Multiscale Carbon Fibre–Carbon Nanotube Composites of Poly(Vinyl Chloride)—An Evaluation of Their Properties and Structure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structural Characterization
2.2. Analysis of Glass Transition Temperature by Differential Scanning Calorimetry (DSC) and Dynamical Mechanical Analysis (DMA) Methods
2.3. Results of Dynamical Mechanical Analysis
2.4. Results of Mechanical Properties
2.5. Analysis of Thermal Stability by TGA and Time of Thermal Stability by Congo Red Test Method
2.6. Electrical Properties
2.7. Swelling Behaviour of Nanocomposites
3. Materials and Methods
3.1. Materials
3.2. Preparation of CF_CNT Filler
3.3. Preparation of PVC/CF-CNT Nanocomposites
3.4. Material Characterisation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, H.; Kumar, A.; Rana, S.; Guadagno, L. An Overview on Carbon Fiber-Reinforced Epoxy Composites: Effect of Graphene Oxide Incorporation on Composites Performance. Polymers 2022, 14, 1548. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Song, H.Y.; Yao, T.T.; Zhang, W.S.; Zhu, H.; Wu, G.P. Effects of Carbon Nanotube Length on Interfacial Properties of Carbon Fiber Reinforced Thermoplastic Composites. J. Mater. Sci. 2020, 55, 15467–15480. [Google Scholar] [CrossRef]
- Pekdemir, M.E. Synthesis, Characterization and Thermal Behavior of Carbon Fiber Reinforced Poly(Vinyl Chloride) and Poly(ε-Caprolactone). Fibers Polym. 2021, 22, 2861–2868. [Google Scholar] [CrossRef]
- Guoquan, W.; Peng, Z. Electrical Conductivity of Poly(Vinyl Chloride) Plastisol-Short Carbon Fiber Composite. Polym. Eng. Sci. 1997, 37, 96–100. [Google Scholar] [CrossRef]
- Nanoth, R.; Jayanarayanan, K.; Sarath Kumar, P.; Balachandran, M.; Pegoretti, A. Static and Dynamic Mechanical Properties of Hybrid Polymer Composites: A Comprehensive Review of Experimental, Micromechanical and Simulation Approaches. Compos. Part A Appl. Sci. Manuf. 2023, 174, 107741. [Google Scholar] [CrossRef]
- Bekyarova, E.; Thostenson, E.T.; Yu, A.; Kim, H.; Gao, J.; Tang, J.; Hahn, H.T.; Chou, T.W.; Itkis, M.E.; Haddon, R.C. Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites. Langmuir 2007, 23, 3970–3974. [Google Scholar] [CrossRef]
- Thompson, S.M.; Talò, M.; Krause, B.; Janke, A.; Lanzerotti, M.; Capps, J.; Lanzara, G.; Lacarbonara, W. The Effect of Branched Carbon Nanotubes as Reinforcing Nano-Filler in Polymer Nanocomposites. Compos. Struct. 2022, 295, 115794. [Google Scholar] [CrossRef]
- Krause, B.; Pötschke, P. Electrical and Thermal Conductivity of Polypropylene Filled with Combinations of Carbon Fillers. In Proceedings of the AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2016; Volume 1779, p. 040003. [Google Scholar]
- Moreira, I.P.; Sanivada, U.K.; Bessa, J.; Cunha, F.; Fangueiro, R. A Review of Multiple Scale Fibrous and Composite Systems for Heating Applications. Molecules 2021, 26, 3686. [Google Scholar] [CrossRef]
- Shariatnia, S.; Kumar, A.V.; Kaynan, O.; Asadi, A.; Asadi, A.; Asadi, A. Hybrid Cellulose Nanocrystal-Bonded Carbon Nanotubes/Carbon Fiber Polymer Composites for Structural Applications. ACS Appl. Nano Mater. 2020, 3, 5421–5436. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.; Zhang, X.; Wang, X.; Wang, H.; Shi, C.; He, F. Enhanced Shielding Performance of Layered Carbon Fiber Composites Filled with Carbonyl Iron and Carbon Nanotubes in the Koch Curve Fractal Method. Molecules 2020, 25, 969. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, J.; Li, Y.; Wang, Q.; Zhou, W.; Ao, Y.; Li, M. Constructing a New Multiscale “Soft-Rigid-Soft” Interfacial Structure at the Interphase to Improve the Interfacial Performance of Carbon Fiber Reinforced Polymer Composites. Compos. Sci. Technol. 2024, 248, 110458. [Google Scholar] [CrossRef]
- Sasikumar, R.; Babu, B.R.; Subramanian, V.; Jayavel, R. Multifunctionality of MWCNT Modified Carbon Fiber Reinforced Thermoplastic Composite, and Reclaiming Composite in the Pursuit of Sustainable Energy Storage Applications: An Experimental and Numerical Analysis. Compos. Sci. Technol. 2024, 248, 110468. [Google Scholar] [CrossRef]
- Ali, Z.; Yaqoob, S.; Yu, J.; D’Amore, A. Critical Review on the Characterization, Preparation, and Enhanced Mechanical, Thermal, and Electrical Properties of Carbon Nanotubes and Their Hybrid Filler Polymer Composites for Various Applications. Compos. Part C Open Access 2024, 13, 100434. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Y.; Luan, Y.; Zhou, H.; Peng, X.; Gong, L.; Zhou, H. Effects of CNT Microstructural Characteristics on the Interfacial Enhancement Mechanism of Carbon Fiber Reinforced Epoxy Composites via Molecular Dynamics Simulations. Thin-Walled Struct. 2024, 195, 111413. [Google Scholar] [CrossRef]
- Vedrtnam, A.; Sharma, S.P. Study on the Performance of Different Nano-Species Used for Surface Modification of Carbon Fiber for Interface Strengthening. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105509. [Google Scholar] [CrossRef]
- Mészáros, L.; Horváth, A.; Vas, L.M.; Petrény, R. Investigation of the Correlations between the Microstructure and the Tensile Properties Multi-Scale Composites with a Polylactic Acid Matrix, Reinforced with Carbon Nanotubes and Carbon Fibers, with the Use of the Fiber Bundle Cell Theory. Compos. Sci. Technol. 2023, 242, 110154. [Google Scholar] [CrossRef]
- Vanyorek, L.; Sikora, E.; Balogh, T.; Román, K.; Marossy, K.; Pekker, P.; Szabó, T.J.; Viskolcz, B.; Fiser, B. Nanotubes as Polymer Composite Reinforcing Additive Materials—A Comparative Study. Arab. J. Chem. 2020, 13, 3775–3782. [Google Scholar] [CrossRef]
- Harris, P.J.F. Carbon Nanotube Science: Carbon Nanotube Science Synthesis, Properties and Applications; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521535854. [Google Scholar]
- Joseph, K.; Oksman, K.; George, G.; Wilson, R.; Appukuttan, S. Fiber Reinforced Composites Constituents, Compatibility, Perspectives, and Applications; Woodhead Publishing Ltd.: Cambridge, UK, 2021; pp. 51–79. [Google Scholar]
- Thostenson, E.T.; Li, W.Z.; Wang, D.Z.; Ren, Z.F.; Chou, T.W. Carbon Nanotube/Carbon Fiber Hybrid Multiscale Composites. J. Appl. Phys. 2002, 91, 6034–6037. [Google Scholar] [CrossRef]
- Wypych, G. PVC Degradation and Stabilization, 3rd ed.; ChemTec Publishing: Toronto, ON, Canada, 2015; ISBN 9781927885000. [Google Scholar]
- Guler, S.H.; Simsek, T.; Guler, O.; Dikici, B. Possible Interaction of PVC with Micro-and Nano-Fillers; Springer: Berlin/Heidelberg, Germany, 2024; pp. 335–360. ISBN 9783031453748. [Google Scholar]
- Wilczewski, S.; Skórczewska, K.; Tomaszewska, J.; Lewandowski, K. Structure and Properties of Poly(Vinyl Chloride)/Graphene Nanocomposites. Polym. Test. 2020, 81, 106282. [Google Scholar] [CrossRef]
- Wilczewski, S.; Skórczewska, K.; Tomaszewska, J.; Lewandowski, K.; Szulc, J.; Runka, T. Manufacturing Homogenous PVC/Graphene Nanocomposites Using a Novel Dispersion Agent. Polym. Test. 2020, 91, 106868. [Google Scholar] [CrossRef]
- Taha, T.A. Optical Properties of PVC/Al2O3 Nanocomposite Films. Polym. Bull. 2019, 76, 903–918. [Google Scholar] [CrossRef]
- Chand, N.; Sharma, P.; Fahim, M. Tribology of Maleic Anhydride Modified Rice-Husk Filled Polyvinylchloride. Wear 2010, 269, 847–853. [Google Scholar] [CrossRef]
- Ráthy, I.; Kuki, Á.; Borda, J.; Deák, G.; Zsuga, M.; Marossy, K.; Kéki, S. Preparation and Characterization of Poly(Vinyl Chloride)-Continuous Carbon Fiber Composites. J. Appl. Polym. Sci. 2012, 124, 190–194. [Google Scholar] [CrossRef]
- Khoshnoud, P.; Abu-Zahra, N. Properties of Rigid Polyvinyl Chloride Foam Composites Reinforced with Different Shape Fillers. J. Thermoplast. Compos. Mater. 2017, 30, 1541–1559. [Google Scholar] [CrossRef]
- Skórczewska, K.; Lewandowski, K.; Wilczewski, S. Novel Composites of Poly(Vinyl Chloride) with Carbon Fibre/Carbon Nanotube Hybrid Filler. Materials 2022, 15, 5625. [Google Scholar] [CrossRef] [PubMed]
- Moradi, A.; Ansari, R.; Hassanzadeh-Aghdam, M.K.; Jamali, J. Flexural Behavior of Sandwich Structures with a Hybrid Carbon Nanotube/Short Carbon Fiber Foam Core and Debonded Skin/Core Interface. Mech. Adv. Mater. Struct. 2023, 1–13. [Google Scholar] [CrossRef]
- White, C.M.; Banks, R.; Hamerton, I.; Watts, J.F. Characterisation of Commercially CVD Grown Multi-Walled Carbon Nanotubes for Paint Applications. Prog. Org. Coat. 2016, 90, 44–53. [Google Scholar] [CrossRef]
- Mamunya, Y.P.; Levchenko, V.V.; Rybak, A.; Boiteux, G.; Lebedev, E.V.; Ulanski, J.; Seytre, G. Electrical and Thermomechanical Properties of Segregated Nanocomposites Based on PVC and Multiwalled Carbon Nanotubes. J. Non. Cryst. Solids 2010, 356, 635–641. [Google Scholar] [CrossRef]
- Karsli, N.G.; Aytac, A. Tensile and Thermomechanical Properties of Short Carbon Fiber Reinforced Polyamide 6 Composites. Compos. Part B Eng. 2013, 51, 270–275. [Google Scholar] [CrossRef]
- Rezaei, F.; Yunus, R.; Ibrahim, N.A. Effect of Fiber Length on Thermomechanical Properties of Short Carbon Fiber Reinforced Polypropylene Composites. Mater. Des. 2009, 30, 260–263. [Google Scholar] [CrossRef]
- Munirathnamma, L.M.; Ravikumar, H.B. Positron Lifetime Study of PAN-Based Carbon Fiber-Reinforced Polymer Composites. Polym. Compos. 2019, 40, E939–E952. [Google Scholar] [CrossRef]
- Ayyagari, S.; Al-Haik, M. Enhancing the Viscoelastic Performance of Carbon Fiber Composites by Incorporating CNTs and ZnO Nanofillers. Appl. Sci. 2019, 9, 2281. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, J.; Ke, Z.; Zhu, X.; Bi, H.; Nie, K. Viscometric Study of Poly(Vinyl Chloride)/Poly(Vinyl Acetate) Blends in Various Solvents. Eur. Polym. J. 2002, 38, 333–337. [Google Scholar] [CrossRef]
- Pothan, L.A.; Oommen, Z.; Thomas, S. Dynamic Mechanical Analysis of Banana Fiber Reinforced Polyester Composites. Compos. Sci. Technol. 2003, 63, 283–293. [Google Scholar] [CrossRef]
- Petrény, R.; Mészáros, L. The Effect of Microstructure on the Dynamic Mechanical Properties of Carbon Fiber and Carbon Nanotube Reinforced Multi-Scale Composites with a Polyamide 6 Matrix. IOP Conf. Ser. Mater. Sci. Eng. 2020, 903, 012021. [Google Scholar] [CrossRef]
- Rahmanian, S.; Suraya, A.R.; Shazed, M.A.; Zahari, R.; Zainudin, E.S. Mechanical Characterization of Epoxy Composite with Multiscale Reinforcements: Carbon Nanotubes and Short Carbon Fibers. Mater. Des. 2014, 60, 34–40. [Google Scholar] [CrossRef]
- Bedi, H.S.; Tiwari, M.; Agnihotri, P.K. Quantitative Determination of Size and Properties of Interphase in Carbon Nanotube Based Multiscale Composites. Carbon N. Y. 2018, 132, 181–190. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, M.; Hu, L.; Zhou, J.; Feng, G.; Zhou, Y. Thermal Degradation Behavior and Flame Retardant Mechanism of Poly(Vinyl Chloride) Plasticized with a Soybean-Oil-Based Plasticizer Containing Phosphaphenanthrene Groups. Polym. Degrad. Stab. 2015, 121, 292–302. [Google Scholar] [CrossRef]
- Iván, B. The Stability of Poly(Vinyl Chloride). J. Vinyl Addit. Technol. 2003, 9, 1–3. [Google Scholar] [CrossRef]
- Szarka, G.; Iván, B. Thermal Properties, Degradation and Stability of Poly (Vinyl Chloride) Predegraded Thermooxidatively in the Presence of Dioctyl Phthalate Plasticizer. J. Macromol. Sci. 2013, 214, 208–214. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Seidlitz, H.; Krenz, J.; Goracy, K.; Urbaniak, M.; Rösch, J.J. Recycling of Carbon Fiber Reinforced Composite Polymers—Review—Part 2: Recovery and Application of Recycled Carbon Fibers. Polymers 2020, 12, 3003. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska, J.; Sterzyński, T.; Walczak, D. Thermal Stability of Nanosilica-Modified Poly(Vinyl Chloride). Polymers 2021, 13, 2057. [Google Scholar] [CrossRef]
- Gong, J.; Niu, R.; Wen, X.; Yang, H.; Liu, J.; Chen, X.; Sun, Z.-Y.; Mijowska, E.; Tang, T. Synergistic Effect of Carbon Fibers and Carbon Nanotubes on Improving Thermal Stability and Flame Retardancy of Polypropylene: A Combination of a Physical Network and Chemical Crosslinking. RSC Adv. 2015, 5, 5484–5493. [Google Scholar] [CrossRef]
- Wilczewski, S.; Skórczewska, K.; Tomaszewska, J.; Lewandowski, K.; Studziński, W.; Osial, M.; Jenczyk, P.; Grzywacz, H.; Domańska, A. Curcuma Longa L. Rhizome Extract as a Poly(Vinyl Chloride)/Graphene Nanocomposite Green Modifier. Molecules 2022, 27, 8081. [Google Scholar] [CrossRef]
- Lewandowski, K.; Skórczewska, K.; Piszczek, K.; Urbaniak, W. Recycled Glass Fibres from Wind Turbines as a Filler for Poly(Vinyl Chloride). Adv. Polym. Technol. 2019, 2019, 8960503. [Google Scholar] [CrossRef]
- Pal, G.; Kumar, S. Multiscale Modeling of Effective Electrical Conductivity of Short Carbon Fiber-Carbon Nanotube-Polymer Matrix Hybrid Composites. Mater. Des. 2016, 89, 129–136. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, Z.; Wang, G. Preparation and Properties of Carbon Fiber Chiral Materials. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2008, 23, 510–512. [Google Scholar] [CrossRef]
- Saha, S.; Kumar, V.; Rencheck, M.L.; Tekinalp, H.; Knouff, B.; Blanchard, P.; Yoon, J.; Copenhaver, K.; Hassen, A.A.; Wang, H.; et al. Development of Multifunctional Nylon 6,6-Based Nanocomposites with High Electrical and Thermal Conductivities by Scalable Melt and Dry Blending Methods for Automotive Applications. Mater. Today Commun. 2024, 38, 107657. [Google Scholar] [CrossRef]
- Al, N.A.A.; Jameel, W.W.; Hassan, N.S. Studying the Electrical Conductivity of Different Carbon Fillers Reinforced Polyvinyl Chloride Composite Materials. Coll. Eng. J. NUCEJ 2014, 16, 260–268. [Google Scholar]
- Wang, H.; Xie, G.; Fang, M.; Ying, Z.; Tong, Y.; Zeng, Y. Electrical and Mechanical Properties of Antistatic PVC Films Containing Multi-Layer Graphene. Compos. Part B Eng. 2015, 79, 444–450. [Google Scholar] [CrossRef]
- Zhizhin, K.Y.; Turyshev, E.S.; Shpigun, L.K.; Gorobtsov, P.Y.; Simonenko, N.P.; Simonenko, T.L.; Kuznetsov, N.T. Poly(Vinyl Chloride)/Nanocarbon Composites for Advanced Potentiometric Membrane Sensor Design. Int. J. Mol. Sci. 2024, 25, 1124. [Google Scholar] [CrossRef]
- Khaleghi, M.; Didehban, K.; Shabanian, M. Simple and Fast Preparation of Graphene Oxide@ Melamine Terephthaldehyde and Its PVC Nanocomposite via Ultrasonic Irradiation: Chemical and Thermal Resistance Study. Ultrason. Sonochem. 2018, 43, 275–284. [Google Scholar] [CrossRef]
- Broza, G.; Piszczek, K.; Schulte, K.; Sterzynski, T. Nanocomposites of Poly(Vinyl Chloride) with Carbon Nanotubes (CNT). Compos. Sci. Technol. 2007, 67, 890–894. [Google Scholar] [CrossRef]
- Leluk, K.; Frąckowiak, S.; Ludwiczak, J.; Rydzkowski, T.; Thakur, V.K. The Impact of Filler Geometry on Polylactic Acid-Based Sustainable Polymer Composites. Molecules 2020, 26, 149. [Google Scholar] [CrossRef]
Sample Name | Tg Infl (°C) | Tg Mid (°C) | Tg Onset E′ (°C) | Tg Max tan δ (°C) |
---|---|---|---|---|
PVC | 75.7 | 75.9 | 75.2 | 92.3 |
1CF | 75.4 | 75.8 | 76.3 | 93.3 |
5CF | 75.8 | 75.8 | 77.1 | 94.3 |
10CF | 75.8 | 75.9 | 78.2 | 94.8 |
1CF_CNT | 75.7 | 75.9 | 76.8 | 94.4 |
5CF_CNT | 75.6 | 75.5 | 77.6 | 94.9 |
10CF_CNT | 76.2 | 76.4 | 79.3 | 95.5 |
Sample Name | E′ 30 °C (MPa) | E′ 50 °C (MPa) | E′ 70 °C (MPa) | E′ 90 °C (MPa) | Coefficient C |
---|---|---|---|---|---|
PVC | 3067 | 2892 | 2569 | 150 | - |
1CF | 3634 | 3424 | 2778 | 215 | 0.83 |
5CF | 4127 | 4016 | 3453 | 359 | 0.56 |
10CF | 4364 | 4118 | 3707 | 467 | 0.46 |
1CF_CNT | 3665 | 3433 | 2864 | 236 | 0.76 |
5CF_CNT | 4225 | 4101 | 3561 | 388 | 0.53 |
10CF_CNT | 4910 | 4562 | 4087 | 562 | 0.43 |
Sample Name | T1 | T5 | T10 | T50 | TDTG | RM at 900 °C | Congo Test |
---|---|---|---|---|---|---|---|
(°C) | (°C) | (°C) | (°C) | (°C) | (%) | (min) | |
PVC | 236.7 | 254.5 | 270.4 | 313.8 | 291.5 | 11.30 | 32.8 |
1CF | 236.5 | 257.9 | 274.2 | 316.2 | 292.4 | 13.00 | 32.3 |
5CF | 237.5 | 260.1 | 276.4 | 318.2 | 291.1 | 16.80 | 33.4 |
10CF | 239.2 | 262.4 | 278.1 | 321.5 | 291.0 | 21.60 | 34.3 |
1CF_CNT | 234.9 | 258.0 | 274.7 | 315.4 | 291.2 | 12.60 | 33.8 |
5CF_CNT | 236.9 | 259.1 | 275.0 | 319.6 | 292.2 | 16.70 | 34.2 |
10CF_CNT | 237.3 | 259.7 | 275.6 | 321.7 | 292.4 | 21.30 | 34.9 |
Sample | SE, (%) | tM, (s) | p, (s−1) | R2 |
---|---|---|---|---|
PVC | 70.7 (0.5) | 432.6 (7.6) | 0.003 (0.0001) | 0.98 |
1 CF | 63.2 (0.5) | 446.7 (8.3) | 0.003 (0.0001) | 0.98 |
5 CF | 54.3 (0.4) | 442.5 (8.9) | 0.003 (0.0002) | 0.98 |
10 CF | 61.8 (0.6) | 432.5 (10.9) | 0.002 (0.0001) | 0.97 |
1CF_CNT | 60.9 (0.4) | 460.3 (8.8) | 0.002 (0.0001) | 0.98 |
5CF_CNT | 40.9 (0.3) | 335.1 (7.5) | 0.004 (0.0003) | 0.97 |
10CF_CNT | 52.7 (0.4) | 496.9 (8.6) | 0.002 (0.00008) | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skórczewska, K.; Wilczewski, S.; Lewandowski, K. Multiscale Carbon Fibre–Carbon Nanotube Composites of Poly(Vinyl Chloride)—An Evaluation of Their Properties and Structure. Molecules 2024, 29, 1479. https://doi.org/10.3390/molecules29071479
Skórczewska K, Wilczewski S, Lewandowski K. Multiscale Carbon Fibre–Carbon Nanotube Composites of Poly(Vinyl Chloride)—An Evaluation of Their Properties and Structure. Molecules. 2024; 29(7):1479. https://doi.org/10.3390/molecules29071479
Chicago/Turabian StyleSkórczewska, Katarzyna, Sławomir Wilczewski, and Krzysztof Lewandowski. 2024. "Multiscale Carbon Fibre–Carbon Nanotube Composites of Poly(Vinyl Chloride)—An Evaluation of Their Properties and Structure" Molecules 29, no. 7: 1479. https://doi.org/10.3390/molecules29071479
APA StyleSkórczewska, K., Wilczewski, S., & Lewandowski, K. (2024). Multiscale Carbon Fibre–Carbon Nanotube Composites of Poly(Vinyl Chloride)—An Evaluation of Their Properties and Structure. Molecules, 29(7), 1479. https://doi.org/10.3390/molecules29071479