossRef]
- Cyganowski, P.; Garbera, K.; Leśniewicz, A.; Wolska, J.; Pohl, P.; Jermakowicz-Bartkowiak, D. The recovery of gold from the aqua regia leachate of electronic parts using a core–shell type anion exchange resin. J. Saudi Chem. Soc. 2017, 21, 741–750. [Google Scholar] [CrossRef]
- Murakami, H.; Nishihama, S.; Yoshizuka, K. Separation and recovery of gold from waste LED using ion exchange method. Hydrometallurgy 2015, 157, 194–198. [Google Scholar] [CrossRef]
- Ahamed, M.E.H.; Mbianda, X.Y.; Mulaba-Bafubiandi, A.F.; Marjanovic, L. Selective extraction of gold(III) from metal chloride mixtures using ethylenediamine N-(2-(1-imidazolyl)ethyl) chitosan ion-imprinted polymer. Hydrometallurgy 2013, 140, 1–13. [Google Scholar] [CrossRef]
- Sasaki, Y.; Morita, K.; Saeki, M.; Hisamatsu, S.; Yoshizuka, K. Precious metal extraction by N,N,N′,N′-tetraoctyl-thiodiglycolamide and its comparison with N,N,N′,N′-tetraoctyl-diglycolamide and methylimino-N,N′-dioctylacetamide. Hydrometallurgy 2017, 169, 576–584. [Google Scholar] [CrossRef]
- Vojoudi, H.; Badiei, A.; Banaei, A.; Bahar, S.; Karimi, S.; Mohammadi Ziarani, G.; Ganjali, M.R. Extraction of gold, palladium and silver ions using organically modified silica-coated magnetic nanoparticles and silica gel as a sorbent. Microchim. Acta 2017, 184, 3859–3866. [Google Scholar] [CrossRef]
- Deng, K.; Yin, P.; Liu, X.; Tang, Q.; Qu, R. Modeling, analysis and optimization of adsorption parameters of Au(III) using low-cost agricultural residuals buckwheat hulls. J. Ind. Eng. Chem. 2014, 20, 2428–2438. [Google Scholar] [CrossRef]
- Ok, Y.S.; Jeon, C. Selective adsorption of the gold–cyanide complex from waste rinse water using Dowex 21K XLT resin. J. Ind. Eng. Chem. 2014, 20, 1308–1312. [Google Scholar] [CrossRef]
- Pangeni, B.; Paudyal, H.; Abe, M.; Inoue, K.; Kawakita, H.; Ohto, K.; Adhikari, B.B.; Alam, S. Selective recovery of gold using some cross-linked polysaccharide gels. Green Chem. 2012, 14, 1917–1927. [Google Scholar] [CrossRef]
- Yang, J.; Kubota, F.; Baba, Y.; Kamiya, N.; Goto, M. Application of cellulose acetate to the selective adsorption and recovery of Au(III). Carbohydr. Polym. 2014, 111, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Hu, B. Experimental and DFT study of adsorption-reduction mechanism of Au(III) and Cr(VI) by β-cyclodextrin/polydopamine coated UiO-66-NH2 magnetic composites. Appl. Surf. Sci. 2023, 626, 157292. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Wang, S.; Zhang, L. Selective and highly efficient recovery of Au(III) by poly(ethylene sulfide)-functionalized UiO-66-NH2: Characterization and mechanisms. J. Mol. Liq. 2022, 367, 120584. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, G.; Dong, A.; Zhang, J. A Facile Approach to Sulfur-Rich Covalent Organic Frameworks for Selective Recovery of Trace Gold. Macromol. Mater. Eng. 2022, 307, 2100761. [Google Scholar] [CrossRef]
- Liu, M.; Kong, H.-Y.; Bi, S.; Ding, X.; Chen, G.Z.; He, J.; Xu, Q.; Han, B.-H.; Zeng, G. Non-Interpenetrated 3D Covalent Organic Framework with Dia Topology for Au Ions Capture. Adv. Funct. Mater. 2023, 33, 2302637. [Google Scholar] [CrossRef]
- Qian, H.-L.; Meng, F.-L.; Yang, C.-X.; Yan, X.-P. Irreversible Amide-Linked Covalent Organic Framework for Selective and Ultrafast Gold Recovery. Angew. Chem. Int. Ed. 2020, 59, 17607–17613. [Google Scholar] [CrossRef]
- Lin, G.; Wang, S.; Zhang, L.; Hu, T.; Peng, J.; Cheng, S.; Fu, L. Synthesis and evaluation of thiosemicarbazide functionalized corn bract for selective and efficient adsorption of Au(III) from aqueous solutions. J. Mol. Liq. 2018, 258, 235–243. [Google Scholar] [CrossRef]
- Lam, K.F.; Fong, C.M.; Yeung, K.L.; McKay, G. Selective adsorption of gold from complex mixtures using mesoporous adsorbents. Chem. Eng. J. 2008, 145, 185–195. [Google Scholar] [CrossRef]
- Hu, G.; Wang, Z.; Zhang, W.; He, H.; Zhang, Y.; Deng, X.; Li, W. MIL-161 Metal–Organic Framework for Efficient Au(III) Recovery from Secondary Resources: Performance, Mechanism, and DFT Calculations. Molecules 2023, 28, 5459. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.H.; Jiang, D.; Fu, Y.B.; Chen, G.Z.; Bi, S.; Ding, X.S.; He, J.; Han, B.H.; Xu, Q.; Zeng, G.F. Modulating Skeletons of Covalent Organic Framework for High-Efficiency Gold Recovery. Angew. Chem. Int. Ed. 2024, 63, e202317015. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhu, G.; Huang, Q.; Yin, C.; Jiang, X.; Yang, X.; Xie, Q. Efficient recovery of Au(III) through PVDF-based polymer inclusion membranes containing hydrophobic deep eutectic solvent. J. Mol. Liq. 2021, 343, 117670. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Yang, C. Affinitive Poly(vinylidene difluoride) Membranes for Enhancing Au(III) Separation with Extremely High Selectivity. Chem. Eng. Technol. 2017, 41, 327–336. [Google Scholar] [CrossRef]
- Choudhary, B.C.; Paul, D.; Borse, A.U.; Garole, D.J. Surface functionalized biomass for adsorption and recovery of gold from electronic scrap and refinery wastewater. Sep. Purif. Technol. 2018, 195, 260–270. [Google Scholar] [CrossRef]
- Li, Z.; Chen, R.; Wang, Y.; Zhu, L.; Luo, W.; Zhang, Z.; Hadjichristidis, N. Solvent and catalyst-free modification of hyperbranched polyethyleneimines by ring-opening-addition or ring-opening-polymerization of N-sulfonyl aziridines. Polym. Chem. 2021, 12, 1787–1796. [Google Scholar] [CrossRef]
- Won, S.W.; Park, J.; Mao, J.; Yun, Y.S. Utilization of PEI-modified Corynebacterium glutamicum biomass for the recovery of Pd(II) in hydrochloric solution. Bioresour. Technol. 2011, 102, 3888–3893. [Google Scholar] [CrossRef] [PubMed]
- Yasin, A.; Chen, Y.; Liu, Y.; Zhang, L.; Zan, X.; Zhang, Y. Hyperbranched multiple polythioamides made from elemental sulfur for mercury adsorption. Polym. Chem. 2020, 11, 810–819. [Google Scholar] [CrossRef]
- Zhao, F.; Repo, E.; Song, Y.; Yin, D.; Hammouda, S.B.; Chen, L.; Kalliola, S.; Tang, J.; Tam, K.C.; Sillanpää, M. Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study. Green Chem. 2017, 19, 4816–4828. [Google Scholar] [CrossRef]
- Can, M.; Doğan, M.; İmamoğlu, M.; Arslan, M. Au (III) uptake by triazine polyamine polymers: Mechanism, kinetic and equilibrium studies. React. Funct. Polym. 2016, 109, 151–161. [Google Scholar] [CrossRef]
- Sayın, M.; Can, M.; İmamoğlu, M.; Arslan, M. 1,3,5-Triazine-pentaethylenehexamine polymer for the adsorption of palladium (II) from chloride-containing solutions. React. Funct. Polym. 2015, 88, 31–38. [Google Scholar] [CrossRef]
- Hu, B.W.; Yang, M.; Huang, H.; Song, Z.L.; Tao, P.; Wu, Y.R.; Tang, K.W.; Chen, X.B.; Yang, C.A. Triazine-crosslinked polyethyleneimine for efficient adsorption and recovery of gold from wastewater. J. Mol. Liq. 2022, 367, 120586. [Google Scholar] [CrossRef]
- Wang, M.Z.; Fu, M.Y.; Li, J.F.; Niu, Y.H.; Zhang, Q.R.; Sun, Q.A. New insight into polystyrene ion exchange resin for efficient cesium sequestration: The synergistic role of confined zirconium phosphate nanocrystalline. Chin. Chem. Lett. 2024, 35, 108442. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97, 119–124. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 2021, 23, 20323–20328. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
Adsorbent | Qe exp /(mg/g) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
K1/min | Qe1 cal /(mg/g) | R12 | K2/min | Qe2 cal /(mg/g) | R22 | ||
PEI-TCT/PVDF | 294.5 | 0.0014 | 160.37 | 0.94876 | 0.00365 | 273.97 | 0.99871 |
Metalions | Au(III) | Ni(II) | Co(II) | Cu(II) | Zn(II) | Pb(II) | Cd(II) | Cr(III) |
---|---|---|---|---|---|---|---|---|
D/(mL/g) | 1573.08 | 0.227 | 2.189 | 1.728 | 2.547 | 7.057 | 4.643 | 0.941 |
k | 1 | 6927.85 | 718.65 | 910.29 | 617.74 | 222.89 | 338.84 | 1672.28 |
Number | Atom | fA+ |
---|---|---|
1 | C | 0.157 |
2 | N | 0.035 |
3 | C | 0.168 |
4 | N | 0.149 |
5 | C | 0.011 |
6 | N | 0.157 |
7 | C | −0.004 |
9 | N | 0.002 |
11 | H | 0.014 |
15 | H | 0.002 |
16 | H | 0.002 |
20 | N | 0.045 |
21 | Cl | 0.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, G.; Dong, H.; Zhang, Y.; Zhang, C.; Chen, T.; He, Y.; He, H.; Li, W.; Deng, X.; Nie, Z.; et al. A Triazine Membrane for Sustainable Acquisition of Au(III) from Wastewater. Molecules 2024, 29, 2051. https://doi.org/10.3390/molecules29092051
Shang G, Dong H, Zhang Y, Zhang C, Chen T, He Y, He H, Li W, Deng X, Nie Z, et al. A Triazine Membrane for Sustainable Acquisition of Au(III) from Wastewater. Molecules. 2024; 29(9):2051. https://doi.org/10.3390/molecules29092051
Chicago/Turabian StyleShang, Ge, Haonan Dong, Yi Zhang, Conghuan Zhang, Ting Chen, Yunhua He, Hongxing He, Weili Li, Xiujun Deng, Zhifeng Nie, and et al. 2024. "A Triazine Membrane for Sustainable Acquisition of Au(III) from Wastewater" Molecules 29, no. 9: 2051. https://doi.org/10.3390/molecules29092051
APA StyleShang, G., Dong, H., Zhang, Y., Zhang, C., Chen, T., He, Y., He, H., Li, W., Deng, X., Nie, Z., & Zhao, S. (2024). A Triazine Membrane for Sustainable Acquisition of Au(III) from Wastewater. Molecules, 29(9), 2051. https://doi.org/10.3390/molecules29092051