Recent Advances in Grayanane Diterpenes: Isolation, Structural Diversity, and Bioactivities from Ericaceae Family (2018–2024)
Abstract
:1. Introduction
2. Overview of Structural Diversity and Biological Activities of Grayanane Terpenes
2.1. Normal Grayanane-Type Diterpenes (1–97)
2.2. Epoxy-Grayanane (98–132)- and Seco-Grayanane (133–142)-Type Diterpenes
2.3. Grayanane Dimers-Type Diterpenes (143–149)
2.4. Leucothane-Type Diterpenes (150–163)
2.5. Ent-Kaurane (164–168)- and Seco-Ent-Kaurane (169–173)-Type Diterpenes
2.6. Kalmane (174–179)- and Seco-Kalmane (180)-Type Diterpenes
2.7. Other Grayanane-Related Diterpenes (181–193)
3. Conclusions
4. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AITC | Allyl isothiocyanate |
LPS | lipopolysaccharide |
NMR | Nuclear magnetic resonance |
ECD | Electronic circular dichroism |
PTP1B | Protein tyrosine phosphatase 1B |
C. yunnanense | Craibiodendron yunnanense |
P. formosa | Pieris formosa |
R. micranthum | Rhododendron micranthum |
R. molle | Rhododendron molle |
R. decorum | Rhododendron decorum |
R. auriculatum | Rhododendron auriculatum |
P. japonica | Pieris japonica |
R. dauricum | Rhododendron dauricum |
R. pumilum | Rhododendron pumilum |
References
- Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.-B.; Yu, S.-S. Grayanoids from the Ericaceae family: Structures, biological activities and mechanism of action. Phytochem. Rev. 2013, 12, 305–325. [Google Scholar] [CrossRef]
- Niu, C.-S.; Li, Y.; Liu, Y.-B.; Ma, S.-G.; Li, L.; Qu, J.; Yu, S.-S. Analgesic diterpenoids from the twigs of Pieris formosa. Tetrahedron 2016, 72, 44–49. [Google Scholar] [CrossRef]
- Xiao, S.-M.; Niu, C.-S.; Li, Y.; Tang, Z.-S.; Qu, J. Chemical constituents from roots of Pieris formosa and their bioactivity. Zhongguo Zhong Yao Za Zhi 2018, 43, 964–969. [Google Scholar] [PubMed]
- Niu, C.S.; Li, Y.; Liu, Y.B.; Ma, S.G.; Liu, F.; Li, L.; Xu, S.; Wang, X.J.; Wang, R.B.; Qu, J.; et al. Pierisketolide A and Pierisketones B and C, Three Diterpenes with an Unusual Carbon Skeleton from the Roots of Pieris formosa. Org. Lett. 2017, 19, 906–909. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Su, H.G.; Peng, X.R.; Bi, H.C.; Qiu, M.H. An updated review of the genus Rhododendron since 2010: Traditional uses, phytochemistry, and pharmacology. Phytochemistry 2024, 217, 113899. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, J.; Zhang, J. The efficacy and toxicity of grayanoids as analgesics: A systematic review. J. Ethnopharmacol. 2022, 298, 115581. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.-S.; Li, Y.; Liu, Y.-B.; Ma, S.-G.; Liu, F.; Li, L.; Xu, S.; Wang, X.-J.; Liu, S.; Wang, R.-B.; et al. Biological and chemical guided isolation of 3,4-secograyanane diterpenoids from the roots of Pieris formosa. RSC Adv. 2017, 7, 43921–43932. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, T.; Zhang, H.; Zheng, G.; Qiu, Y.; Deng, M.; Zhang, C.; Yao, G. Anti-inflammatory Grayanane Diterpenoids from the Leaves of Rhododendron molle. J. Nat. Prod. 2018, 81, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.-S.; Li, Y.; Liu, Y.-B.; Ma, S.-G.; Liu, F.; Cui, L.; Yu, H.-B.; Wang, X.-J.; Qu, J.; Yu, S.-S. Grayanane diterpenoids with diverse bioactivities from the roots of Pieris formosa. Tetrahedron 2018, 74, 375–382. [Google Scholar] [CrossRef]
- Sun, N.; Zhu, Y.; Zhou, H.; Zhou, J.; Zhang, H.; Zhang, M.; Zeng, H.; Yao, G. Grayanane Diterpenoid Glucosides from the Leaves of Rhododendron micranthum and Their Bioactivities Evaluation. J. Nat. Prod. 2018, 81, 2673–2681. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Yu, H.; Deng, M.; Wu, F.; Chen, S.C.; Luo, T. Enantioselective Total Syntheses of Grayanane Diterpenoids and (+)-Kalmanol: Evolution of the Bridgehead Carbocation-Based Cyclization and Late-Stage Functional Group Manipulation Strategies. J. Org. Chem. 2023, 88, 6017–6038. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Yang, Z.N.; Liu, C.H.; Wu, S.Q.; Hong, X.; Zhao, X.L.; Ding, H. Total Syntheses of Rhodomolleins XX and XXII: A Reductive Epoxide-Opening/Beckwith-Dowd Approach. Angew. Chem. Int. Ed. Engl. 2019, 58, 8556–8560. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Zhang, J.Y.; Zhang, X.Y.; Li, S.H.; Gao, J.M. An overview of grayanane diterpenoids and their biological activities from the Ericaceae family in the last seven years. Eur. J. Med. Chem. 2019, 166, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.Q.; Hu, J.H.; Qin, J.; Sun, T.; Li, X.L. Rhododendron molle (Ericaceae): Phytochemistry, pharmacology, and toxicology. Chin. J. Nat. Med. 2018, 16, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Huang, L.; Feng, Y.; Zhang, H.; Ma, X.; Gao, B.; Sun, Y.; Abudurexiti, A.; Yao, G. Structurally diverse analgesic diterpenoids from the flowers of Rhododendron molle. Fitoterapia 2024, 172, 105770. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Qiu, Y.; Zhu, Y.; Liu, J.; Zhang, H.; Zhang, Q.; Zhang, M.; Zheng, G.; Zhang, C.; Yao, G. Rhodomicranosides A-I, analgesic diterpene glucosides with diverse carbon skeletons from Rhododendron micranthum. Phytochemistry 2019, 158, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Liu, S.; Li, Y.; Liu, Y.; Ma, S.; Liu, F.; Li, L.; Qu, J.; Yu, S. Diterpenoids with diverse carbon skeletons from the roots of Pieris formosa and their analgesic and antifeedant activities. Bioorg. Chem. 2020, 95, 103502. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zha, S.; Zhang, H.; Gao, B.; Zheng, G.; Jin, P.; Chen, Y.; Yao, G. Rhodauricanol A, an analgesic diterpenoid with an unprecedented 5/6/5/7 tetracyclic system featuring a unique 16-oxa-tetracyclo [11.2.1.01,5.07,13]hexadecane core from Rhododendron dauricum. Chin. Chem. Lett. 2023, 34, 107742. [Google Scholar] [CrossRef]
- Jin, P.; Zheng, G.; Yuan, X.; Ma, X.; Feng, Y.; Yao, G. Structurally diverse diterpenoids with eight carbon skeletons from Rhododendron micranthum and their antinociceptive effects. Bioorg. Chem. 2021, 111, 104870. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Jin, P.; Huang, L.; Zhang, Q.; Meng, L.; Yao, G. Structurally diverse diterpenoids from Pieris japonica as potent analgesics. Bioorg. Chem. 2020, 99, 103794. [Google Scholar] [CrossRef] [PubMed]
- Chai, B.; Li, Y.; Yu, S.S. Three new antinociceptive diterpenoids from the roots of Rhododendron micranthum. J. Asian Nat. Prod. Res. 2020, 22, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, Y.; Zhang, Z.; Li, L.; Liu, Y.; Qu, J.; Ma, S.; Yu, S. Antinociceptive grayanane-derived diterpenoids from flowers of Rhododendron molle. Acta Pharm. Sin. B 2020, 10, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Feng, Y.; Zhang, Q.; Liu, J.; Zhou, H.; Zhang, H.; Zheng, G.; Zhou, J.; Yao, G. Analgesic diterpenoids with diverse carbon skeletons from the leaves of Rhododendron auriculatum. Phytochemistry 2019, 168, 112113. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Zhang, Z.X.; Yan, H.M.; Lu, D.; Zhang, H.P.; Li, L.; Liu, Y.B.; Li, Y. Antinociceptive Diterpenoids from the Leaves and Twigs of Rhododendron decorum. J. Nat. Prod. 2018, 81, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, J.; Dang, T.; Zhou, H.; Zhang, H.; Yao, G. Mollebenzylanols A and B, Highly Modified and Functionalized Diterpenoids with a 9-Benzyl-8,10-dioxatricyclo[5.2.1.01,5]decane Core from Rhododendron molle. Org. Lett. 2018, 20, 2063–2066. [Google Scholar] [CrossRef]
- Huang, L.; Zheng, G.; Feng, Y.; Jin, P.; Gao, B.; Zhang, H.; Ma, X.; Zhou, J.; Yao, G. Highly Oxygenated Dimeric Grayanane Diterpenoids as Analgesics: TRPV1 and TRPA1 Dual Antagonists from Rhododendron molle. Chin. J. Chem. 2022, 40, 2285–2295. [Google Scholar] [CrossRef]
- Sun, N.; Zheng, G.; He, M.; Feng, Y.; Liu, J.; Wang, M.; Zhang, H.; Zhou, J.; Yao, G. Grayanane Diterpenoids from the Leaves of Rhododendron auriculatum and Their Analgesic Activities. J. Nat. Prod. 2019, 82, 1849–1860. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Zhou, J.; Huang, L.; Zhang, H.; Sun, N.; Zhang, H.; Jin, P.; Yue, M.; Meng, L.; Yao, G. Antinociceptive Grayanane Diterpenoids from the Leaves of Pieris japonica. J. Nat. Prod. 2019, 82, 3330–3339. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, H.; Gao, B.; Zheng, G.; Zha, S.; Yao, G. Highly oxygenated grayanane diterpenoids with structural diversity from the flowers of Rhododendron dauricum and their analgesic activities. Bioorg. Chem. 2023, 132, 106374. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guo, Y.; Wei, D.; Gong, L.; Feng, L.; Dong, X.; Cui, T. Grayanane diterpenoids from Craibiodendron yunnanense with anti-inflammatory and antinociceptive activities. Phytochemistry 2023, 212, 113729. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Huang, L.; Feng, Y.; Zhang, H.; Gao, B.; Ma, X.; Sun, Y.; Abudurexiti, A.; Yao, G. Discovery of highly functionalized grayanane diterpenoids from the flowers of Rhododendron molle as potent analgesics. Bioorg. Chem. 2024, 142, 106928. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, Y.N.; Wang, H.Q.; Yang, W.Q.; Ma, S.G.; Li, Y.; Qu, J.; Liu, Y.B.; Yu, S.S. Minor terpenoids from the leaves of Craibiodendron yunnanense. J. Asian Nat. Prod. Res. 2023, 25, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.S.; Li, Y.; Liu, Y.B.; Ma, S.G.; Wang, X.J.; Liu, F.; Liu, S.; Qu, J.; Yu, S.S. Diverse epoxy grayanane diterpenoids with analgesic activity from the roots of Pieris formosa. Fitoterapia 2019, 133, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tang, C.; Ke, C.-Q.; Yao, S.; Lin, G.; Ye, Y. Birhodomolleins D and E, two new dimeric grayanane diterpenes with a 3-O-2′ linkage from the fruits of Rhododendron pumilum. Chin. Chem. Lett. 2018, 29, 123–126. [Google Scholar] [CrossRef]
- Feng, Y.; Zha, S.; Gao, B.; Zhang, H.; Jin, P.; Zheng, G.; Ma, Y.; Yao, G. Discovery of Kalmane Diterpenoids as Potent Analgesics from the Flowers of Rhododendron dauricum. Chin. J. Chem. 2022, 40, 1019–1027. [Google Scholar] [CrossRef]
- Hanson, J.R. From ‘mad honey’ to hypotensive agents, the grayanoid diterpenes. Sci. Prog. 2016, 99, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, Q.; Zhao, J.; Sun, S.; Liu, M.; Wang, Y.; Feng, Y.; Zhang, J. Evaluation of Rhodojaponin III from Rhododendron molle G. Don. on oral antinociceptive activity, mechanism of action, and subacute toxicity in rodents. J. Ethnopharmacol. 2022, 294, 115347. [Google Scholar] [CrossRef] [PubMed]
- Lukowski, A.L.; Narayan, A.R.H. Natural Voltage-Gated Sodium Channel Ligands: Biosynthesis and Biology. Chembiochem 2019, 20, 1231–1241. [Google Scholar] [CrossRef]
- Chen, R.; Wang, M.; Keasling, J.D.; Hu, T.; Yin, X. Expanding the structural diversity of terpenes by synthetic biology approaches. Trends Biotechnol. 2024. [CrossRef] [PubMed]
- Singh, S.; Grewal, A.S.; Grover, R.; Sharma, N.; Chopra, B.; Dhingra, A.K.; Arora, S.; Redhu, S.; Lather, V. Recent updates on development of protein-tyrosine phosphatase 1B inhibitors for treatment of diabetes, obesity and related disorders. Bioorg. Chem. 2022, 121, 105626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wu, G.; Heard, S.C.; Niu, C.; Bell, S.A.; Li, F.; Ye, Y.; Zhang, Y.; Winter, J.M. Identification and Characterization of a Cryptic Bifunctional Type I Diterpene Synthase Involved in Talaronoid Biosynthesis from a Marine-Derived Fungus. Org. Lett. 2022, 24, 7037–7041. [Google Scholar] [CrossRef]
- Škubník, J.; Pavlíčková, V.; Ruml, T.; Rimpelová, S. Current perspectives on taxanes: Focus on their bioactivity, delivery and combination therapy. Plants 2021, 10, 569. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, Z.; Chen, J.; Zheng, Y.; Limsila, B.; Lu, M.; Gao, T.; Yang, Q.; Fu, C.; Liao, W. Terpenoids from Curcumae Rhizoma: Their anticancer effects and clinical uses on combination and versus drug therapies. Biomed. Pharmacother. 2021, 138, 1113504. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, Y.-N.; Li, Y.; Ma, S.-G.; Qu, J.; Liu, Y.-B.; Niu, C.-S.; Tang, Z.-H.; Zhang, T.-T.; Li, Y.-H. Rhodoterpenoids A–C, Three New Rearranged Triterpenoids from Rhododendron latoucheae by HPLC–MS–SPE–NMR. Sci. Rep. 2017, 7, 7944. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, Y.-N.; Li, Y.; Ma, S.-G.; Qu, J.; Liu, Y.-B.; Niu, C.-S.; Tang, Z.-H.; Li, Y.-H.; Li, L. Triterpenoids from the twigs and leaves of Rhododendron latoucheae by HPLC–MS–SPE–NMR. Tetrahedron 2019, 75, 296–307. [Google Scholar] [CrossRef]
No. | Name | Plant Resource | Year | Ref. |
---|---|---|---|---|
1 | Pierisformosoid A | Pieris formosa, roots | 2018 | [8] |
2 | Pierisformosoid B | Pieris formosa, roots | 2018 | [8] |
3 | Pierisformosoid C | Pieris formosa, roots | 2018 | [8] |
4 | Pierisformosoid D | Pieris formosa, roots | 2018 | [8] |
5 | Pierisformosoid E | Pieris formosa, roots | 2018 | [8] |
6 | Pierisformosoid F | Pieris formosa, roots | 2018 | [8] |
7 | Pierisformosoid G | Pieris formosa, roots | 2018 | [8] |
8 | Pierisformosoid H | Pieris formosa, roots | 2018 | [8] |
9 | Pierisformosoid I | Pieris formosa, roots | 2018 | [8] |
10 | Pierisformosoid J | Pieris formosa, roots | 2018 | [8] |
11 | Pierisformosoid K | Pieris formosa, roots | 2018 | [8] |
12 | Pierisformosoid L | Pieris formosa, roots | 2018 | [8] |
13 | 3-epi-grayanoside B | Rhododendron micranthum, leaves | 2018 | [9] |
14 | Micranthanoside A | Rhododendron micranthum, leaves | 2018 | [9] |
15 | Micranthanoside B | Rhododendron micranthum, leaves | 2018 | [9] |
16 | Micranthanoside C | Rhododendron micranthum, leaves | 2018 | [9] |
17 | Micranthanoside D | Rhododendron micranthum, leaves | 2018 | [9] |
18 | Micranthanoside E | Rhododendron micranthum, leaves | 2018 | [9] |
19 | hydroxygrayanoside C | Rhododendron micranthum, leaves | 2018 | [9] |
20 | micranthanoside F | Rhododendron micranthum, leaves | 2018 | [9] |
21 | 14β-acetyoxymicranthanoside | Rhododendron micranthum, leaves | 2018 | [9] |
22 | micranthanoside G | Rhododendron micranthum, leaves | 2018 | [9] |
23 | 14-Oacetylmicranthanoside G | Rhododendron micranthum, leaves | 2018 | [9] |
24 | 14β-hydroxypieroside A | Rhododendron micranthum, leaves | 2018 | [9] |
25 | micranthanoside H | Rhododendron micranthum, leaves | 2018 | [9] |
26 | Mollfoliagein D | Rhododendron molle, leaves | 2018 | [7] |
27 | 6-O-Acetylrhodomollein XI | Rhododendron molle, leaves | 2018 | [7] |
28 | Mollfoliagein F | Rhododendron molle, leaves | 2018 | [7] |
29 | 18-Hydroxygrayanotoxin XVIII | Rhododendron molle, leaves | 2018 | [7] |
30 | 2-O-Methylrhodomolin I | Rhododendron molle, leaves | 2018 | [7] |
31 | 2-O-Methylrhodomollein XII | Rhododendron molle, leaves | 2018 | [7] |
32 | 2-O-Methylrhodojaponin VI | Rhododendron molle, leaves | 2018 | [7] |
33 | 2-O-Methylrhodojaponin VII | Rhododendron molle, leaves | 2018 | [7] |
34 | Rhododecorumin VIII | Rhododendron decorum, leaves and twigs | 2018 | [22] |
35 | Rhododecorumin IX | Rhododendron decorum, leaves and twigs | 2018 | [22] |
36 | Rhododecorumin X | Rhododendron decorum, leaves and twigs | 2018 | [22] |
37 | Rhododecorumin XI | Rhododendron decorum, leaves and twigs | 2018 | [22] |
38 | Rhododecorumin XII | Rhododendron decorum, leaves and twigs | 2018 | [22] |
39 | Rhododeoside I | Rhododendron decorum, leaves and twigs | 2018 | [22] |
40 | Rhodoauriculatol I | Rhododendron auriculatum, leaves | 2019 | [21] |
41 | Rhodomicranoside F | Rhododendron auriculatum, leaves | 2019 | [14] |
42 | Rhodomicranoside G | Rhododendron auriculatum, leaves | 2019 | [14] |
43 | Rhodomicranoside H | Rhododendron auriculatum, leaves | 2019 | [14] |
44 | Rhodomicranoside I | Rhododendron auriculatum, leaves | 2019 | [14] |
45 | Auriculatol B | Rhododendron auriculatum, leaves | 2019 | [25] |
46 | 3-epi-Grayanotoxin XVIII | Rhododendron auriculatum, leaves | 2019 | [25] |
47 | 6-Deoxycraiobiotoxin I | Rhododendron auriculatum, leaves | 2019 | [25] |
48 | 3-epi-Auriculatol B | Rhododendron auriculatum, leaves | 2019 | [25] |
49 | 19-Hydroxy-3-epi-auriculatol B | Rhododendron auriculatum, leaves | 2019 | [25] |
50 | Auriculatol C | Rhododendron auriculatum, leaves | 2019 | [25] |
51 | Auriculatol D | Rhododendron auriculatum, leaves | 2019 | [25] |
52 | Auriculatol E | Rhododendron auriculatum, leaves | 2019 | [25] |
53 | Auriculatol F | Rhododendron auriculatum, leaves | 2019 | [25] |
54 | 2α-Hydroxyauriculatol F | Rhododendron auriculatum, leaves | 2019 | [25] |
55 | 1-epi-Pieristoxin S | Rhododendron auriculatum, leaves | 2019 | [25] |
56 | 17-Hydroxygrayanotoxin XIX | Pieris japonica, leaves | 2019 | [26] |
57 | 2-O-Methylrhodomollein XIX | Pieris japonica, leaves | 2019 | [26] |
58 | 17-Hydroxy-3-epi-auriculatol B | Pieris japonica, leaves | 2019 | [26] |
59 | Pierisjaponol A | Pieris japonica, leaves | 2019 | [26] |
60 | Pierisjaponol B | Pieris japonica, leaves | 2019 | [26] |
61 | 13α-Hydroxyrhodomollein XVII | Pieris japonica, leaves | 2019 | [26] |
62 | 12β-Hydroxygrayanotoxin XVIII | Pieris japonica, leaves | 2019 | [26] |
63 | 2α-Hydroxyasebotoxin II | Pieris japonica, leaves | 2019 | [26] |
64 | 2α-O-Methylgrayanotoxin II | Pieris japonica, leaves | 2019 | [26] |
65 | Pierisjaponol C | Pieris japonica, leaves | 2019 | [26] |
66 | 16-O-Methylgrayanotoxin XVIII | Pieris japonica, leaves | 2019 | [26] |
67 | Pierisjaponol D | Pieris japonica, leaves | 2019 | [26] |
68 | Rhodomollein XLIV | Rhododendron molle, flowers | 2020 | [20] |
69 | Rhodomollein XLV | Rhododendron molle, flowers | 2020 | [20] |
70 | Rhodomollein XLVI | Rhododendron molle, flowers | 2020 | [20] |
71 | Rhodomollein XLVII | Rhododendron molle, flowers | 2020 | [20] |
72 | Rhodomollein XLIX | Rhododendron molle, flowers | 2020 | [20] |
73 | Rhodomollein L | Rhododendron molle, flowers | 2020 | [20] |
74 | Dauricanol A | Rhododendron dauricum, flowers | 2023 | [16] |
75 | Dauricanol B | Rhododendron dauricum, flowers | 2023 | [16] |
76 | Dauricanol C | Rhododendron dauricum, flowers | 2023 | [16] |
77 | Daublossomin G | Rhododendron dauricum, flowers | 2023 | [27] |
78 | Daublossomin H | Rhododendron dauricum, flowers | 2023 | [27] |
79 | Daublossomin I | Rhododendron dauricum, flowers | 2023 | [27] |
80 | Daublossomin J | Rhododendron dauricum, flowers | 2023 | [27] |
81 | Daublossomin K | Rhododendron dauricum, flowers | 2023 | [27] |
82 | Daublossomin L | Rhododendron dauricum, flowers | 2023 | [27] |
83 | Daublossomin M | Rhododendron dauricum, flowers | 2023 | [27] |
84 | Craibiodenoside A | Craibiodendron yunnanense, leaves | 2023 | [28] |
85 | Craibiodenoside B | Craibiodendron yunnanense, leaves | 2023 | [28] |
86 | Craibiodenoside C | Craibiodendron yunnanense, leaves | 2023 | [28] |
87 | Molleblossomin G | Rhododendron molle, flowers | 2024 | [29] |
88 | Molleblossomin H | Rhododendron molle, flowers | 2024 | [29] |
89 | Molleblossomin I | Rhododendron molle, flowers | 2024 | [29] |
90 | Molleblossomin J | Rhododendron molle, flowers | 2024 | [29] |
91 | Molleblossomin K | Rhododendron molle, flowers | 2024 | [29] |
92 | Molleblossomin L | Rhododendron molle, flowers | 2024 | [29] |
93 | 16-Acetylgrayanotoxin III | Rhododendron micranthum, roots | 2020 | [19] |
94 | 3β, 6β, 16α-trihydroxy-14b-acetoxy-grayan- 1(5), 10(20)-diene | Rhododendron micranthum, roots | 2020 | [19] |
95 | 14β-(2-Hydroxypropanoyloxy)rhodomollein XVII | Craibiodendron yunnanense, leaves | 2023 | [30] |
96 | 2-O-Ethoxyrhodojaponin VI | Craibiodendron yunnanense, leaves | 2023 | [30] |
97 | Micranthanoside J | Craibiodendron yunnanense, leaves | 2023 | [30] |
98 | Mollfoliagein A | Rhododendron molle, leaves | 2018 | [7] |
99 | Mollfoliagein B | Rhododendron molle, leaves | 2018 | [7] |
100 | Mollfoliagein C | Rhododendron molle, leaves | 2018 | [7] |
101 | 6-O-Acetylrhodomollein XXXI | Rhododendron molle, leaves | 2018 | [7] |
102 | Mollfoliagein E | Rhododendron molle, leaves | 2018 | [7] |
103 | Rhododecorumin VI | Rhododendron decorum, leaves and twigs | 2018 | [22] |
104 | Rhododecorumin VII | Rhododendron decorum, leaves and twigs | 2018 | [22] |
105 | Epoxypieristoxin A | Pieris formosa, roots | 2019 | [31] |
106 | Epoxypieristoxin B | Pieris formosa, roots | 2019 | [31] |
107 | Epoxypieristoxin C | Pieris formosa, roots | 2019 | [31] |
108 | Epoxypieristoxin D | Pieris formosa, roots | 2019 | [31] |
109 | Epoxypieristoxin E | Pieris formosa, roots | 2019 | [31] |
110 | Epoxypieristoxin F | Pieris formosa, roots | 2019 | [31] |
111 | Epoxypieristoxin G | Pieris formosa, roots | 2019 | [31] |
112 | Epoxypieristoxin H | Pieris formosa, roots | 2019 | [31] |
113 | 14-Deoxyrhodomollein XXXVII | Pieris japonica, leaves | 2019 | [26] |
114 | Rhodomollein XLVIII | Rhododendron molle, flowers | 2020 | [20] |
115 | Micranthanol A | Rhododendron micranthum, leaves | 2021 | [17] |
116 | Micranthanol B | Rhododendron micranthum, leaves | 2021 | [17] |
117 | Daublossomin A | Rhododendron dauricum, flowers | 2023 | [27] |
118 | Daublossomin B | Rhododendron dauricum, flowers | 2023 | [27] |
119 | Daublossomin C | Rhododendron dauricum, flowers | 2023 | [27] |
120 | Daublossomin D | Rhododendron dauricum, flowers | 2023 | [27] |
121 | Daublossomin E | Rhododendron dauricum, flowers | 2023 | [27] |
122 | Daublossomin F | Rhododendron dauricum, flowers | 2023 | [27] |
123 | Craibiodenoside D | Craibiodendron yunnanense, leaves | 2023 | [28] |
124 | Craibiodenoside E | Craibiodendron yunnanense, leaves | 2023 | [28] |
125 | Craibiodenoside F | Craibiodendron yunnanense, leaves | 2023 | [28] |
126 | Molleblossomin A | Rhododendron molle, flowers | 2024 | [29] |
127 | Molleblossomin B | Rhododendron molle, flowers | 2024 | [29] |
128 | Molleblossomin C | Rhododendron molle, flowers | 2024 | [29] |
129 | Molleblossomin D | Rhododendron molle, flowers | 2024 | [29] |
130 | Molleblossomin E | Rhododendron molle, flowers | 2024 | [29] |
131 | Molleblossomin F | Rhododendron molle, flowers | 2024 | [29] |
132 | Auriculatol A | Rhododendron auriculatum, leaves | 2019 | [25] |
133 | 9β-Hydroxy-1,5-seco-grayanotoxin | Rhododendron micranthum, leaves | 2021 | [17] |
134 | Dauricanol D | Rhododendron dauricum, flowers | 2023 | [16] |
135 | Dauricanol E | Rhododendron dauricum, flowers | 2023 | [16] |
136 | Pierisjaponin A | Pieris japonica, leaves | 2020 | [18] |
137 | Pierisjaponin B | Pieris japonica, leaves | 2020 | [18] |
138 | Rhodoauriculatol A | Rhododendron auriculatum, leaves | 2019 | [21] |
139 | Rhodoauriculatol B | Rhododendron auriculatum, leaves | 2019 | [21] |
140 | Rhodoauriculatol C | Rhododendron auriculatum, leaves | 2019 | [21] |
141 | Rhodoauriculatol D | Rhododendron auriculatum, leaves | 2019 | [21] |
142 | Pierisjaponin J | Pieris japonica, leaves | 2020 | [18] |
143 | Birhodomollein D | Rhododendron pumilum, fruits | 2018 | [32] |
144 | Birhodomollein E | Rhododendron pumilum, fruits | 2018 | [32] |
145 | Bimollfoliagein A | Rhododendron molle, leaves | 2018 | [7] |
146 | Rhodomollein XLIII | Rhododendron molle, flowers | 2020 | [20] |
147 | Bismollether A | Rhododendron molle, flowers | 2022 | [24] |
148 | Bismollether B | Rhododendron molle, flowers | 2022 | [24] |
149 | Bismollether C | Rhododendron molle, flowers | 2022 | [24] |
150 | Rhododecorumin I | Rhododendron decorum, leaves and twigs | 2018 | [22] |
151 | Rhododecorumin II | Rhododendron decorum, leaves and twigs | 2018 | [22] |
152 | Rhododecorumin III | Rhododendron decorum, leaves and twigs | 2018 | [22] |
153 | Rhodoauriculatol G | Rhododendron auriculatum, leaves | 2019 | [21] |
154 | Rhodoauriculatol H | Rhododendron auriculatum, leaves | 2019 | [21] |
155 | Rhodomicranoside A | Rhododendron auriculatum, leaves | 2019 | [14] |
156 | Rhodomicranoside B | Rhododendron auriculatum, leaves | 2019 | [14] |
157 | Rhodomicranoside C | Rhododendron auriculatum, leaves | 2019 | [14] |
158 | Rhodomollein LII | Rhododendron molle, flowers | 2020 | [20] |
159 | Rhodomollein LIII | Rhododendron molle, flowers | 2020 | [20] |
160 | 3β,7α,14β-trihydroxy-leucoth-10(20),15-dien-5-one | Pieris formosa, roots | 2020 | [15] |
161 | 10α,16α-dihydroxy-leucoth-5-one | Pieris formosa, roots | 2020 | [15] |
162 | Pierisjaponin F | Pieris japonica, leaves | 2020 | [18] |
163 | Pierisjaponin G | Pieris japonica, leaves | 2020 | [28] |
164 | Rhodoauriculatol F | Rhododendron auriculatum, leaves | 2019 | [21] |
165 | Pierisentkauran B | Pieris formosa, roots | 2020 | [15] |
166 | Pierisentkauran C | Pieris formosa, roots | 2020 | [15] |
167 | Pierisentkauran D | Pieris formosa, roots | 2020 | [15] |
168 | Pierisentkauran E | Pieris formosa, roots | 2020 | [15] |
169 | Rhodomicranoside D | Rhododendron micranthum, leaves | 2019 | [14] |
170 | Rhodomicranoside E | Rhododendron micranthum, leaves | 2019 | [14] |
171 | Pierisentkauran F | Pieris formosa, roots | 2020 | [15] |
172 | Pierisjaponin H | Pieris japonica, leaves | 2020 | [18] |
173 | Pierisjaponin I | Pieris japonica, leaves | 2020 | [18] |
174 | 8α-O-Acetylrhodomollein XXIII | Rhododendron micranthum, leaves | 2021 | [17] |
175 | Rhodokalmanol A | Rhododendron dauricum, leaves | 2022 | [33] |
176 | Rhodokalmanol B | Rhododendron dauricum, leaves | 2022 | [33] |
177 | Rhodokalmanol C | Rhododendron dauricum, leaves | 2022 | [33] |
178 | Rhodokalmanol D | Rhododendron dauricum, leaves | 2022 | [33] |
179 | 16α-acetoxy rhodomollein XXIII | Rhododendron micranthum, roots | 2020 | [19] |
180 | Rhodomollein LI | Rhododendron molle, flowers | 2020 | [20] |
181 | Rhodoauriculatol E | Rhododendron auriculatum, leaves | 2019 | [21] |
182 | Mollebenzylanol A | Rhododendron molle, leaves | 2018 | [23] |
183 | Mollebenzylanol B | Rhododendron molle, leaves | 2018 | [23] |
184 | Rhododecorumin IV | Rhododendron decorum, leaves and twigs | 2018 | [22] |
185 | Rhododecorumin V | Rhododendron decorum, leaves and twigs | 2018 | [22] |
186 | Micranthanone B | Rhododendron micranthum, leaves | 2021 | [17] |
187 | Micranthanone C | Rhododendron micranthum, leaves | 2021 | [17] |
188 | 14-epi-Mollanol A | Rhododendron micranthum, leaves | 2021 | [17] |
189 | Mollanol B | Rhododendron micranthum, leaves | 2021 | [17] |
190 | Mollanol C | Rhododendron micranthum, leaves | 2021 | [17] |
191 | Pierisjaponin E | Pieris japonica, leaves | 2020 | [18] |
192 | Rhomollone A | Rhododendron molle, flowers | 2020 | [20] |
193 | rhodauricanol A | Rhododendron dauricum, flowers | 2023 | [16] |
No | In Vivo | In Vitro | ||
---|---|---|---|---|
Test Mode | Activity/Dose | Test Model | Activity/Dose | |
1 | Acetic acid-induced pain mouse model Plutella xylostella | Analgesic, 5 mg/kg Antifeedant, 0.5 mg/mL | Nav1.7 channel KCNQ2 channel | ND, 10 μM ND, 10 μM |
2 | Acetic acid-induced pain mouse model | Analgesic, 1 mg/kg | Nav1.7 channel KCNQ2 channel | ND, 10 μM ND, 10 μM |
3 | - | - | Nav1.7 channel KCNQ2 channel | ND, 10 μM ND, 10 μM |
4 | Acetic acid-induced pain mouse model Plutella xylostella | Analgesic, 0.1 mg/kg Antifeedant, 0.5 mg/mL | Nav1.7 channel KCNQ2 channel | ND, 10 μM 38.3% inhibitory, 10 μM |
5 | Acetic acid-induced pain mouse model | Analgesic, 5 mg/kg | Nav1.7 channel KCNQ2 channel | ND, 10 μM ND, 10 μM |
6 | - | - | Nav1.7 channel KCNQ2 channel | ND, 10 μM ND, 10 μM |
7 | Acetic acid-induced pain mouse model | Analgesic, 0.1 mg/kg | Nav1.7 channel KCNQ2 channel | ND, 10 μM ND, 10 μM |
8 | Acetic acid-induced pain mouse model | Analgesic, 5 mg/kg | Nav1.7 channel KCNQ2 channel | ND, 10 μM ND, 10 μM |
9 | Acetic acid-induced pain mouse model Plutella xylostella | ND Antifeedant, 0.5 mg/mL | Nav1.7 channel KCNQ2 channel | ND, 10 μM ND, 10 μM |
10 | Acetic acid-induced pain mouse model | ND | Nav1.7 channel KCNQ2 channel | ND, 10 μM ND, 10 μM |
11 | Acetic acid-induced pain mouse model | ND | Nav1.7 channel KCNQ2 channel | ND, 10 μM ND, 10 μM |
12 | Acetic acid-induced pain mouse model | ND | Nav1.7 channel KCNQ2 channel | ND, 10 μM ND, 10 μM |
13 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
14 | Acetic acid-induced pain mouse model | Analgesic, 0.2 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
15 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
16 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
17 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
18 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
19 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
20 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
21 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
22 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
23 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
24 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
25 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | Anti-inflammatory Cytotoxicity PTP1B | ND, 40 μM ND, 40 μM ND, 40 μM |
26 | - | Anti-inflammatory | ND, 40 μM | |
27 | - | Anti-inflammatory | ND, 40 μM | |
28 | - | Anti-inflammatory | ND, 40 μM | |
29 | - | Anti-inflammatory | ND, 40 μM | |
30 | - | Anti-inflammatory | ND, 40 μM | |
31 | - | Anti-inflammatory | ND, 40 μM | |
32 | - | Anti-inflammatory | ND, 40 μM | |
33 | - | Anti-inflammatory | ND, 40 μM | |
34 | Acetic acid-induced pain mouse model | Analgesic, 10.0 mg/kg | - | |
35 | - | - | ||
36 | Acetic acid-induced pain mouse model | Analgesic, 10.0 mg/kg | - | |
37 | Acetic acid-induced pain mouse model | Analgesic, 10.0 mg/kg | - | |
38 | Acetic acid-induced pain mouse model | Analgesic, 0.8 mg/kg | - | |
39 | Acetic acid-induced pain mouse model | Analgesic, 10.0 mg/kg | - | |
40 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
41 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
42 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
43 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
44 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
45 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
46 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
47 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
48 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
49 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
50 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
51 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
52 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
53 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
54 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
55 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
56 | Acetic acid-induced pain mouse model | Analgesic, 0.04 mg/kg | - | |
57 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
58 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
59 | Acetic acid-induced pain mouse model | Analgesic, 0.2 mg/kg | - | |
60 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
61 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
62 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
63 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
64 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
65 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
66 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
67 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
68 | Acetic acid-induced pain mouse model | Analgesic, 20.0 mg/kg | - | |
69 | Acetic acid-induced pain mouse model | Analgesic, 20.0 mg/kg | - | |
70 | - | - | ||
71 | Acetic acid-induced pain mouse model | Analgesic, 2.0 mg/kg | - | |
72 | - | - | ||
73 | - | - | ||
74 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
75 | Acetic acid-induced pain mouse model | Analgesic, 0.04 mg/kg | - | |
76 | Acetic acid-induced pain mouse model | Analgesic, 0.04 mg/kg | - | |
77 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
78 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
79 | Acetic acid-induced pain mouse model | ND | - | |
80 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
81 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
82 | - | - | ||
83 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
84 | - | Anti-inflammatory | ND, 10 μg/mL | |
85 | - | Anti-inflammatory | 10 μg/mL | |
86 | - | Anti-inflammatory | 10 μg/mL | |
87 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
88 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
89 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
90 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
91 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
92 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
93 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
94 | Acetic acid-induced pain mouse model | Analgesic, 0.8 mg/kg | - | |
95 | - | - | ||
96 | - | - | ||
97 | - | - | ||
98 | - | Anti-inflammatory | ND, 40 μM | |
99 | - | Anti-inflammatory | ND, 40 μM | |
100 | - | Anti-inflammatory | IC50 35.4 ± 3.9 μM | |
101 | - | Anti-inflammatory | ND, 40 μM | |
102 | - | Anti-inflammatory | ND, 40 μM | |
103 | Acetic acid-induced pain mouse model | Analgesic, 10.0 mg/kg | - | |
104 | - | - | ||
105 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
106 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
107 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
108 | - | - | ||
109 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
110 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
111 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
112 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
113 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
114 | Acetic acid-induced pain mouse model | Analgesic, 20.0 mg/kg | - | |
115 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
116 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
117 | Acetic acid-induced pain mouse model | Analgesic, 0.2 mg/kg | - | |
118 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
119 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
120 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
121 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
122 | Acetic acid-induced pain mouse model | Analgesic, 0.2 mg/kg | - | |
123 | - | Anti-inflammatory | ND, 10 μg/mL | |
124 | - | Anti-inflammatory | ND, 10 μg/mL | |
125 | - | Anti-inflammatory | 10 μg/mL | |
126 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
127 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
128 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
129 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
130 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
131 | Acetic acid-induced pain mouse model | Analgesic, 0.2 mg/kg | - | |
132 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
133 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
134 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
135 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
136 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
137 | Acetic acid-induced pain mouse model | Analgesic, 0.04 mg/kg | - | |
138 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
139 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
140 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
141 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
142 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
143 | - | - | ||
144 | - | - | ||
145 | - | Anti-inflammatory | ND, 40 μM | |
146 | - | - | ||
147 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
148 | Acetic acid-induced pain mouse model Capsaicin-induced pain mouse model AITC-induced pain mouse model | Analgesic, 0.2 mg/kg Analgesic, 5.0 mg/kg Analgesic, 5.0 mg/kg | - | |
149 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | ||
150 | Acetic acid-induced pain mouse model | Analgesic, 10.0 mg/kg | - | |
151 | - | - | ||
152 | Acetic acid-induced pain mouse model | Analgesic, 10.0 mg/kg | - | |
153 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
154 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
155 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
156 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
157 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
158 | - | - | ||
159 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
160 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
161 | Acetic acid-induced pain mouse model | Analgesic, 5 mg/kg Antifeedant, 0.5 mg/mL | - | |
162 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
163 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
164 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
165 | - | - | ||
166 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
167 | Plutella xylostella | Antifeedant, 0.5 mg/mL | - | |
168 | - | - | ||
169 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
170 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
171 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
172 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
173 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
174 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
175 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
176 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
177 | Acetic acid-induced pain mouse model | Analgesic, 0.04 mg/kg | - | |
178 | Acetic acid-induced pain mouse model | Analgesic, 0.2 mg/kg | - | |
179 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
180 | - | - | ||
181 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
182 | - | PTP1B | IC50 22.99 ± 0.43 μM | |
183 | - | PTP1B | IC50 32.24 ± 0.74 μM | |
184 | Acetic acid-induced pain mouse model | Analgesic, 10.0 mg/kg | - | |
185 | - | - | ||
186 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
187 | Acetic acid-induced pain mouse model | Analgesic, 1.0 mg/kg | - | |
188 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
189 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
190 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
191 | Acetic acid-induced pain mouse model | Analgesic, 5.0 mg/kg | - | |
192 | - | - | ||
193 | Acetic acid-induced pain mouse model | Analgesic, 0.2 mg/kg | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Sun, L.; Zhang, P.; Niu, C. Recent Advances in Grayanane Diterpenes: Isolation, Structural Diversity, and Bioactivities from Ericaceae Family (2018–2024). Molecules 2024, 29, 1649. https://doi.org/10.3390/molecules29071649
Liu S, Sun L, Zhang P, Niu C. Recent Advances in Grayanane Diterpenes: Isolation, Structural Diversity, and Bioactivities from Ericaceae Family (2018–2024). Molecules. 2024; 29(7):1649. https://doi.org/10.3390/molecules29071649
Chicago/Turabian StyleLiu, Sheng, Lili Sun, Peng Zhang, and Changshan Niu. 2024. "Recent Advances in Grayanane Diterpenes: Isolation, Structural Diversity, and Bioactivities from Ericaceae Family (2018–2024)" Molecules 29, no. 7: 1649. https://doi.org/10.3390/molecules29071649
APA StyleLiu, S., Sun, L., Zhang, P., & Niu, C. (2024). Recent Advances in Grayanane Diterpenes: Isolation, Structural Diversity, and Bioactivities from Ericaceae Family (2018–2024). Molecules, 29(7), 1649. https://doi.org/10.3390/molecules29071649